提交 cf9b59e9 编写于 作者: G Grant Likely

Merge remote branch 'origin' into secretlab/next-devicetree

Merging in current state of Linus' tree to deal with merge conflicts and
build failures in vio.c after merge.

Conflicts:
	drivers/i2c/busses/i2c-cpm.c
	drivers/i2c/busses/i2c-mpc.c
	drivers/net/gianfar.c

Also fixed up one line in arch/powerpc/kernel/vio.c to use the
correct node pointer.
Signed-off-by: NGrant Likely <grant.likely@secretlab.ca>

要显示的变更太多。

To preserve performance only 1000 of 1000+ files are displayed.
......@@ -250,6 +250,8 @@ numastat.txt
- info on how to read Numa policy hit/miss statistics in sysfs.
oops-tracing.txt
- how to decode those nasty internal kernel error dump messages.
padata.txt
- An introduction to the "padata" parallel execution API
parisc/
- directory with info on using Linux on PA-RISC architecture.
parport.txt
......
What: /sys/bus/usb/devices/.../power/level
Date: March 2007
KernelVersion: 2.6.21
Contact: Alan Stern <stern@rowland.harvard.edu>
Description:
Each USB device directory will contain a file named
power/level. This file holds a power-level setting for
the device, either "on" or "auto".
"on" means that the device is not allowed to autosuspend,
although normal suspends for system sleep will still
be honored. "auto" means the device will autosuspend
and autoresume in the usual manner, according to the
capabilities of its driver.
During normal use, devices should be left in the "auto"
level. The "on" level is meant for administrative uses.
If you want to suspend a device immediately but leave it
free to wake up in response to I/O requests, you should
write "0" to power/autosuspend.
Device not capable of proper suspend and resume should be
left in the "on" level. Although the USB spec requires
devices to support suspend/resume, many of them do not.
In fact so many don't that by default, the USB core
initializes all non-hub devices in the "on" level. Some
drivers may change this setting when they are bound.
This file is deprecated and will be removed after 2010.
Use the power/control file instead; it does exactly the
same thing.
rfkill - radio frequency (RF) connector kill switch support
For details to this subsystem look at Documentation/rfkill.txt.
What: /sys/class/rfkill/rfkill[0-9]+/state
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: Current state of the transmitter.
This file is deprecated and sheduled to be removed in 2014,
because its not possible to express the 'soft and hard block'
state of the rfkill driver.
Values: A numeric value.
0: RFKILL_STATE_SOFT_BLOCKED
transmitter is turned off by software
1: RFKILL_STATE_UNBLOCKED
transmitter is (potentially) active
2: RFKILL_STATE_HARD_BLOCKED
transmitter is forced off by something outside of
the driver's control.
What: /sys/class/rfkill/rfkill[0-9]+/claim
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: This file is deprecated because there no longer is a way to
claim just control over a single rfkill instance.
This file is scheduled to be removed in 2012.
Values: 0: Kernel handles events
rfkill - radio frequency (RF) connector kill switch support
For details to this subsystem look at Documentation/rfkill.txt.
For the deprecated /sys/class/rfkill/*/state and
/sys/class/rfkill/*/claim knobs of this interface look in
Documentation/ABI/obsolete/sysfs-class-rfkill.
What: /sys/class/rfkill
Date: 09-Jul-2007
KernelVersion: v2.6.22
Contact: linux-wireless@vger.kernel.org,
Description: The rfkill class subsystem folder.
Each registered rfkill driver is represented by an rfkillX
subfolder (X being an integer > 0).
What: /sys/class/rfkill/rfkill[0-9]+/name
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: Name assigned by driver to this key (interface or driver name).
Values: arbitrary string.
What: /sys/class/rfkill/rfkill[0-9]+/type
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: Driver type string ("wlan", "bluetooth", etc).
Values: See include/linux/rfkill.h.
What: /sys/class/rfkill/rfkill[0-9]+/persistent
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: Whether the soft blocked state is initialised from non-volatile
storage at startup.
Values: A numeric value.
0: false
1: true
What: /sys/class/rfkill/rfkill[0-9]+/hard
Date: 12-March-2010
KernelVersion v2.6.34
Contact: linux-wireless@vger.kernel.org
Description: Current hardblock state. This file is read only.
Values: A numeric value.
0: inactive
The transmitter is (potentially) active.
1: active
The transmitter is forced off by something outside of
the driver's control.
What: /sys/class/rfkill/rfkill[0-9]+/soft
Date: 12-March-2010
KernelVersion v2.6.34
Contact: linux-wireless@vger.kernel.org
Description: Current softblock state. This file is read and write.
Values: A numeric value.
0: inactive
The transmitter is (potentially) active.
1: active
The transmitter is turned off by software.
......@@ -133,6 +133,46 @@ Description:
The symbolic link points to the PCI device sysfs entry of the
Physical Function this device associates with.
What: /sys/bus/pci/slots/...
Date: April 2005 (possibly older)
KernelVersion: 2.6.12 (possibly older)
Contact: linux-pci@vger.kernel.org
Description:
When the appropriate driver is loaded, it will create a
directory per claimed physical PCI slot in
/sys/bus/pci/slots/. The names of these directories are
specific to the driver, which in turn, are specific to the
platform, but in general, should match the label on the
machine's physical chassis.
The drivers that can create slot directories include the
PCI hotplug drivers, and as of 2.6.27, the pci_slot driver.
The slot directories contain, at a minimum, a file named
'address' which contains the PCI bus:device:function tuple.
Other files may appear as well, but are specific to the
driver.
What: /sys/bus/pci/slots/.../function[0-7]
Date: March 2010
KernelVersion: 2.6.35
Contact: linux-pci@vger.kernel.org
Description:
If PCI slot directories (as described above) are created,
and the physical slot is actually populated with a device,
symbolic links in the slot directory pointing to the
device's PCI functions are created as well.
What: /sys/bus/pci/devices/.../slot
Date: March 2010
KernelVersion: 2.6.35
Contact: linux-pci@vger.kernel.org
Description:
If PCI slot directories (as described above) are created,
a symbolic link pointing to the slot directory will be
created as well.
What: /sys/bus/pci/slots/.../module
Date: June 2009
Contact: linux-pci@vger.kernel.org
......
......@@ -14,34 +14,6 @@ Description:
The autosuspend delay for newly-created devices is set to
the value of the usbcore.autosuspend module parameter.
