提交 d9e651bc 编写于 作者: D Dhananjay Phadke 提交者: Jeff Garzik

netxen: cut-through rx changes

NX3031 supports cut-through operation where ingress packets are
directly dma'ed into host buffers to reduce latency.

This requires larger dma buffers (2kb) and different alignemnt.

The buffer posting logic is changed a bit. The free rx buffers
are maintained in linked list, since the received reference
handles can be out of order. However rx descriptors are still
posted sequentially, indexed by producer.
Signed-off-by: NDhananjay Phadke <dhananjay@netxen.com>
Signed-off-by: NJeff Garzik <jgarzik@redhat.com>
上级 c9fc891f
...@@ -140,6 +140,7 @@ ...@@ -140,6 +140,7 @@
#define NX_RX_NORMAL_BUF_MAX_LEN (NX_MAX_ETHERHDR + NX_ETHERMTU) #define NX_RX_NORMAL_BUF_MAX_LEN (NX_MAX_ETHERHDR + NX_ETHERMTU)
#define NX_P2_RX_JUMBO_BUF_MAX_LEN (NX_MAX_ETHERHDR + P2_MAX_MTU) #define NX_P2_RX_JUMBO_BUF_MAX_LEN (NX_MAX_ETHERHDR + P2_MAX_MTU)
#define NX_P3_RX_JUMBO_BUF_MAX_LEN (NX_MAX_ETHERHDR + P3_MAX_MTU) #define NX_P3_RX_JUMBO_BUF_MAX_LEN (NX_MAX_ETHERHDR + P3_MAX_MTU)
#define NX_CT_DEFAULT_RX_BUF_LEN 2048
#define MAX_RX_BUFFER_LENGTH 1760 #define MAX_RX_BUFFER_LENGTH 1760
#define MAX_RX_JUMBO_BUFFER_LENGTH 8062 #define MAX_RX_JUMBO_BUFFER_LENGTH 8062
...@@ -391,8 +392,8 @@ struct rcv_desc { ...@@ -391,8 +392,8 @@ struct rcv_desc {
}; };
/* opcode field in status_desc */ /* opcode field in status_desc */
#define RCV_NIC_PKT (0xA) #define NETXEN_NIC_RXPKT_DESC 0x04
#define STATUS_NIC_PKT ((RCV_NIC_PKT) << 12) #define NETXEN_OLD_RXPKT_DESC 0x3f
/* for status field in status_desc */ /* for status field in status_desc */
#define STATUS_NEED_CKSUM (1) #define STATUS_NEED_CKSUM (1)
...@@ -424,6 +425,8 @@ struct rcv_desc { ...@@ -424,6 +425,8 @@ struct rcv_desc {
(((sts_data) >> 28) & 0xFFFF) (((sts_data) >> 28) & 0xFFFF)
#define netxen_get_sts_prot(sts_data) \ #define netxen_get_sts_prot(sts_data) \
(((sts_data) >> 44) & 0x0F) (((sts_data) >> 44) & 0x0F)
#define netxen_get_sts_pkt_offset(sts_data) \
(((sts_data) >> 48) & 0x1F)
#define netxen_get_sts_opcode(sts_data) \ #define netxen_get_sts_opcode(sts_data) \
(((sts_data) >> 58) & 0x03F) (((sts_data) >> 58) & 0x03F)
...@@ -438,17 +441,30 @@ struct rcv_desc { ...@@ -438,17 +441,30 @@ struct rcv_desc {
struct status_desc { struct status_desc {
/* Bit pattern: 0-3 port, 4-7 status, 8-11 type, 12-27 total_length /* Bit pattern: 0-3 port, 4-7 status, 8-11 type, 12-27 total_length
28-43 reference_handle, 44-47 protocol, 48-52 unused 28-43 reference_handle, 44-47 protocol, 48-52 pkt_offset
53-55 desc_cnt, 56-57 owner, 58-63 opcode 53-55 desc_cnt, 56-57 owner, 58-63 opcode
*/ */
__le64 status_desc_data; __le64 status_desc_data;
__le32 hash_value; union {
u8 hash_type; struct {
u8 msg_type; __le32 hash_value;
u8 unused; u8 hash_type;
/* Bit pattern: 0-6 lro_count indicates frag sequence, u8 msg_type;
7 last_frag indicates last frag */ u8 unused;
u8 lro; union {
/* Bit pattern: 0-6 lro_count indicates frag
* sequence, 7 last_frag indicates last frag
*/
u8 lro;
/* chained buffers */
u8 nr_frags;
};
};
struct {
__le16 frag_handles[4];
};
};
} __attribute__ ((aligned(16))); } __attribute__ ((aligned(16)));
enum { enum {
...@@ -774,6 +790,7 @@ struct netxen_cmd_buffer { ...@@ -774,6 +790,7 @@ struct netxen_cmd_buffer {
/* In rx_buffer, we do not need multiple fragments as is a single buffer */ /* In rx_buffer, we do not need multiple fragments as is a single buffer */
struct netxen_rx_buffer { struct netxen_rx_buffer {
struct list_head list;
struct sk_buff *skb; struct sk_buff *skb;
u64 dma; u64 dma;
u16 ref_handle; u16 ref_handle;
...@@ -854,6 +871,7 @@ struct nx_host_rds_ring { ...@@ -854,6 +871,7 @@ struct nx_host_rds_ring {
u32 dma_size; u32 dma_size;
u32 skb_size; u32 skb_size;
struct netxen_rx_buffer *rx_buf_arr; /* rx buffers for receive */ struct netxen_rx_buffer *rx_buf_arr; /* rx buffers for receive */
struct list_head free_list;
int begin_alloc; int begin_alloc;
}; };
......
/*
* Copyright (C) 2003 - 2008 NetXen, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.
