提交 eeb1c643 编写于 作者: V Vinod Koul 提交者: Jonathan Corbet

dmaengine: doc: ReSTize client API doc

This converts and moves client API file with some format
changes for RST style
Signed-off-by: NVinod Koul <vinod.koul@intel.com>
Signed-off-by: NJonathan Corbet <corbet@lwn.net>
上级 77fe6612
DMA Engine API Guide
====================
====================
DMA Engine API Guide
====================
Vinod Koul <vinod dot koul at intel.com>
Vinod Koul <vinod dot koul at intel.com>
NOTE: For DMA Engine usage in async_tx please see:
Documentation/crypto/async-tx-api.txt
.. note:: For DMA Engine usage in async_tx please see:
``Documentation/crypto/async-tx-api.txt``
Below is a guide to device driver writers on how to use the Slave-DMA API of the
DMA Engine. This is applicable only for slave DMA usage only.
DMA usage
=========
The slave DMA usage consists of following steps:
1. Allocate a DMA slave channel
2. Set slave and controller specific parameters
3. Get a descriptor for transaction
4. Submit the transaction
5. Issue pending requests and wait for callback notification
- Allocate a DMA slave channel
- Set slave and controller specific parameters
- Get a descriptor for transaction
- Submit the transaction
- Issue pending requests and wait for callback notification
The details of these operations are:
1. Allocate a DMA slave channel
......@@ -25,9 +36,12 @@ The slave DMA usage consists of following steps:
To request a channel dma_request_chan() API is used.
Interface:
struct dma_chan *dma_request_chan(struct device *dev, const char *name);
Which will find and return the 'name' DMA channel associated with the 'dev'
.. code-block:: c
struct dma_chan *dma_request_chan(struct device *dev, const char *name);
Which will find and return the ``name`` DMA channel associated with the 'dev'
device. The association is done via DT, ACPI or board file based
dma_slave_map matching table.
......@@ -48,8 +62,11 @@ The slave DMA usage consists of following steps:
parameters, if required.
Interface:
int dmaengine_slave_config(struct dma_chan *chan,
struct dma_slave_config *config)
.. code-block:: c
int dmaengine_slave_config(struct dma_chan *chan,
struct dma_slave_config *config)
Please see the dma_slave_config structure definition in dmaengine.h
for a detailed explanation of the struct members. Please note
......@@ -58,73 +75,81 @@ The slave DMA usage consists of following steps:
3. Get a descriptor for transaction
For slave usage the various modes of slave transfers supported by the
DMA-engine are:
For slave usage the various modes of slave transfers supported by the
DMA-engine are:
slave_sg - DMA a list of scatter gather buffers from/to a peripheral
dma_cyclic - Perform a cyclic DMA operation from/to a peripheral till the
operation is explicitly stopped.
interleaved_dma - This is common to Slave as well as M2M clients. For slave
address of devices' fifo could be already known to the driver.
Various types of operations could be expressed by setting
appropriate values to the 'dma_interleaved_template' members.
- slave_sg: DMA a list of scatter gather buffers from/to a peripheral
A non-NULL return of this transfer API represents a "descriptor" for
the given transaction.
- dma_cyclic: Perform a cyclic DMA operation from/to a peripheral till the
operation is explicitly stopped.
Interface:
struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
- interleaved_dma: This is common to Slave as well as M2M clients. For slave
address of devices' fifo could be already known to the driver.
Various types of operations could be expressed by setting
appropriate values to the 'dma_interleaved_template' members.
A non-NULL return of this transfer API represents a "descriptor" for
the given transaction.
Interface:
.. code-block:: c
struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_data_direction direction,
unsigned long flags);
struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_data_direction direction);
struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
struct dma_chan *chan, struct dma_interleaved_template *xt,
unsigned long flags);
The peripheral driver is expected to have mapped the scatterlist for
the DMA operation prior to calling dmaengine_prep_slave_sg(), and must
keep the scatterlist mapped until the DMA operation has completed.
The scatterlist must be mapped using the DMA struct device.
If a mapping needs to be synchronized later, dma_sync_*_for_*() must be
called using the DMA struct device, too.
So, normal setup should look like this:
The peripheral driver is expected to have mapped the scatterlist for
the DMA operation prior to calling dmaengine_prep_slave_sg(), and must
keep the scatterlist mapped until the DMA operation has completed.
The scatterlist must be mapped using the DMA struct device.
If a mapping needs to be synchronized later, dma_sync_*_for_*() must be
called using the DMA struct device, too.
So, normal setup should look like this:
.. code-block:: c
nr_sg = dma_map_sg(chan->device->dev, sgl, sg_len);
nr_sg = dma_map_sg(chan->device->dev, sgl, sg_len);
if (nr_sg == 0)
/* error */
desc = dmaengine_prep_slave_sg(chan, sgl, nr_sg, direction, flags);
Once a descriptor has been obtained, the callback information can be
added and the descriptor must then be submitted. Some DMA engine
drivers may hold a spinlock between a successful preparation and
submission so it is important that these two operations are closely
paired.
Once a descriptor has been obtained, the callback information can be
added and the descriptor must then be submitted. Some DMA engine
drivers may hold a spinlock between a successful preparation and
submission so it is important that these two operations are closely
paired.