What: /sys/bus/usb/devices/.../power/level
Date: March 2007
KernelVersion: 2.6.21
Contact: Alan Stern <stern@rowland.harvard.edu>
Description:
Each USB device directory will contain a file named
power/level. This file holds a power-level setting for
the device, either "on" or "auto".
"on" means that the device is not allowed to autosuspend,
although normal suspends for system sleep will still
be honored. "auto" means the device will autosuspend
and autoresume in the usual manner, according to the
capabilities of its driver.
During normal use, devices should be left in the "auto"
level. The "on" level is meant for administrative uses.
If you want to suspend a device immediately but leave it
free to wake up in response to I/O requests, you should
write "0" to power/autosuspend.
Device not capable of proper suspend and resume should be
left in the "on" level. Although the USB spec requires
devices to support suspend/resume, many of them do not.
In fact so many don't that by default, the USB core
initializes all non-hub devices in the "on" level. Some
drivers may change this setting when they are bound.
What: /sys/bus/usb/devices/.../power/persist
Date: May 2007
KernelVersion: 2.6.23
......
......@@ -43,7 +43,7 @@ Date: September 2008
Contact: Badari Pulavarty <pbadari@us.ibm.com>
Description:
The file /sys/devices/system/memory/memoryX/state
is read-write. When read, it's contents show the
is read-write. When read, its contents show the
online/offline state of the memory section. When written,
root can toggle the the online/offline state of a removable
memory section (see removable file description above)
......
What: /sys/devices/platform/_UDC_/gadget/suspended
Date: April 2010
Contact: Fabien Chouteau <fabien.chouteau@barco.com>
Description:
Show the suspend state of an USB composite gadget.
1 -> suspended
0 -> resumed
(_UDC_ is the name of the USB Device Controller driver)
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/operation_mode
Date: March 2010
Contact: Bruno Prémont <bonbons@linux-vserver.org>
Description: Make it possible to switch the PicoLCD device between LCD
(firmware) and bootloader (flasher) operation modes.
Reading: returns list of available modes, the active mode being
enclosed in brackets ('[' and ']')
Writing: causes operation mode switch. Permitted values are
the non-active mode names listed when read.
Note: when switching mode the current PicoLCD HID device gets
disconnected and reconnects after above delay (see attribute
operation_mode_delay for its value).
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/operation_mode_delay
Date: April 2010
Contact: Bruno Prémont <bonbons@linux-vserver.org>
Description: Delay PicoLCD waits before restarting in new mode when
operation_mode has changed.
Reading/Writing: It is expressed in ms and permitted range is
0..30000ms.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/fb_update_rate
Date: March 2010
Contact: Bruno Prémont <bonbons@linux-vserver.org>
Description: Make it possible to adjust defio refresh rate.
Reading: returns list of available refresh rates (expressed in Hz),
the active refresh rate being enclosed in brackets ('[' and ']')
Writing: accepts new refresh rate expressed in integer Hz
within permitted rates.
Note: As device can barely do 2 complete refreshes a second
it only makes sense to adjust this value if only one or two
tiles get changed and it's not appropriate to expect the application
to flush it's tiny changes explicitely at higher than default rate.
What: /sys/bus/hid/drivers/prodikeys/.../channel
Date: April 2010
KernelVersion: 2.6.34
Contact: Don Prince <dhprince.devel@yahoo.co.uk>
Description:
Allows control (via software) the midi channel to which
that the pc-midi keyboard will output.midi data.
Range: 0..15
Type: Read/write
What: /sys/bus/hid/drivers/prodikeys/.../sustain
Date: April 2010
KernelVersion: 2.6.34
Contact: Don Prince <dhprince.devel@yahoo.co.uk>
Description:
Allows control (via software) the sustain duration of a
note held by the pc-midi driver.
0 means sustain mode is disabled.
Range: 0..5000 (milliseconds)
Type: Read/write
What: /sys/bus/hid/drivers/prodikeys/.../octave
Date: April 2010
KernelVersion: 2.6.34
Contact: Don Prince <dhprince.devel@yahoo.co.uk>
Description:
Controls the octave shift modifier in the pc-midi driver.
The octave can be shifted via software up/down 2 octaves.
0 means the no ocatve shift.
Range: -2..2 (minus 2 to plus 2)
Type: Read/Write
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/actual_dpi
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: It is possible to switch the dpi setting of the mouse with the
press of a button.
When read, this file returns the raw number of the actual dpi
setting reported by the mouse. This number has to be further
processed to receive the real dpi value.
VALUE DPI
1 800
2 1200
3 1600
4 2000
5 2400
6 3200
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/actual_profile
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the number of the actual profile.
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/firmware_version
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the raw integer version number of the
firmware reported by the mouse. Using the integer value eases
further usage in other programs. To receive the real version
number the decimal point has to be shifted 2 positions to the
left. E.g. a returned value of 138 means 1.38
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/kone_driver_version
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the driver version.
The format of the string is "v<major>.<minor>.<patchlevel>".
This attribute is used by the userland tools to find the sysfs-
paths of installed kone-mice and determine the capabilites of
the driver. Versions of this driver for old kernels replace
usbhid instead of generic-usb. The way to scan for this file
has been chosen to provide a consistent way for all supported
kernel versions.
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/profile[1-5]
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can store 5 profiles which can be switched by the
press of a button. A profile holds informations like button
mappings, sensitivity, the colors of the 5 leds and light
effects.
When read, these files return the respective profile. The
returned data is 975 bytes in size.
When written, this file lets one write the respective profile
data back to the mouse. The data has to be 975 bytes long.
The mouse will reject invalid data, whereas the profile number
stored in the profile doesn't need to fit the number of the
store.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/settings
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the settings stored in the mouse.
The size of the data is 36 bytes and holds information like the
startup_profile, tcu state and calibration_data.
When written, this file lets write settings back to the mouse.
The data has to be 36 bytes long. The mouse will reject invalid
data.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/startup_profile
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The integer value of this attribute ranges from 1 to 5.
When read, this attribute returns the number of the profile
that's active when the mouse is powered on.
When written, this file sets the number of the startup profile
and the mouse activates this profile immediately.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/tcu
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse has a "Tracking Control Unit" which lets the user
calibrate the laser power to fit the mousepad surface.
When read, this file returns the current state of the TCU,
where 0 means off and 1 means on.
Writing 0 in this file will switch the TCU off.
Writing 1 in this file will start the calibration which takes
around 6 seconds to complete and activates the TCU.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/weight
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can be equipped with one of four supplied weights
ranging from 5 to 20 grams which are recognized by the mouse
and its value can be read out. When read, this file returns the
raw value returned by the mouse which eases further processing
in other software.