*
* Contact Information:
* info@netxen.com
* NetXen,
* 3965 Freedom Circle, Fourth floor,
* Santa Clara, CA 95054
*
*/
#include "netxen_nic_hw.h"
#include "netxen_nic.h"
#include "netxen_nic_phan_reg.h"
#define NXHAL_VERSION 1
static int
netxen_api_lock(struct netxen_adapter *adapter)
{
u32 done = 0, timeout = 0;
for (;;) {
/* Acquire PCIE HW semaphore5 */
netxen_nic_read_w0(adapter,
NETXEN_PCIE_REG(PCIE_SEM5_LOCK), &done);
if (done == 1)
break;
if (++timeout >= NX_OS_CRB_RETRY_COUNT) {
printk(KERN_ERR "%s: lock timeout.\n", __func__);
return -1;
}
msleep(1);
}
#if 0
netxen_nic_write_w1(adapter,
NETXEN_API_LOCK_ID, NX_OS_API_LOCK_DRIVER);
#endif
return 0;
}
static int
netxen_api_unlock(struct netxen_adapter *adapter)
{
u32 val;
/* Release PCIE HW semaphore5 */
netxen_nic_read_w0(adapter,
NETXEN_PCIE_REG(PCIE_SEM5_UNLOCK), &val);
return 0;
}
static u32
netxen_poll_rsp(struct netxen_adapter *adapter)
{
u32 raw_rsp, rsp = NX_CDRP_RSP_OK;
int timeout = 0;
do {
/* give atleast 1ms for firmware to respond */
msleep(1);
if (++timeout > NX_OS_CRB_RETRY_COUNT)
return NX_CDRP_RSP_TIMEOUT;
netxen_nic_read_w1(adapter, NX_CDRP_CRB_OFFSET,
&raw_rsp);
rsp = le32_to_cpu(raw_rsp);
} while (!NX_CDRP_IS_RSP(rsp));
return rsp;
}
static u32
netxen_issue_cmd(struct netxen_adapter *adapter,
u32 pci_fn, u32 version, u32 arg1, u32 arg2, u32 arg3, u32 cmd)
{
u32 rsp;
u32 signature = 0;
u32 rcode = NX_RCODE_SUCCESS;
signature = NX_CDRP_SIGNATURE_MAKE(pci_fn, version);
/* Acquire semaphore before accessing CRB */
if (netxen_api_lock(adapter))
return NX_RCODE_TIMEOUT;
netxen_nic_write_w1(adapter, NX_SIGN_CRB_OFFSET,
cpu_to_le32(signature));
netxen_nic_write_w1(adapter, NX_ARG1_CRB_OFFSET,
cpu_to_le32(arg1));
netxen_nic_write_w1(adapter, NX_ARG2_CRB_OFFSET,
cpu_to_le32(arg2));
netxen_nic_write_w1(adapter, NX_ARG3_CRB_OFFSET,
cpu_to_le32(arg3));
netxen_nic_write_w1(adapter, NX_CDRP_CRB_OFFSET,
cpu_to_le32(NX_CDRP_FORM_CMD(cmd)));
rsp = netxen_poll_rsp(adapter);
if (rsp == NX_CDRP_RSP_TIMEOUT) {
printk(KERN_ERR "%s: card response timeout.\n",
netxen_nic_driver_name);
rcode = NX_RCODE_TIMEOUT;
} else if (rsp == NX_CDRP_RSP_FAIL) {
netxen_nic_read_w1(adapter, NX_ARG1_CRB_OFFSET, &rcode);
rcode = le32_to_cpu(rcode);
printk(KERN_ERR "%s: failed card response code:0x%x\n",
netxen_nic_driver_name, rcode);
}
/* Release semaphore */
netxen_api_unlock(adapter);
return rcode;
}
u32
nx_fw_cmd_set_mtu(struct netxen_adapter *adapter, u32 mtu)
{
u32 rcode = NX_RCODE_SUCCESS;
struct netxen_recv_context *recv_ctx = &adapter->recv_ctx[0];
if (recv_ctx->state == NX_HOST_CTX_STATE_ACTIVE)
rcode = netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
recv_ctx->context_id,
mtu,
0,
NX_CDRP_CMD_SET_MTU);
return rcode;
}
static int
nx_fw_cmd_create_rx_ctx(struct netxen_adapter *adapter)
{
void *addr;
nx_hostrq_rx_ctx_t *prq;
nx_cardrsp_rx_ctx_t *prsp;
nx_hostrq_rds_ring_t *prq_rds;
nx_hostrq_sds_ring_t *prq_sds;
nx_cardrsp_rds_ring_t *prsp_rds;
nx_cardrsp_sds_ring_t *prsp_sds;
struct nx_host_rds_ring *rds_ring;
dma_addr_t hostrq_phys_addr, cardrsp_phys_addr;
u64 phys_addr;
int i, nrds_rings, nsds_rings;
size_t rq_size, rsp_size;
u32 cap, reg;
int err;
struct netxen_recv_context *recv_ctx = &adapter->recv_ctx[0];
/* only one sds ring for now */
nrds_rings = adapter->max_rds_rings;
nsds_rings = 1;
rq_size =
SIZEOF_HOSTRQ_RX(nx_hostrq_rx_ctx_t, nrds_rings, nsds_rings);
rsp_size =
SIZEOF_CARDRSP_RX(nx_cardrsp_rx_ctx_t, nrds_rings, nsds_rings);
addr = pci_alloc_consistent(adapter->pdev,
rq_size, &hostrq_phys_addr);
if (addr == NULL)
return -ENOMEM;
prq = (nx_hostrq_rx_ctx_t *)addr;
addr = pci_alloc_consistent(adapter->pdev,
rsp_size, &cardrsp_phys_addr);
if (addr == NULL) {
err = -ENOMEM;
goto out_free_rq;
}
prsp = (nx_cardrsp_rx_ctx_t *)addr;
prq->host_rsp_dma_addr = cpu_to_le64(cardrsp_phys_addr);
cap = (NX_CAP0_LEGACY_CONTEXT | NX_CAP0_LEGACY_MN);
cap |= (NX_CAP0_JUMBO_CONTIGUOUS | NX_CAP0_LRO_CONTIGUOUS);