.. note::
Note:
Although the async_tx API specifies that completion callback
routines cannot submit any new operations, this is not the
case for slave/cyclic DMA.
Although the async_tx API specifies that completion callback
routines cannot submit any new operations, this is not the
case for slave/cyclic DMA.
For slave DMA, the subsequent transaction may not be available
for submission prior to callback function being invoked, so
slave DMA callbacks are permitted to prepare and submit a new
transaction.
For slave DMA, the subsequent transaction may not be available
for submission prior to callback function being invoked, so
slave DMA callbacks are permitted to prepare and submit a new
transaction.
For cyclic DMA, a callback function may wish to terminate the
DMA via dmaengine_terminate_async().
For cyclic DMA, a callback function may wish to terminate the
DMA via dmaengine_terminate_async().
Therefore, it is important that DMA engine drivers drop any
locks before calling the callback function which may cause a
deadlock.
Therefore, it is important that DMA engine drivers drop any
locks before calling the callback function which may cause a
deadlock.
Note that callbacks will always be invoked from the DMA
engines tasklet, never from interrupt context.
Note that callbacks will always be invoked from the DMA
engines tasklet, never from interrupt context.
4. Submit the transaction
......@@ -132,7 +157,10 @@ The slave DMA usage consists of following steps:
added, it must be placed on the DMA engine drivers pending queue.
Interface:
dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
.. code-block:: c
dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
This returns a cookie can be used to check the progress of DMA engine
activity via other DMA engine calls not covered in this document.
......@@ -151,13 +179,21 @@ The slave DMA usage consists of following steps:
completion callback routine for notification, if set.
Interface:
void dma_async_issue_pending(struct dma_chan *chan);
.. code-block:: c
void dma_async_issue_pending(struct dma_chan *chan);
Further APIs:
------------
1. Terminate APIs
.. code-block:: c
1. int dmaengine_terminate_sync(struct dma_chan *chan)
int dmaengine_terminate_async(struct dma_chan *chan)
int dmaengine_terminate_all(struct dma_chan *chan) /* DEPRECATED */
int dmaengine_terminate_sync(struct dma_chan *chan)
int dmaengine_terminate_async(struct dma_chan *chan)
int dmaengine_terminate_all(struct dma_chan *chan) /* DEPRECATED */
This causes all activity for the DMA channel to be stopped, and may
discard data in the DMA FIFO which hasn't been fully transferred.
......@@ -178,17 +214,29 @@ Further APIs:
dmaengine_terminate_all() is deprecated and should not be used in new code.
2. int dmaengine_pause(struct dma_chan *chan)
2. Pause API
.. code-block:: c
int dmaengine_pause(struct dma_chan *chan)
This pauses activity on the DMA channel without data loss.
3. int dmaengine_resume(struct dma_chan *chan)
3. Resume API
.. code-block:: c
int dmaengine_resume(struct dma_chan *chan)
Resume a previously paused DMA channel. It is invalid to resume a
channel which is not currently paused.
4. enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
4. Check Txn complete
.. code-block:: c
enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
This can be used to check the status of the channel. Please see
the documentation in include/linux/dmaengine.h for a more complete
......@@ -198,25 +246,30 @@ Further APIs:
the cookie returned from dmaengine_submit() to check for
completion of a specific DMA transaction.
Note:
Not all DMA engine drivers can return reliable information for
a running DMA channel. It is recommended that DMA engine users
pause or stop (via dmaengine_terminate_all()) the channel before
using this API.
.. note::
Not all DMA engine drivers can return reliable information for
a running DMA channel. It is recommended that DMA engine users
pause or stop (via dmaengine_terminate_all()) the channel before
using this API.
5. Synchronize termination API
.. code-block:: c
5. void dmaengine_synchronize(struct dma_chan *chan)
void dmaengine_synchronize(struct dma_chan *chan)
Synchronize the termination of the DMA channel to the current context.
Synchronize the termination of the DMA channel to the current context.
This function should be used after dmaengine_terminate_async() to synchronize
the termination of the DMA channel to the current context. The function will
wait for the transfer and any running complete callbacks to finish before it
returns.
This function should be used after dmaengine_terminate_async() to synchronize
the termination of the DMA channel to the current context. The function will
wait for the transfer and any running complete callbacks to finish before it
returns.
If dmaengine_terminate_async() is used to stop the DMA channel this function
must be called before it is safe to free memory accessed by previously
submitted descriptors or to free any resources accessed within the complete
callback of previously submitted descriptors.
If dmaengine_terminate_async() is used to stop the DMA channel this function
must be called before it is safe to free memory accessed by previously
submitted descriptors or to free any resources accessed within the complete
callback of previously submitted descriptors.
The behavior of this function is undefined if dma_async_issue_pending() has
been called between dmaengine_terminate_async() and this function.
The behavior of this function is undefined if dma_async_issue_pending() has
been called between dmaengine_terminate_async() and this function.
......@@ -16,6 +16,17 @@ driver writers.
provider
DMAEngine client documentation
------------------------------
This book is a guide to device driver writers on how to use the Slave-DMA
API of the DMAEngine. This is applicable only for slave DMA usage only.
.. toctree::
:maxdepth: 1
client
.. only:: subproject
Indices
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册