The values map to the weights as follows:
VALUE WEIGHT
0 none
1 5g
2 10g
3 15g
4 20g
This file is readonly.
What: /sys/class/hidraw/hidraw*/device/speed
Date: April 2010
Kernel Version: 2.6.35
Contact: linux-bluetooth@vger.kernel.org
Description:
The /sys/class/hidraw/hidraw*/device/speed file controls
reporting speed of wacom bluetooth tablet. Reading from
this file returns 1 if tablet reports in high speed mode
or 0 otherwise. Writing to this file one of these values
switches reporting speed.
......@@ -49,7 +49,7 @@ o oprofile 0.9 # oprofiled --version
o udev 081 # udevinfo -V
o grub 0.93 # grub --version
o mcelog 0.6
o iptables 1.4.1 # iptables -V
o iptables 1.4.2 # iptables -V
Kernel compilation
......
......@@ -742,7 +742,7 @@ failure can be determined by:
Closing
This document, and the API itself, would not be in it's current
This document, and the API itself, would not be in its current
form without the feedback and suggestions from numerous individuals.
We would like to specifically mention, in no particular order, the
following people:
......
......@@ -14,7 +14,7 @@ DOCBOOKS := z8530book.xml mcabook.xml device-drivers.xml \
genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
mac80211.xml debugobjects.xml sh.xml regulator.xml \
alsa-driver-api.xml writing-an-alsa-driver.xml \
tracepoint.xml media.xml
tracepoint.xml media.xml drm.xml
###
# The build process is as follows (targets):
......
此差异已折叠。
此差异已折叠。
......@@ -81,16 +81,14 @@ void (*port_disable) (struct ata_port *);
</programlisting>
<para>
Called from ata_bus_probe() and ata_bus_reset() error paths,
as well as when unregistering from the SCSI module (rmmod, hot
unplug).
Called from ata_bus_probe() error path, as well as when
unregistering from the SCSI module (rmmod, hot unplug).
This function should do whatever needs to be done to take the
port out of use. In most cases, ata_port_disable() can be used
as this hook.
</para>
<para>
Called from ata_bus_probe() on a failed probe.
Called from ata_bus_reset() on a failed bus reset.
Called from ata_scsi_release().
</para>
......@@ -107,10 +105,6 @@ void (*dev_config) (struct ata_port *, struct ata_device *);
issue of SET FEATURES - XFER MODE, and prior to operation.
</para>
<para>
Called by ata_device_add() after ata_dev_identify() determines
a device is present.
</para>
<para>
This entry may be specified as NULL in ata_port_operations.
</para>
......@@ -154,8 +148,8 @@ unsigned int (*mode_filter) (struct ata_port *, struct ata_device *, unsigned in
<sect2><title>Taskfile read/write</title>
<programlisting>
void (*tf_load) (struct ata_port *ap, struct ata_taskfile *tf);
void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
void (*sff_tf_load) (struct ata_port *ap, struct ata_taskfile *tf);
void (*sff_tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
</programlisting>
<para>
......@@ -164,36 +158,35 @@ void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
hardware registers / DMA buffers, to obtain the current set of
taskfile register values.
Most drivers for taskfile-based hardware (PIO or MMIO) use
ata_tf_load() and ata_tf_read() for these hooks.
ata_sff_tf_load() and ata_sff_tf_read() for these hooks.
</para>
</sect2>
<sect2><title>PIO data read/write</title>
<programlisting>
void (*data_xfer) (struct ata_device *, unsigned char *, unsigned int, int);
void (*sff_data_xfer) (struct ata_device *, unsigned char *, unsigned int, int);
</programlisting>
<para>
All bmdma-style drivers must implement this hook. This is the low-level
operation that actually copies the data bytes during a PIO data
transfer.
Typically the driver
will choose one of ata_pio_data_xfer_noirq(), ata_pio_data_xfer(), or
ata_mmio_data_xfer().
Typically the driver will choose one of ata_sff_data_xfer_noirq(),
ata_sff_data_xfer(), or ata_sff_data_xfer32().
</para>
</sect2>
<sect2><title>ATA command execute</title>
<programlisting>
void (*exec_command)(struct ata_port *ap, struct ata_taskfile *tf);
void (*sff_exec_command)(struct ata_port *ap, struct ata_taskfile *tf);
</programlisting>
<para>
causes an ATA command, previously loaded with
->tf_load(), to be initiated in hardware.
Most drivers for taskfile-based hardware use ata_exec_command()
Most drivers for taskfile-based hardware use ata_sff_exec_command()
for this hook.
</para>
......@@ -218,8 +211,8 @@ command.
<sect2><title>Read specific ATA shadow registers</title>
<programlisting>
u8 (*check_status)(struct ata_port *ap);
u8 (*check_altstatus)(struct ata_port *ap);
u8 (*sff_check_status)(struct ata_port *ap);
u8 (*sff_check_altstatus)(struct ata_port *ap);
</programlisting>
<para>
......@@ -227,20 +220,26 @@ u8 (*check_altstatus)(struct ata_port *ap);
hardware. On some hardware, reading the Status register has
the side effect of clearing the interrupt condition.
Most drivers for taskfile-based hardware use
ata_check_status() for this hook.
ata_sff_check_status() for this hook.
</para>
</sect2>
<sect2><title>Write specific ATA shadow register</title>
<programlisting>
void (*sff_set_devctl)(struct ata_port *ap, u8 ctl);
</programlisting>
<para>
Note that because this is called from ata_device_add(), at
least a dummy function that clears device interrupts must be
provided for all drivers, even if the controller doesn't
actually have a taskfile status register.
Write the device control ATA shadow register to the hardware.
Most drivers don't need to define this.
</para>
</sect2>
<sect2><title>Select ATA device on bus</title>
<programlisting>
void (*dev_select)(struct ata_port *ap, unsigned int device);
void (*sff_dev_select)(struct ata_port *ap, unsigned int device);
</programlisting>
<para>
......@@ -251,9 +250,7 @@ void (*dev_select)(struct ata_port *ap, unsigned int device);
</para>
<para>
Most drivers for taskfile-based hardware use
ata_std_dev_select() for this hook. Controllers which do not
support second drives on a port (such as SATA contollers) will
use ata_noop_dev_select().
ata_sff_dev_select() for this hook.
</para>
</sect2>
......@@ -441,13 +438,13 @@ void (*irq_clear) (struct ata_port *);
to struct ata_host_set.