prq->capabilities[0] = cpu_to_le32(cap);
prq->host_int_crb_mode =
cpu_to_le32(NX_HOST_INT_CRB_MODE_SHARED);
prq->host_rds_crb_mode =
cpu_to_le32(NX_HOST_RDS_CRB_MODE_UNIQUE);
prq->num_rds_rings = cpu_to_le16(nrds_rings);
prq->num_sds_rings = cpu_to_le16(nsds_rings);
prq->rds_ring_offset = 0;
prq->sds_ring_offset = prq->rds_ring_offset +
(sizeof(nx_hostrq_rds_ring_t) * nrds_rings);
prq_rds = (nx_hostrq_rds_ring_t *)(prq->data + prq->rds_ring_offset);
for (i = 0; i < nrds_rings; i++) {
rds_ring = &recv_ctx->rds_rings[i];
prq_rds[i].host_phys_addr = cpu_to_le64(rds_ring->phys_addr);
prq_rds[i].ring_size = cpu_to_le32(rds_ring->max_rx_desc_count);
prq_rds[i].ring_kind = cpu_to_le32(i);
prq_rds[i].buff_size = cpu_to_le64(rds_ring->dma_size);
}
prq_sds = (nx_hostrq_sds_ring_t *)(prq->data + prq->sds_ring_offset);
prq_sds[0].host_phys_addr =
cpu_to_le64(recv_ctx->rcv_status_desc_phys_addr);
prq_sds[0].ring_size = cpu_to_le32(adapter->max_rx_desc_count);
/* only one msix vector for now */
prq_sds[0].msi_index = cpu_to_le32(0);
/* now byteswap offsets */
prq->rds_ring_offset = cpu_to_le32(prq->rds_ring_offset);
prq->sds_ring_offset = cpu_to_le32(prq->sds_ring_offset);
phys_addr = hostrq_phys_addr;
err = netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
(u32)(phys_addr >> 32),
(u32)(phys_addr & 0xffffffff),
rq_size,
NX_CDRP_CMD_CREATE_RX_CTX);
if (err) {
printk(KERN_WARNING
"Failed to create rx ctx in firmware%d\n", err);
goto out_free_rsp;
}
prsp_rds = ((nx_cardrsp_rds_ring_t *)
&prsp->data[prsp->rds_ring_offset]);
for (i = 0; i < le32_to_cpu(prsp->num_rds_rings); i++) {
rds_ring = &recv_ctx->rds_rings[i];
reg = le32_to_cpu(prsp_rds[i].host_producer_crb);
rds_ring->crb_rcv_producer = NETXEN_NIC_REG(reg - 0x200);
}
prsp_sds = ((nx_cardrsp_sds_ring_t *)
&prsp->data[prsp->sds_ring_offset]);
reg = le32_to_cpu(prsp_sds[0].host_consumer_crb);
recv_ctx->crb_sts_consumer = NETXEN_NIC_REG(reg - 0x200);
reg = le32_to_cpu(prsp_sds[0].interrupt_crb);
adapter->crb_intr_mask = NETXEN_NIC_REG(reg - 0x200);
recv_ctx->state = le32_to_cpu(prsp->host_ctx_state);
recv_ctx->context_id = le16_to_cpu(prsp->context_id);
recv_ctx->virt_port = le16_to_cpu(prsp->virt_port);
out_free_rsp:
pci_free_consistent(adapter->pdev, rsp_size, prsp, cardrsp_phys_addr);
out_free_rq:
pci_free_consistent(adapter->pdev, rq_size, prq, hostrq_phys_addr);
return err;
}
static void
nx_fw_cmd_destroy_rx_ctx(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx = &adapter->recv_ctx[0];
if (netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
recv_ctx->context_id,
NX_DESTROY_CTX_RESET,
0,
NX_CDRP_CMD_DESTROY_RX_CTX)) {
printk(KERN_WARNING
"%s: Failed to destroy rx ctx in firmware\n",
netxen_nic_driver_name);
}
}
static int
nx_fw_cmd_create_tx_ctx(struct netxen_adapter *adapter)
{
nx_hostrq_tx_ctx_t *prq;
nx_hostrq_cds_ring_t *prq_cds;
nx_cardrsp_tx_ctx_t *prsp;
void *rq_addr, *rsp_addr;
size_t rq_size, rsp_size;
u32 temp;
int err = 0;
u64 offset, phys_addr;
dma_addr_t rq_phys_addr, rsp_phys_addr;
rq_size = SIZEOF_HOSTRQ_TX(nx_hostrq_tx_ctx_t);
rq_addr = pci_alloc_consistent(adapter->pdev,
rq_size, &rq_phys_addr);
if (!rq_addr)
return -ENOMEM;
rsp_size = SIZEOF_CARDRSP_TX(nx_cardrsp_tx_ctx_t);
rsp_addr = pci_alloc_consistent(adapter->pdev,
rsp_size, &rsp_phys_addr);
if (!rsp_addr) {
err = -ENOMEM;
goto out_free_rq;
}
memset(rq_addr, 0, rq_size);
prq = (nx_hostrq_tx_ctx_t *)rq_addr;
memset(rsp_addr, 0, rsp_size);
prsp = (nx_cardrsp_tx_ctx_t *)rsp_addr;
prq->host_rsp_dma_addr = cpu_to_le64(rsp_phys_addr);
temp = (NX_CAP0_LEGACY_CONTEXT | NX_CAP0_LEGACY_MN | NX_CAP0_LSO);
prq->capabilities[0] = cpu_to_le32(temp);
prq->host_int_crb_mode =
cpu_to_le32(NX_HOST_INT_CRB_MODE_SHARED);
prq->interrupt_ctl = 0;
prq->msi_index = 0;
prq->dummy_dma_addr = cpu_to_le64(adapter->dummy_dma.phys_addr);
offset = adapter->ctx_desc_phys_addr+sizeof(struct netxen_ring_ctx);
prq->cmd_cons_dma_addr = cpu_to_le64(offset);
prq_cds = &prq->cds_ring;
prq_cds->host_phys_addr =
cpu_to_le64(adapter->ahw.cmd_desc_phys_addr);
prq_cds->ring_size = cpu_to_le32(adapter->max_tx_desc_count);
phys_addr = rq_phys_addr;
err = netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
(u32)(phys_addr >> 32),
((u32)phys_addr & 0xffffffff),
rq_size,
NX_CDRP_CMD_CREATE_TX_CTX);
if (err == NX_RCODE_SUCCESS) {
temp = le32_to_cpu(prsp->cds_ring.host_producer_crb);
adapter->crb_addr_cmd_producer =
NETXEN_NIC_REG(temp - 0x200);
#if 0
adapter->tx_state =
le32_to_cpu(prsp->host_ctx_state);
#endif
adapter->tx_context_id =
le16_to_cpu(prsp->context_id);
} else {
printk(KERN_WARNING
"Failed to create tx ctx in firmware%d\n", err);
err = -EIO;
}
pci_free_consistent(adapter->pdev, rsp_size, rsp_addr, rsp_phys_addr);
out_free_rq:
pci_free_consistent(adapter->pdev, rq_size, rq_addr, rq_phys_addr);
return err;
}
static void
nx_fw_cmd_destroy_tx_ctx(struct netxen_adapter *adapter)
{
if (netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
adapter->tx_context_id,
NX_DESTROY_CTX_RESET,
0,
NX_CDRP_CMD_DESTROY_TX_CTX)) {
printk(KERN_WARNING
"%s: Failed to destroy tx ctx in firmware\n",
netxen_nic_driver_name);
}
}
static u64 ctx_addr_sig_regs[][3] = {
{NETXEN_NIC_REG(0x188), NETXEN_NIC_REG(0x18c), NETXEN_NIC_REG(0x1c0)},
{NETXEN_NIC_REG(0x190), NETXEN_NIC_REG(0x194), NETXEN_NIC_REG(0x1c4)},
{NETXEN_NIC_REG(0x198), NETXEN_NIC_REG(0x19c), NETXEN_NIC_REG(0x1c8)},
{NETXEN_NIC_REG(0x1a0), NETXEN_NIC_REG(0x1a4), NETXEN_NIC_REG(0x1cc)}
};
#define CRB_CTX_ADDR_REG_LO(FUNC_ID) (ctx_addr_sig_regs[FUNC_ID][0])
#define CRB_CTX_ADDR_REG_HI(FUNC_ID) (ctx_addr_sig_regs[FUNC_ID][2])
#define CRB_CTX_SIGNATURE_REG(FUNC_ID) (ctx_addr_sig_regs[FUNC_ID][1])
#define lower32(x) ((u32)((x) & 0xffffffff))
#define upper32(x) ((u32)(((u64)(x) >> 32) & 0xffffffff))
static struct netxen_recv_crb recv_crb_registers[] = {
/* Instance 0 */
{
/* crb_rcv_producer: */
{
NETXEN_NIC_REG(0x100),
/* Jumbo frames */
NETXEN_NIC_REG(0x110),
/* LRO */
NETXEN_NIC_REG(0x120)
},
/* crb_sts_consumer: */
NETXEN_NIC_REG(0x138),
},
/* Instance 1 */
{
/* crb_rcv_producer: */
{
NETXEN_NIC_REG(0x144),
/* Jumbo frames */
NETXEN_NIC_REG(0x154),
/* LRO */
NETXEN_NIC_REG(0x164)
},
/* crb_sts_consumer: */
NETXEN_NIC_REG(0x17c),
},
/* Instance 2 */
{
/* crb_rcv_producer: */
{
NETXEN_NIC_REG(0x1d8),
/* Jumbo frames */
NETXEN_NIC_REG(0x1f8),
/* LRO */
NETXEN_NIC_REG(0x208)
},
/* crb_sts_consumer: */
NETXEN_NIC_REG(0x220),
},
/* Instance 3 */
{
/* crb_rcv_producer: */
{
NETXEN_NIC_REG(0x22c),
/* Jumbo frames */
NETXEN_NIC_REG(0x23c),
/* LRO */
NETXEN_NIC_REG(0x24c)
},
/* crb_sts_consumer: */
NETXEN_NIC_REG(0x264),
},
};
static int
netxen_init_old_ctx(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
int ctx, ring;
int func_id = adapter->portnum;
adapter->ctx_desc->cmd_ring_addr =
cpu_to_le64(adapter->ahw.cmd_desc_phys_addr);
adapter->ctx_desc->cmd_ring_size =
cpu_to_le32(adapter->max_tx_desc_count);
for (ctx = 0; ctx < MAX_RCV_CTX; ++ctx) {
recv_ctx = &adapter->recv_ctx[ctx];
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
adapter->ctx_desc->rcv_ctx[ring].rcv_ring_addr =
cpu_to_le64(rds_ring->phys_addr);
adapter->ctx_desc->rcv_ctx[ring].rcv_ring_size =
cpu_to_le32(rds_ring->max_rx_desc_count);
}
adapter->ctx_desc->sts_ring_addr =
cpu_to_le64(recv_ctx->rcv_status_desc_phys_addr);
adapter->ctx_desc->sts_ring_size =
cpu_to_le32(adapter->max_rx_desc_count);
}
adapter->pci_write_normalize(adapter, CRB_CTX_ADDR_REG_LO(func_id),
lower32(adapter->ctx_desc_phys_addr));
adapter->pci_write_normalize(adapter, CRB_CTX_ADDR_REG_HI(func_id),
upper32(adapter->ctx_desc_phys_addr));
adapter->pci_write_normalize(adapter, CRB_CTX_SIGNATURE_REG(func_id),
NETXEN_CTX_SIGNATURE | func_id);
return 0;
}
static uint32_t sw_int_mask[4] = {
CRB_SW_INT_MASK_0, CRB_SW_INT_MASK_1,
CRB_SW_INT_MASK_2, CRB_SW_INT_MASK_3