</para>
<para>
Most legacy IDE drivers use ata_interrupt() for the
Most legacy IDE drivers use ata_sff_interrupt() for the
irq_handler hook, which scans all ports in the host_set,
determines which queued command was active (if any), and calls
ata_host_intr(ap,qc).
ata_sff_host_intr(ap,qc).
</para>
<para>
Most legacy IDE drivers use ata_bmdma_irq_clear() for the
Most legacy IDE drivers use ata_sff_irq_clear() for the
irq_clear() hook, which simply clears the interrupt and error
flags in the DMA status register.
</para>
......@@ -490,16 +487,12 @@ void (*host_stop) (struct ata_host_set *host_set);
allocates space for a legacy IDE PRD table and returns.
</para>
<para>
->port_stop() is called after ->host_stop(). It's sole function
->port_stop() is called after ->host_stop(). Its sole function
is to release DMA/memory resources, now that they are no longer
actively being used. Many drivers also free driver-private
data from port at this time.
</para>
<para>
Many drivers use ata_port_stop() as this hook, which frees the
PRD table.
</para>
<para>
->host_stop() is called after all ->port_stop() calls
have completed. The hook must finalize hardware shutdown, release DMA
and other resources, etc.
......
......@@ -17,6 +17,7 @@
<!ENTITY VIDIOC-DBG-G-REGISTER "<link linkend='vidioc-dbg-g-register'><constant>VIDIOC_DBG_G_REGISTER</constant></link>">
<!ENTITY VIDIOC-DBG-S-REGISTER "<link linkend='vidioc-dbg-g-register'><constant>VIDIOC_DBG_S_REGISTER</constant></link>">
<!ENTITY VIDIOC-DQBUF "<link linkend='vidioc-qbuf'><constant>VIDIOC_DQBUF</constant></link>">
<!ENTITY VIDIOC-DQEVENT "<link linkend='vidioc-dqevent'><constant>VIDIOC_DQEVENT</constant></link>">
<!ENTITY VIDIOC-ENCODER-CMD "<link linkend='vidioc-encoder-cmd'><constant>VIDIOC_ENCODER_CMD</constant></link>">
<!ENTITY VIDIOC-ENUMAUDIO "<link linkend='vidioc-enumaudio'><constant>VIDIOC_ENUMAUDIO</constant></link>">
<!ENTITY VIDIOC-ENUMAUDOUT "<link linkend='vidioc-enumaudioout'><constant>VIDIOC_ENUMAUDOUT</constant></link>">
......@@ -60,6 +61,7 @@
<!ENTITY VIDIOC-REQBUFS "<link linkend='vidioc-reqbufs'><constant>VIDIOC_REQBUFS</constant></link>">
<!ENTITY VIDIOC-STREAMOFF "<link linkend='vidioc-streamon'><constant>VIDIOC_STREAMOFF</constant></link>">
<!ENTITY VIDIOC-STREAMON "<link linkend='vidioc-streamon'><constant>VIDIOC_STREAMON</constant></link>">
<!ENTITY VIDIOC-SUBSCRIBE-EVENT "<link linkend='vidioc-subscribe-event'><constant>VIDIOC_SUBSCRIBE_EVENT</constant></link>">
<!ENTITY VIDIOC-S-AUDIO "<link linkend='vidioc-g-audio'><constant>VIDIOC_S_AUDIO</constant></link>">
<!ENTITY VIDIOC-S-AUDOUT "<link linkend='vidioc-g-audioout'><constant>VIDIOC_S_AUDOUT</constant></link>">
<!ENTITY VIDIOC-S-CROP "<link linkend='vidioc-g-crop'><constant>VIDIOC_S_CROP</constant></link>">
......@@ -83,6 +85,7 @@
<!ENTITY VIDIOC-TRY-ENCODER-CMD "<link linkend='vidioc-encoder-cmd'><constant>VIDIOC_TRY_ENCODER_CMD</constant></link>">
<!ENTITY VIDIOC-TRY-EXT-CTRLS "<link linkend='vidioc-g-ext-ctrls'><constant>VIDIOC_TRY_EXT_CTRLS</constant></link>">
<!ENTITY VIDIOC-TRY-FMT "<link linkend='vidioc-g-fmt'><constant>VIDIOC_TRY_FMT</constant></link>">
<!ENTITY VIDIOC-UNSUBSCRIBE-EVENT "<link linkend='vidioc-subscribe-event'><constant>VIDIOC_UNSUBSCRIBE_EVENT</constant></link>">
<!-- Types -->
<!ENTITY v4l2-std-id "<link linkend='v4l2-std-id'>v4l2_std_id</link>">
......@@ -141,6 +144,9 @@
<!ENTITY v4l2-enc-idx "struct&nbsp;<link linkend='v4l2-enc-idx'>v4l2_enc_idx</link>">
<!ENTITY v4l2-enc-idx-entry "struct&nbsp;<link linkend='v4l2-enc-idx-entry'>v4l2_enc_idx_entry</link>">
<!ENTITY v4l2-encoder-cmd "struct&nbsp;<link linkend='v4l2-encoder-cmd'>v4l2_encoder_cmd</link>">
<!ENTITY v4l2-event "struct&nbsp;<link linkend='v4l2-event'>v4l2_event</link>">
<!ENTITY v4l2-event-subscription "struct&nbsp;<link linkend='v4l2-event-subscription'>v4l2_event_subscription</link>">
<!ENTITY v4l2-event-vsync "struct&nbsp;<link linkend='v4l2-event-vsync'>v4l2_event_vsync</link>">
<!ENTITY v4l2-ext-control "struct&nbsp;<link linkend='v4l2-ext-control'>v4l2_ext_control</link>">
<!ENTITY v4l2-ext-controls "struct&nbsp;<link linkend='v4l2-ext-controls'>v4l2_ext_controls</link>">
<!ENTITY v4l2-fmtdesc "struct&nbsp;<link linkend='v4l2-fmtdesc'>v4l2_fmtdesc</link>">
......@@ -200,6 +206,7 @@
<!ENTITY sub-controls SYSTEM "v4l/controls.xml">
<!ENTITY sub-dev-capture SYSTEM "v4l/dev-capture.xml">
<!ENTITY sub-dev-codec SYSTEM "v4l/dev-codec.xml">
<!ENTITY sub-dev-event SYSTEM "v4l/dev-event.xml">
<!ENTITY sub-dev-effect SYSTEM "v4l/dev-effect.xml">
<!ENTITY sub-dev-osd SYSTEM "v4l/dev-osd.xml">
<!ENTITY sub-dev-output SYSTEM "v4l/dev-output.xml">
......@@ -292,6 +299,8 @@
<!ENTITY sub-v4l2grab-c SYSTEM "v4l/v4l2grab.c.xml">
<!ENTITY sub-videodev2-h SYSTEM "v4l/videodev2.h.xml">
<!ENTITY sub-v4l2 SYSTEM "v4l/v4l2.xml">
<!ENTITY sub-dqevent SYSTEM "v4l/vidioc-dqevent.xml">
<!ENTITY sub-subscribe-event SYSTEM "v4l/vidioc-subscribe-event.xml">
<!ENTITY sub-intro SYSTEM "dvb/intro.xml">
<!ENTITY sub-frontend SYSTEM "dvb/frontend.xml">
<!ENTITY sub-dvbproperty SYSTEM "dvb/dvbproperty.xml">
......@@ -381,3 +390,5 @@
<!ENTITY reqbufs SYSTEM "v4l/vidioc-reqbufs.xml">
<!ENTITY s-hw-freq-seek SYSTEM "v4l/vidioc-s-hw-freq-seek.xml">
<!ENTITY streamon SYSTEM "v4l/vidioc-streamon.xml">