};
int netxen_alloc_hw_resources(struct netxen_adapter *adapter)
{
struct netxen_hardware_context *hw = &adapter->ahw;
u32 state = 0;
void *addr;
int err = 0;
int ctx, ring;
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
err = netxen_receive_peg_ready(adapter);
if (err) {
printk(KERN_ERR "Rcv Peg initialization not complete:%x.\n",
state);
return err;
}
addr = pci_alloc_consistent(adapter->pdev,
sizeof(struct netxen_ring_ctx) + sizeof(uint32_t),
&adapter->ctx_desc_phys_addr);
if (addr == NULL) {
DPRINTK(ERR, "failed to allocate hw context\n");
return -ENOMEM;
}
memset(addr, 0, sizeof(struct netxen_ring_ctx));
adapter->ctx_desc = (struct netxen_ring_ctx *)addr;
adapter->ctx_desc->ctx_id = cpu_to_le32(adapter->portnum);
adapter->ctx_desc->cmd_consumer_offset =
cpu_to_le64(adapter->ctx_desc_phys_addr +
sizeof(struct netxen_ring_ctx));
adapter->cmd_consumer =
(__le32 *)(((char *)addr) + sizeof(struct netxen_ring_ctx));
/* cmd desc ring */
addr = pci_alloc_consistent(adapter->pdev,
sizeof(struct cmd_desc_type0) *
adapter->max_tx_desc_count,
&hw->cmd_desc_phys_addr);
if (addr == NULL) {
printk(KERN_ERR "%s failed to allocate tx desc ring\n",
netxen_nic_driver_name);
return -ENOMEM;
}
hw->cmd_desc_head = (struct cmd_desc_type0 *)addr;
for (ctx = 0; ctx < MAX_RCV_CTX; ++ctx) {
recv_ctx = &adapter->recv_ctx[ctx];
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
/* rx desc ring */
rds_ring = &recv_ctx->rds_rings[ring];
addr = pci_alloc_consistent(adapter->pdev,
RCV_DESC_RINGSIZE,
&rds_ring->phys_addr);
if (addr == NULL) {
printk(KERN_ERR "%s failed to allocate rx "
"desc ring[%d]\n",
netxen_nic_driver_name, ring);
err = -ENOMEM;
goto err_out_free;
}
rds_ring->desc_head = (struct rcv_desc *)addr;
if (adapter->fw_major < 4)
rds_ring->crb_rcv_producer =
recv_crb_registers[adapter->portnum].
crb_rcv_producer[ring];
}
/* status desc ring */
addr = pci_alloc_consistent(adapter->pdev,
STATUS_DESC_RINGSIZE,
&recv_ctx->rcv_status_desc_phys_addr);
if (addr == NULL) {
printk(KERN_ERR "%s failed to allocate sts desc ring\n",
netxen_nic_driver_name);
err = -ENOMEM;
goto err_out_free;
}
recv_ctx->rcv_status_desc_head = (struct status_desc *)addr;
if (adapter->fw_major < 4)
recv_ctx->crb_sts_consumer =
recv_crb_registers[adapter->portnum].
crb_sts_consumer;
}
if (adapter->fw_major >= 4) {
adapter->intr_scheme = INTR_SCHEME_PERPORT;
adapter->msi_mode = MSI_MODE_MULTIFUNC;
err = nx_fw_cmd_create_rx_ctx(adapter);
if (err)
goto err_out_free;
err = nx_fw_cmd_create_tx_ctx(adapter);
if (err)
goto err_out_free;
} else {
adapter->intr_scheme = adapter->pci_read_normalize(adapter,
CRB_NIC_CAPABILITIES_FW);
adapter->msi_mode = adapter->pci_read_normalize(adapter,
CRB_NIC_MSI_MODE_FW);
adapter->crb_intr_mask = sw_int_mask[adapter->portnum];
err = netxen_init_old_ctx(adapter);
if (err) {
netxen_free_hw_resources(adapter);
return err;
}
}
return 0;
err_out_free:
netxen_free_hw_resources(adapter);
return err;
}
void netxen_free_hw_resources(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
int ctx, ring;
if (adapter->fw_major >= 4) {
nx_fw_cmd_destroy_tx_ctx(adapter);
nx_fw_cmd_destroy_rx_ctx(adapter);
}
if (adapter->ctx_desc != NULL) {
pci_free_consistent(adapter->pdev,
sizeof(struct netxen_ring_ctx) +
sizeof(uint32_t),
adapter->ctx_desc,
adapter->ctx_desc_phys_addr);
adapter->ctx_desc = NULL;
}
if (adapter->ahw.cmd_desc_head != NULL) {
pci_free_consistent(adapter->pdev,
sizeof(struct cmd_desc_type0) *
adapter->max_tx_desc_count,
adapter->ahw.cmd_desc_head,
adapter->ahw.cmd_desc_phys_addr);
adapter->ahw.cmd_desc_head = NULL;
}
for (ctx = 0; ctx < MAX_RCV_CTX; ++ctx) {
recv_ctx = &adapter->recv_ctx[ctx];
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
if (rds_ring->desc_head != NULL) {
pci_free_consistent(adapter->pdev,
RCV_DESC_RINGSIZE,
rds_ring->desc_head,
rds_ring->phys_addr);
rds_ring->desc_head = NULL;
}
}
if (recv_ctx->rcv_status_desc_head != NULL) {
pci_free_consistent(adapter->pdev,
STATUS_DESC_RINGSIZE,
recv_ctx->rcv_status_desc_head,
recv_ctx->rcv_status_desc_phys_addr);
recv_ctx->rcv_status_desc_head = NULL;
}
}
}
...@@ -262,17 +262,30 @@ int netxen_alloc_sw_resources(struct netxen_adapter *adapter) ...@@ -262,17 +262,30 @@ int netxen_alloc_sw_resources(struct netxen_adapter *adapter)
rds_ring->max_rx_desc_count = rds_ring->max_rx_desc_count =
adapter->max_rx_desc_count; adapter->max_rx_desc_count;
rds_ring->flags = RCV_DESC_NORMAL; rds_ring->flags = RCV_DESC_NORMAL;
rds_ring->dma_size = RX_DMA_MAP_LEN; if (adapter->ahw.cut_through) {
rds_ring->skb_size = MAX_RX_BUFFER_LENGTH; rds_ring->dma_size =
NX_CT_DEFAULT_RX_BUF_LEN;
rds_ring->skb_size =
NX_CT_DEFAULT_RX_BUF_LEN;
} else {
rds_ring->dma_size = RX_DMA_MAP_LEN;
rds_ring->skb_size =
MAX_RX_BUFFER_LENGTH;
}
break; break;
case RCV_DESC_JUMBO: case RCV_DESC_JUMBO:
rds_ring->max_rx_desc_count = rds_ring->max_rx_desc_count =
adapter->max_jumbo_rx_desc_count; adapter->max_jumbo_rx_desc_count;
rds_ring->flags = RCV_DESC_JUMBO; rds_ring->flags = RCV_DESC_JUMBO;
rds_ring->dma_size = RX_JUMBO_DMA_MAP_LEN; if (NX_IS_REVISION_P3(adapter->ahw.revision_id))
rds_ring->dma_size =
NX_P3_RX_JUMBO_BUF_MAX_LEN;
else
rds_ring->dma_size =
NX_P2_RX_JUMBO_BUF_MAX_LEN;
rds_ring->skb_size = rds_ring->skb_size =
MAX_RX_JUMBO_BUFFER_LENGTH; rds_ring->dma_size + NET_IP_ALIGN;
break; break;
case RCV_RING_LRO: case RCV_RING_LRO:
...@@ -294,6 +307,7 @@ int netxen_alloc_sw_resources(struct netxen_adapter *adapter) ...@@ -294,6 +307,7 @@ int netxen_alloc_sw_resources(struct netxen_adapter *adapter)
goto err_out; goto err_out;
} }
memset(rds_ring->rx_buf_arr, 0, RCV_BUFFSIZE); memset(rds_ring->rx_buf_arr, 0, RCV_BUFFSIZE);
INIT_LIST_HEAD(&rds_ring->free_list);
rds_ring->begin_alloc = 0; rds_ring->begin_alloc = 0;
/* /*
* Now go through all of them, set reference handles * Now go through all of them, set reference handles
...@@ -302,6 +316,8 @@ int netxen_alloc_sw_resources(struct netxen_adapter *adapter) ...@@ -302,6 +316,8 @@ int netxen_alloc_sw_resources(struct netxen_adapter *adapter)
num_rx_bufs = rds_ring->max_rx_desc_count; num_rx_bufs = rds_ring->max_rx_desc_count;
rx_buf = rds_ring->rx_buf_arr; rx_buf = rds_ring->rx_buf_arr;
for (i = 0; i < num_rx_bufs; i++) { for (i = 0; i < num_rx_bufs; i++) {
list_add_tail(&rx_buf->list,
&rds_ring->free_list);
rx_buf->ref_handle = i; rx_buf->ref_handle = i;
rx_buf->state = NETXEN_BUFFER_FREE; rx_buf->state = NETXEN_BUFFER_FREE;
rx_buf++; rx_buf++;
...@@ -1137,15 +1153,47 @@ int netxen_receive_peg_ready(struct netxen_adapter *adapter) ...@@ -1137,15 +1153,47 @@ int netxen_receive_peg_ready(struct netxen_adapter *adapter)
return 0; return 0;
} }
static struct sk_buff *netxen_process_rxbuf(struct netxen_adapter *adapter,
struct nx_host_rds_ring *rds_ring, u16 index, u16 cksum)
{
struct netxen_rx_buffer *buffer;
struct sk_buff *skb;
buffer = &rds_ring->rx_buf_arr[index];
pci_unmap_single(adapter->pdev, buffer->dma, rds_ring->dma_size,
PCI_DMA_FROMDEVICE);
skb = buffer->skb;
if (!skb)
goto no_skb;
if (likely(adapter->rx_csum && cksum == STATUS_CKSUM_OK)) {
adapter->stats.csummed++;
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else
skb->ip_summed = CHECKSUM_NONE;
skb->dev = adapter->netdev;
buffer->skb = NULL;
no_skb:
buffer->state = NETXEN_BUFFER_FREE;
buffer->lro_current_frags = 0;
buffer->lro_expected_frags = 0;
list_add_tail(&buffer->list, &rds_ring->free_list);
return skb;
}
/* /*
* netxen_process_rcv() send the received packet to the protocol stack. * netxen_process_rcv() send the received packet to the protocol stack.
* and if the number of receives exceeds RX_BUFFERS_REFILL, then we * and if the number of receives exceeds RX_BUFFERS_REFILL, then we
* invoke the routine to send more rx buffers to the Phantom... * invoke the routine to send more rx buffers to the Phantom...