<!ENTITY dqevent SYSTEM "v4l/vidioc-dqevent.xml">
<!ENTITY subscribe_event SYSTEM "v4l/vidioc-subscribe-event.xml">
......@@ -19,13 +19,17 @@
</authorgroup>
<copyright>
<year>2008</year>
<year>2008-2010</year>
<holder>Paul Mundt</holder>
</copyright>
<copyright>
<year>2008</year>
<year>2008-2010</year>
<holder>Renesas Technology Corp.</holder>
</copyright>
<copyright>
<year>2010</year>
<holder>Renesas Electronics Corp.</holder>
</copyright>
<legalnotice>
<para>
......@@ -77,7 +81,7 @@
</chapter>
<chapter id="clk">
<title>Clock Framework Extensions</title>
!Iarch/sh/include/asm/clock.h
!Iinclude/linux/sh_clk.h
</chapter>
<chapter id="mach">
<title>Machine Specific Interfaces</title>
......
......@@ -2332,15 +2332,26 @@ more information.</para>
</listitem>
</orderedlist>
</section>
</section>
<section>
<title>V4L2 in Linux 2.6.34</title>
<orderedlist>
<listitem>
<para>Added
<constant>V4L2_CID_IRIS_ABSOLUTE</constant> and
<constant>V4L2_CID_IRIS_RELATIVE</constant> controls to the
<link linkend="camera-controls">Camera controls class</link>.
</para>
</listitem>
</orderedlist>
</section>
<section id="other">
<title>Relation of V4L2 to other Linux multimedia APIs</title>
<section id="other">
<title>Relation of V4L2 to other Linux multimedia APIs</title>
<section id="xvideo">
<title>X Video Extension</title>
<section id="xvideo">
<title>X Video Extension</title>
<para>The X Video Extension (abbreviated XVideo or just Xv) is
<para>The X Video Extension (abbreviated XVideo or just Xv) is
an extension of the X Window system, implemented for example by the
XFree86 project. Its scope is similar to V4L2, an API to video capture
and output devices for X clients. Xv allows applications to display
......@@ -2351,7 +2362,7 @@ capture or output still images in XPixmaps<footnote>
extension available across many operating systems and
architectures.</para>
<para>Because the driver is embedded into the X server Xv has a
<para>Because the driver is embedded into the X server Xv has a
number of advantages over the V4L2 <link linkend="overlay">video
overlay interface</link>. The driver can easily determine the overlay
target, &ie; visible graphics memory or off-screen buffers for a
......@@ -2360,16 +2371,16 @@ overlay, scaling or color-keying, or the clipping functions of the
video capture hardware, always in sync with drawing operations or
windows moving or changing their stacking order.</para>
<para>To combine the advantages of Xv and V4L a special Xv
<para>To combine the advantages of Xv and V4L a special Xv
driver exists in XFree86 and XOrg, just programming any overlay capable
Video4Linux device it finds. To enable it
<filename>/etc/X11/XF86Config</filename> must contain these lines:</para>
<para><screen>
<para><screen>
Section "Module"
Load "v4l"
EndSection</screen></para>
<para>As of XFree86 4.2 this driver still supports only V4L
<para>As of XFree86 4.2 this driver still supports only V4L
ioctls, however it should work just fine with all V4L2 devices through
the V4L2 backward-compatibility layer. Since V4L2 permits multiple
opens it is possible (if supported by the V4L2 driver) to capture
......@@ -2377,83 +2388,84 @@ video while an X client requested video overlay. Restrictions of
simultaneous capturing and overlay are discussed in <xref
linkend="overlay" /> apply.</para>
<para>Only marginally related to V4L2, XFree86 extended Xv to
<para>Only marginally related to V4L2, XFree86 extended Xv to
support hardware YUV to RGB conversion and scaling for faster video
playback, and added an interface to MPEG-2 decoding hardware. This API
is useful to display images captured with V4L2 devices.</para>
</section>
</section>
<section>
<title>Digital Video</title>
<section>
<title>Digital Video</title>
<para>V4L2 does not support digital terrestrial, cable or
<para>V4L2 does not support digital terrestrial, cable or
satellite broadcast. A separate project aiming at digital receivers
exists. You can find its homepage at <ulink
url="http://linuxtv.org">http://linuxtv.org</ulink>. The Linux DVB API
has no connection to the V4L2 API except that drivers for hybrid
hardware may support both.</para>
</section>
</section>
<section>
<title>Audio Interfaces</title>
<section>
<title>Audio Interfaces</title>
<para>[to do - OSS/ALSA]</para>
<para>[to do - OSS/ALSA]</para>
</section>
</section>
</section>
<section id="experimental">
<title>Experimental API Elements</title>
<section id="experimental">
<title>Experimental API Elements</title>
<para>The following V4L2 API elements are currently experimental
<para>The following V4L2 API elements are currently experimental
and may change in the future.</para>
<itemizedlist>
<listitem>
<para>Video Output Overlay (OSD) Interface, <xref
<itemizedlist>
<listitem>
<para>Video Output Overlay (OSD) Interface, <xref
linkend="osd" />.</para>
</listitem>
</listitem>
<listitem>
<para><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY</constant>,
<para><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY</constant>,
&v4l2-buf-type;, <xref linkend="v4l2-buf-type" />.</para>
</listitem>
<listitem>
<para><constant>V4L2_CAP_VIDEO_OUTPUT_OVERLAY</constant>,
</listitem>
<listitem>
<para><constant>V4L2_CAP_VIDEO_OUTPUT_OVERLAY</constant>,
&VIDIOC-QUERYCAP; ioctl, <xref linkend="device-capabilities" />.</para>