*/ */
static void netxen_process_rcv(struct netxen_adapter *adapter, int ctxid, static void netxen_process_rcv(struct netxen_adapter *adapter, int ctxid,
struct status_desc *desc) struct status_desc *desc, struct status_desc *frag_desc)
{ {
struct pci_dev *pdev = adapter->pdev;
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
u64 sts_data = le64_to_cpu(desc->status_desc_data); u64 sts_data = le64_to_cpu(desc->status_desc_data);
int index = netxen_get_sts_refhandle(sts_data); int index = netxen_get_sts_refhandle(sts_data);
...@@ -1154,8 +1202,8 @@ static void netxen_process_rcv(struct netxen_adapter *adapter, int ctxid, ...@@ -1154,8 +1202,8 @@ static void netxen_process_rcv(struct netxen_adapter *adapter, int ctxid,
struct sk_buff *skb; struct sk_buff *skb;
u32 length = netxen_get_sts_totallength(sts_data); u32 length = netxen_get_sts_totallength(sts_data);
u32 desc_ctx; u32 desc_ctx;
u16 pkt_offset = 0, cksum;
struct nx_host_rds_ring *rds_ring; struct nx_host_rds_ring *rds_ring;
int ret;
desc_ctx = netxen_get_sts_type(sts_data); desc_ctx = netxen_get_sts_type(sts_data);
if (unlikely(desc_ctx >= NUM_RCV_DESC_RINGS)) { if (unlikely(desc_ctx >= NUM_RCV_DESC_RINGS)) {
...@@ -1191,41 +1239,52 @@ static void netxen_process_rcv(struct netxen_adapter *adapter, int ctxid, ...@@ -1191,41 +1239,52 @@ static void netxen_process_rcv(struct netxen_adapter *adapter, int ctxid,
} }
} }
pci_unmap_single(pdev, buffer->dma, rds_ring->dma_size, cksum = netxen_get_sts_status(sts_data);
PCI_DMA_FROMDEVICE);
skb = (struct sk_buff *)buffer->skb;
if (likely(adapter->rx_csum && skb = netxen_process_rxbuf(adapter, rds_ring, index, cksum);
netxen_get_sts_status(sts_data) == STATUS_CKSUM_OK)) { if (!skb)
adapter->stats.csummed++; return;
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else
skb->ip_summed = CHECKSUM_NONE;
skb->dev = netdev;
if (desc_ctx == RCV_DESC_LRO_CTXID) { if (desc_ctx == RCV_DESC_LRO_CTXID) {
/* True length was only available on the last pkt */ /* True length was only available on the last pkt */
skb_put(skb, buffer->lro_length); skb_put(skb, buffer->lro_length);
} else { } else {
skb_put(skb, length); if (length > rds_ring->skb_size)
skb_put(skb, rds_ring->skb_size);
else
skb_put(skb, length);
pkt_offset = netxen_get_sts_pkt_offset(sts_data);
if (pkt_offset)
skb_pull(skb, pkt_offset);
} }
skb->protocol = eth_type_trans(skb, netdev); skb->protocol = eth_type_trans(skb, netdev);
ret = netif_receive_skb(skb);
netdev->last_rx = jiffies;
/* /*
* We just consumed one buffer so post a buffer. * rx buffer chaining is disabled, walk and free
* any spurious rx buffer chain.
*/ */
buffer->skb = NULL; if (frag_desc) {
buffer->state = NETXEN_BUFFER_FREE; u16 i, nr_frags = desc->nr_frags;
buffer->lro_current_frags = 0;
buffer->lro_expected_frags = 0; dev_kfree_skb_any(skb);
for (i = 0; i < nr_frags; i++) {
index = frag_desc->frag_handles[i];
skb = netxen_process_rxbuf(adapter,
rds_ring, index, cksum);
if (skb)
dev_kfree_skb_any(skb);
}
adapter->stats.rxdropped++;
} else {
adapter->stats.no_rcv++; netif_receive_skb(skb);
adapter->stats.rxbytes += length; netdev->last_rx = jiffies;
adapter->stats.no_rcv++;
adapter->stats.rxbytes += length;
}
} }
/* Process Receive status ring */ /* Process Receive status ring */
...@@ -1233,9 +1292,11 @@ u32 netxen_process_rcv_ring(struct netxen_adapter *adapter, int ctxid, int max) ...@@ -1233,9 +1292,11 @@ u32 netxen_process_rcv_ring(struct netxen_adapter *adapter, int ctxid, int max)
{ {
struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]); struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
struct status_desc *desc_head = recv_ctx->rcv_status_desc_head; struct status_desc *desc_head = recv_ctx->rcv_status_desc_head;
struct status_desc *desc; /* used to read status desc here */ struct status_desc *desc, *frag_desc;
u32 consumer = recv_ctx->status_rx_consumer; u32 consumer = recv_ctx->status_rx_consumer;
int count = 0, ring; int count = 0, ring;
u64 sts_data;
u16 opcode;
while (count < max) { while (count < max) {
desc = &desc_head[consumer]; desc = &desc_head[consumer];
...@@ -1244,9 +1305,26 @@ u32 netxen_process_rcv_ring(struct netxen_adapter *adapter, int ctxid, int max) ...@@ -1244,9 +1305,26 @@ u32 netxen_process_rcv_ring(struct netxen_adapter *adapter, int ctxid, int max)
netxen_get_sts_owner(desc)); netxen_get_sts_owner(desc));
break; break;
} }
netxen_process_rcv(adapter, ctxid, desc);
sts_data = le64_to_cpu(desc->status_desc_data);
opcode = netxen_get_sts_opcode(sts_data);
frag_desc = NULL;
if (opcode == NETXEN_NIC_RXPKT_DESC) {
if (desc->nr_frags) {
consumer = get_next_index(consumer,
adapter->max_rx_desc_count);
frag_desc = &desc_head[consumer];
netxen_set_sts_owner(frag_desc,
STATUS_OWNER_PHANTOM);
}
}
netxen_process_rcv(adapter, ctxid, desc, frag_desc);
netxen_set_sts_owner(desc, STATUS_OWNER_PHANTOM); netxen_set_sts_owner(desc, STATUS_OWNER_PHANTOM);
consumer = (consumer + 1) & (adapter->max_rx_desc_count - 1);
consumer = get_next_index(consumer,
adapter->max_rx_desc_count);
count++; count++;
} }
for (ring = 0; ring < adapter->max_rds_rings; ring++) for (ring = 0; ring < adapter->max_rds_rings; ring++)
...@@ -1348,36 +1426,31 @@ void netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ctx, u32 ringid) ...@@ -1348,36 +1426,31 @@ void netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ctx, u32 ringid)
int index = 0; int index = 0;
netxen_ctx_msg msg = 0; netxen_ctx_msg msg = 0;
dma_addr_t dma; dma_addr_t dma;
struct list_head *head;
rds_ring = &recv_ctx->rds_rings[ringid]; rds_ring = &recv_ctx->rds_rings[ringid];
producer = rds_ring->producer; producer = rds_ring->producer;
index = rds_ring->begin_alloc; index = rds_ring->begin_alloc;
buffer = &rds_ring->rx_buf_arr[index]; head = &rds_ring->free_list;
/* We can start writing rx descriptors into the phantom memory. */ /* We can start writing rx descriptors into the phantom memory. */
while (buffer->state == NETXEN_BUFFER_FREE) { while (!list_empty(head)) {
skb = dev_alloc_skb(rds_ring->skb_size); skb = dev_alloc_skb(rds_ring->skb_size);
if (unlikely(!skb)) { if (unlikely(!skb)) {
/*
* TODO
* We need to schedule the posting of buffers to the pegs.
*/
rds_ring->begin_alloc = index; rds_ring->begin_alloc = index;
DPRINTK(ERR, "netxen_post_rx_buffers: "
" allocated only %d buffers\n", count);
break; break;
} }
buffer = list_entry(head->next, struct netxen_rx_buffer, list);
list_del(&buffer->list);
count++; /* now there should be no failure */ count++; /* now there should be no failure */
pdesc = &rds_ring->desc_head[producer]; pdesc = &rds_ring->desc_head[producer];
#if defined(XGB_DEBUG) if (!adapter->ahw.cut_through)
*(unsigned long *)(skb->head) = 0xc0debabe; skb_reserve(skb, 2);
if (skb_is_nonlinear(skb)) {
printk("Allocated SKB @%p is nonlinear\n");
}
#endif
skb_reserve(skb, 2);
/* This will be setup when we receive the /* This will be setup when we receive the
* buffer after it has been filled FSL TBD TBD * buffer after it has been filled FSL TBD TBD
* skb->dev = netdev; * skb->dev = netdev;
...@@ -1395,7 +1468,6 @@ void netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ctx, u32 ringid) ...@@ -1395,7 +1468,6 @@ void netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ctx, u32 ringid)
producer = producer =
get_next_index(producer, rds_ring->max_rx_desc_count); get_next_index(producer, rds_ring->max_rx_desc_count);
index = get_next_index(index, rds_ring->max_rx_desc_count); index = get_next_index(index, rds_ring->max_rx_desc_count);
buffer = &rds_ring->rx_buf_arr[index];
} }
/* if we did allocate buffers, then write the count to Phantom */ /* if we did allocate buffers, then write the count to Phantom */
if (count) { if (count) {
...@@ -1439,32 +1511,29 @@ static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter, ...@@ -1439,32 +1511,29 @@ static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
struct netxen_rx_buffer *buffer; struct netxen_rx_buffer *buffer;
int count = 0; int count = 0;
int index = 0; int index = 0;
struct list_head *head;
rds_ring = &recv_ctx->rds_rings[ringid]; rds_ring = &recv_ctx->rds_rings[ringid];
producer = rds_ring->producer; producer = rds_ring->producer;
index = rds_ring->begin_alloc; index = rds_ring->begin_alloc;
buffer = &rds_ring->rx_buf_arr[index]; head = &rds_ring->free_list;
/* We can start writing rx descriptors into the phantom memory. */ /* We can start writing rx descriptors into the phantom memory. */
while (buffer->state == NETXEN_BUFFER_FREE) { while (!list_empty(head)) {
skb = dev_alloc_skb(rds_ring->skb_size); skb = dev_alloc_skb(rds_ring->skb_size);
if (unlikely(!skb)) { if (unlikely(!skb)) {
/*
* We need to schedule the posting of buffers to the pegs.
*/
rds_ring->begin_alloc = index; rds_ring->begin_alloc = index;
DPRINTK(ERR, "netxen_post_rx_buffers_nodb: "
" allocated only %d buffers\n", count);
break; break;
} }
buffer = list_entry(head->next, struct netxen_rx_buffer, list);
list_del(&buffer->list);
count++; /* now there should be no failure */ count++; /* now there should be no failure */
pdesc = &rds_ring->desc_head[producer]; pdesc = &rds_ring->desc_head[producer];
skb_reserve(skb, 2); if (!adapter->ahw.cut_through)
/* skb_reserve(skb, 2);
* This will be setup when we receive the
* buffer after it has been filled
* skb->dev = netdev;
*/
buffer->skb = skb; buffer->skb = skb;
buffer->state = NETXEN_BUFFER_BUSY; buffer->state = NETXEN_BUFFER_BUSY;
buffer->dma = pci_map_single(pdev, skb->data, buffer->dma = pci_map_single(pdev, skb->data,
......
...@@ -844,17 +844,18 @@ netxen_nic_probe(struct pci_dev *pdev, const struct pci_device_id *ent) ...@@ -844,17 +844,18 @@ netxen_nic_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
/* Handshake with the card before we register the devices. */ /* Handshake with the card before we register the devices. */
netxen_phantom_init(adapter, NETXEN_NIC_PEG_TUNE); netxen_phantom_init(adapter, NETXEN_NIC_PEG_TUNE);
if (NX_IS_REVISION_P3(revision_id)) {
adapter->hw_read_wx(adapter,
NETXEN_MIU_MN_CONTROL, &val, 4);
adapter->ahw.cut_through = (val & 0x4) ? 1 : 0;
dev_info(&pdev->dev, "firmware running in %s mode\n",
adapter->ahw.cut_through ? "cut through" : "legacy");
}
} /* first_driver */ } /* first_driver */
netxen_nic_flash_print(adapter); netxen_nic_flash_print(adapter);
if (NX_IS_REVISION_P3(revision_id)) {
adapter->hw_read_wx(adapter,
NETXEN_MIU_MN_CONTROL, &val, 4);
adapter->ahw.cut_through = (val & 0x4) ? 1 : 0;
dev_info(&pdev->dev, "firmware running in %s mode\n",
adapter->ahw.cut_through ? "cut through" : "legacy");
}
/* /*
* See if the firmware gave us a virtual-physical port mapping. * See if the firmware gave us a virtual-physical port mapping.
*/ */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册