</listitem>
<listitem>
<para>&VIDIOC-ENUM-FRAMESIZES; and
</listitem>
<listitem>
<para>&VIDIOC-ENUM-FRAMESIZES; and
&VIDIOC-ENUM-FRAMEINTERVALS; ioctls.</para>
</listitem>
<listitem>
<para>&VIDIOC-G-ENC-INDEX; ioctl.</para>
</listitem>
<listitem>
<para>&VIDIOC-ENCODER-CMD; and &VIDIOC-TRY-ENCODER-CMD;
</listitem>
<listitem>
<para>&VIDIOC-G-ENC-INDEX; ioctl.</para>
</listitem>
<listitem>
<para>&VIDIOC-ENCODER-CMD; and &VIDIOC-TRY-ENCODER-CMD;
ioctls.</para>
</listitem>
<listitem>
<para>&VIDIOC-DBG-G-REGISTER; and &VIDIOC-DBG-S-REGISTER;
</listitem>
<listitem>
<para>&VIDIOC-DBG-G-REGISTER; and &VIDIOC-DBG-S-REGISTER;
ioctls.</para>
</listitem>
<listitem>
<para>&VIDIOC-DBG-G-CHIP-IDENT; ioctl.</para>
</listitem>
</itemizedlist>
</section>
</listitem>
<listitem>
<para>&VIDIOC-DBG-G-CHIP-IDENT; ioctl.</para>
</listitem>
</itemizedlist>
</section>
<section id="obsolete">
<title>Obsolete API Elements</title>
<section id="obsolete">
<title>Obsolete API Elements</title>
<para>The following V4L2 API elements were superseded by new
<para>The following V4L2 API elements were superseded by new
interfaces and should not be implemented in new drivers.</para>
<itemizedlist>
<listitem>
<para><constant>VIDIOC_G_MPEGCOMP</constant> and
<itemizedlist>
<listitem>
<para><constant>VIDIOC_G_MPEGCOMP</constant> and
<constant>VIDIOC_S_MPEGCOMP</constant> ioctls. Use Extended Controls,
<xref linkend="extended-controls" />.</para>
</listitem>
</itemizedlist>
</listitem>
</itemizedlist>
</section>
</section>
<!--
......
......@@ -266,6 +266,12 @@ minimum value disables backlight compensation.</entry>
<entry>boolean</entry>
<entry>Chroma automatic gain control.</entry>
</row>
<row>
<entry><constant>V4L2_CID_CHROMA_GAIN</constant></entry>
<entry>integer</entry>
<entry>Adjusts the Chroma gain control (for use when chroma AGC
is disabled).</entry>
</row>
<row>
<entry><constant>V4L2_CID_COLOR_KILLER</constant></entry>
<entry>boolean</entry>
......@@ -277,8 +283,15 @@ minimum value disables backlight compensation.</entry>
<entry>Selects a color effect. Possible values for
<constant>enum v4l2_colorfx</constant> are:
<constant>V4L2_COLORFX_NONE</constant> (0),
<constant>V4L2_COLORFX_BW</constant> (1) and
<constant>V4L2_COLORFX_SEPIA</constant> (2).</entry>
<constant>V4L2_COLORFX_BW</constant> (1),
<constant>V4L2_COLORFX_SEPIA</constant> (2),
<constant>V4L2_COLORFX_NEGATIVE</constant> (3),
<constant>V4L2_COLORFX_EMBOSS</constant> (4),
<constant>V4L2_COLORFX_SKETCH</constant> (5),
<constant>V4L2_COLORFX_SKY_BLUE</constant> (6),
<constant>V4L2_COLORFX_GRASS_GREEN</constant> (7),
<constant>V4L2_COLORFX_SKIN_WHITEN</constant> (8) and
<constant>V4L2_COLORFX_VIVID</constant> (9).</entry>
</row>
<row>
<entry><constant>V4L2_CID_ROTATE</constant></entry>
......@@ -1824,6 +1837,25 @@ wide-angle direction. The zoom speed unit is driver-specific.</entry>
</row>
<row><entry></entry></row>
<row>
<entry spanname="id"><constant>V4L2_CID_IRIS_ABSOLUTE</constant>&nbsp;</entry>
<entry>integer</entry>
</row><row><entry spanname="descr">This control sets the
camera's aperture to the specified value. The unit is undefined.
Larger values open the iris wider, smaller values close it.</entry>
</row>
<row><entry></entry></row>
<row>
<entry spanname="id"><constant>V4L2_CID_IRIS_RELATIVE</constant>&nbsp;</entry>
<entry>integer</entry>
</row><row><entry spanname="descr">This control modifies the
camera's aperture by the specified amount. The unit is undefined.
Positive values open the iris one step further, negative values close
it one step further. This is a write-only control.</entry>
</row>
<row><entry></entry></row>
<row>
<entry spanname="id"><constant>V4L2_CID_PRIVACY</constant>&nbsp;</entry>
<entry>boolean</entry>
......
<title>Event Interface</title>
<para>The V4L2 event interface provides means for user to get
immediately notified on certain conditions taking place on a device.
This might include start of frame or loss of signal events, for
example.
</para>
<para>To receive events, the events the user is interested in first must
be subscribed using the &VIDIOC-SUBSCRIBE-EVENT; ioctl. Once an event is
subscribed, the events of subscribed types are dequeueable using the
&VIDIOC-DQEVENT; ioctl. Events may be unsubscribed using
VIDIOC_UNSUBSCRIBE_EVENT ioctl. The special event type V4L2_EVENT_ALL may
be used to unsubscribe all the events the driver supports.</para>
<para>The event subscriptions and event queues are specific to file
handles. Subscribing an event on one file handle does not affect
other file handles.
</para>
<para>The information on dequeueable events is obtained by using select or
poll system calls on video devices. The V4L2 events use POLLPRI events on
poll system call and exceptions on select system call. </para>
<!--
Local Variables:
mode: sgml
sgml-parent-document: "v4l2.sgml"
indent-tabs-mode: nil
End:
-->
......@@ -701,6 +701,16 @@ buffer cannot be on both queues at the same time, the
They can be both cleared however, then the buffer is in "dequeued"
state, in the application domain to say so.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_ERROR</constant></entry>
<entry>0x0040</entry>
<entry>When this flag is set, the buffer has been dequeued
successfully, although the data might have been corrupted.
This is recoverable, streaming may continue as normal and
the buffer may be reused normally.
Drivers set this flag when the <constant>VIDIOC_DQBUF</constant>
ioctl is called.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_KEYFRAME</constant></entry>
<entry>0x0008</entry>
......@@ -918,8 +928,8 @@ order</emphasis>.</para>
<para>When the driver provides or accepts images field by field
rather than interleaved, it is also important applications understand
how the fields combine to frames. We distinguish between top and
bottom fields, the <emphasis>spatial order</emphasis>: The first line
how the fields combine to frames. We distinguish between top (aka odd) and
bottom (aka even) fields, the <emphasis>spatial order</emphasis>: The first line
of the top field is the first line of an interlaced frame, the first
line of the bottom field is the second line of that frame.</para>
......@@ -972,12 +982,12 @@ between <constant>V4L2_FIELD_TOP</constant> and
<row>
<entry><constant>V4L2_FIELD_TOP</constant></entry>
<entry>2</entry>
<entry>Images consist of the top field only.</entry>
<entry>Images consist of the top (aka odd) field only.</entry>
</row>
<row>
<entry><constant>V4L2_FIELD_BOTTOM</constant></entry>
<entry>3</entry>
<entry>Images consist of the bottom field only.
<entry>Images consist of the bottom (aka even) field only.
Applications may wish to prevent a device from capturing interlaced
images because they will have "comb" or "feathering" artefacts around
moving objects.</entry>
......
......@@ -792,6 +792,18 @@ http://www.thedirks.org/winnov/</ulink></para></entry>
<entry>'YYUV'</entry>
<entry>unknown</entry>
</row>
<row id="V4L2-PIX-FMT-Y4">
<entry><constant>V4L2_PIX_FMT_Y4</constant></entry>
<entry>'Y04 '</entry>
<entry>Old 4-bit greyscale format. Only the least significant 4 bits of each byte are used,
the other bits are set to 0.</entry>
</row>
<row id="V4L2-PIX-FMT-Y6">
<entry><constant>V4L2_PIX_FMT_Y6</constant></entry>
<entry>'Y06 '</entry>
<entry>Old 6-bit greyscale format. Only the least significant 6 bits of each byte are used,
the other bits are set to 0.</entry>
</row>
</tbody>
</tgroup>
</table>
......
......@@ -401,6 +401,7 @@ and discussions on the V4L mailing list.</revremark>
<section id="ttx"> &sub-dev-teletext; </section>
<section id="radio"> &sub-dev-radio; </section>
<section id="rds"> &sub-dev-rds; </section>
<section id="event"> &sub-dev-event; </section>
</chapter>
<chapter id="driver">
......@@ -426,6 +427,7 @@ and discussions on the V4L mailing list.</revremark>
&sub-cropcap;
&sub-dbg-g-chip-ident;
&sub-dbg-g-register;
&sub-dqevent;
&sub-encoder-cmd;
&sub-enumaudio;
&sub-enumaudioout;
......@@ -467,6 +469,7 @@ and discussions on the V4L mailing list.</revremark>
&sub-reqbufs;
&sub-s-hw-freq-seek;
&sub-streamon;
&sub-subscribe-event;
<!-- End of ioctls. -->
&sub-mmap;
&sub-munmap;
......
......@@ -1018,6 +1018,13 @@ enum <link linkend="v4l2-colorfx">v4l2_colorfx</link> {
V4L2_COLORFX_NONE = 0,
V4L2_COLORFX_BW = 1,
V4L2_COLORFX_SEPIA = 2,
V4L2_COLORFX_NEGATIVE = 3,
V4L2_COLORFX_EMBOSS = 4,
V4L2_COLORFX_SKETCH = 5,
V4L2_COLORFX_SKY_BLUE = 6,
V4L2_COLORFX_GRASS_GREEN = 7,
V4L2_COLORFX_SKIN_WHITEN = 8,
V4L2_COLORFX_VIVID = 9.
};
#define V4L2_CID_AUTOBRIGHTNESS (V4L2_CID_BASE+32)
#define V4L2_CID_BAND_STOP_FILTER (V4L2_CID_BASE+33)
......@@ -1271,6 +1278,9 @@ enum <link linkend="v4l2-exposure-auto-type">v4l2_exposure_auto_type</link> {
#define V4L2_CID_PRIVACY (V4L2_CID_CAMERA_CLASS_BASE+16)
#define V4L2_CID_IRIS_ABSOLUTE (V4L2_CID_CAMERA_CLASS_BASE+17)
#define V4L2_CID_IRIS_RELATIVE (V4L2_CID_CAMERA_CLASS_BASE+18)
/* FM Modulator class control IDs */
#define V4L2_CID_FM_TX_CLASS_BASE (V4L2_CTRL_CLASS_FM_TX | 0x900)
#define V4L2_CID_FM_TX_CLASS (V4L2_CTRL_CLASS_FM_TX | 1)
......
<refentry id="vidioc-dqevent">
<refmeta>
<refentrytitle>ioctl VIDIOC_DQEVENT</refentrytitle>
&manvol;
</refmeta>
<refnamediv>
<refname>VIDIOC_DQEVENT</refname>
<refpurpose>Dequeue event</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>int <function>ioctl</function></funcdef>
<paramdef>int <parameter>fd</parameter></paramdef>
<paramdef>int <parameter>request</parameter></paramdef>
<paramdef>struct v4l2_event
*<parameter>argp</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsect1>
<title>Arguments</title>
<variablelist>
<varlistentry>
<term><parameter>fd</parameter></term>
<listitem>
<para>&fd;</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>request</parameter></term>
<listitem>
<para>VIDIOC_DQEVENT</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>argp</parameter></term>
<listitem>
<para></para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1>
<title>Description</title>
<para>Dequeue an event from a video device. No input is required
for this ioctl. All the fields of the &v4l2-event; structure are
filled by the driver. The file handle will also receive exceptions
which the application may get by e.g. using the select system
call.</para>
<table frame="none" pgwide="1" id="v4l2-event">
<title>struct <structname>v4l2_event</structname></title>
<tgroup cols="4">
&cs-str;
<tbody valign="top">
<row>
<entry>__u32</entry>
<entry><structfield>type</structfield></entry>
<entry></entry>
<entry>Type of the event.</entry>
</row>
<row>
<entry>union</entry>
<entry><structfield>u</structfield></entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry></entry>
<entry>&v4l2-event-vsync;</entry>
<entry><structfield>vsync</structfield></entry>
<entry>Event data for event V4L2_EVENT_VSYNC.
</entry>
</row>
<row>
<entry></entry>
<entry>__u8</entry>
<entry><structfield>data</structfield>[64]</entry>
<entry>Event data. Defined by the event type. The union
should be used to define easily accessible type for
events.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>pending</structfield></entry>
<entry></entry>
<entry>Number of pending events excluding this one.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>sequence</structfield></entry>
<entry></entry>
<entry>Event sequence number. The sequence number is
incremented for every subscribed event that takes place.
If sequence numbers are not contiguous it means that
events have been lost.
</entry>
</row>
<row>
<entry>struct timespec</entry>
<entry><structfield>timestamp</structfield></entry>
<entry></entry>
<entry>Event timestamp.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>reserved</structfield>[9]</entry>
<entry></entry>
<entry>Reserved for future extensions. Drivers must set
the array to zero.</entry>
</row>
</tbody>
</tgroup>
</table>
</refsect1>
</refentry>
<!--
Local Variables:
mode: sgml
sgml-parent-document: "v4l2.sgml"
indent-tabs-mode: nil
End:
-->
......@@ -283,7 +283,7 @@ input/output interface to linux-media@vger.kernel.org on 19 Oct 2009.
<entry>This input supports setting DV presets by using VIDIOC_S_DV_PRESET.</entry>
</row>
<row>
<entry><constant>V4L2_OUT_CAP_CUSTOM_TIMINGS</constant></entry>
<entry><constant>V4L2_IN_CAP_CUSTOM_TIMINGS</constant></entry>
<entry>0x00000002</entry>
<entry>This input supports setting custom video timings by using VIDIOC_S_DV_TIMINGS.</entry>
</row>
......
......@@ -111,7 +111,11 @@ from the driver's outgoing queue. They just set the
and <structfield>reserved</structfield>
fields of a &v4l2-buffer; as above, when <constant>VIDIOC_DQBUF</constant>
is called with a pointer to this structure the driver fills the
remaining fields or returns an error code.</para>
remaining fields or returns an error code. The driver may also set
<constant>V4L2_BUF_FLAG_ERROR</constant> in the <structfield>flags</structfield>
field. It indicates a non-critical (recoverable) streaming error. In such case
the application may continue as normal, but should be aware that data in the
dequeued buffer might be corrupted.</para>
<para>By default <constant>VIDIOC_DQBUF</constant> blocks when no
buffer is in the outgoing queue. When the
......@@ -158,7 +162,13 @@ enqueue a user pointer buffer.</para>
<para><constant>VIDIOC_DQBUF</constant> failed due to an
internal error. Can also indicate temporary problems like signal
loss. Note the driver might dequeue an (empty) buffer despite
returning an error, or even stop capturing.</para>
returning an error, or even stop capturing. Reusing such buffer may be unsafe
though and its details (e.g. <structfield>index</structfield>) may not be
returned either. It is recommended that drivers indicate recoverable errors
by setting the <constant>V4L2_BUF_FLAG_ERROR</constant> and returning 0 instead.
In that case the application should be able to safely reuse the buffer and
continue streaming.
</para>
</listitem>
</varlistentry>
</variablelist>
......
......@@ -325,7 +325,7 @@ should be part of the control documentation.</entry>
<entry>n/a</entry>
<entry>This is not a control. When
<constant>VIDIOC_QUERYCTRL</constant> is called with a control ID
equal to a control class code (see <xref linkend="ctrl-class" />), the
equal to a control class code (see <xref linkend="ctrl-class" />) + 1, the
ioctl returns the name of the control class and this control type.
Older drivers which do not support this feature return an
&EINVAL;.</entry>
......
......@@ -61,7 +61,7 @@ fields of the <structname>v4l2_requestbuffers</structname> structure.
They set the <structfield>type</structfield> field to the respective
stream or buffer type, the <structfield>count</structfield> field to
the desired number of buffers, <structfield>memory</structfield>
must be set to the requested I/O method and the reserved array
must be set to the requested I/O method and the <structfield>reserved</structfield> array
must be zeroed. When the ioctl
is called with a pointer to this structure the driver will attempt to allocate
the requested number of buffers and it stores the actual number
......
<refentry id="vidioc-subscribe-event">
<refmeta>
<refentrytitle>ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT</refentrytitle>
&manvol;
</refmeta>
<refnamediv>
<refname>VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT</refname>
<refpurpose>Subscribe or unsubscribe event</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>int <function>ioctl</function></funcdef>
<paramdef>int <parameter>fd</parameter></paramdef>
<paramdef>int <parameter>request</parameter></paramdef>
<paramdef>struct v4l2_event_subscription
*<parameter>argp</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsect1>
<title>Arguments</title>
<variablelist>
<varlistentry>
<term><parameter>fd</parameter></term>
<listitem>
<para>&fd;</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>request</parameter></term>
<listitem>
<para>VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>argp</parameter></term>
<listitem>
<para></para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1>
<title>Description</title>
<para>Subscribe or unsubscribe V4L2 event. Subscribed events are
dequeued by using the &VIDIOC-DQEVENT; ioctl.</para>
<table frame="none" pgwide="1" id="v4l2-event-subscription">
<title>struct <structname>v4l2_event_subscription</structname></title>
<tgroup cols="3">
&cs-str;
<tbody valign="top">
<row>
<entry>__u32</entry>
<entry><structfield>type</structfield></entry>
<entry>Type of the event.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>reserved</structfield>[7]</entry>
<entry>Reserved for future extensions. Drivers and applications
must set the array to zero.</entry>
</row>
</tbody>
</tgroup>
</table>
<table frame="none" pgwide="1" id="event-type">
<title>Event Types</title>
<tgroup cols="3">
&cs-def;
<tbody valign="top">
<row>
<entry><constant>V4L2_EVENT_ALL</constant></entry>
<entry>0</entry>
<entry>All events. V4L2_EVENT_ALL is valid only for
VIDIOC_UNSUBSCRIBE_EVENT for unsubscribing all events at once.
</entry>
</row>
<row>
<entry><constant>V4L2_EVENT_VSYNC</constant></entry>
<entry>1</entry>
<entry>This event is triggered on the vertical sync.
This event has &v4l2-event-vsync; associated with it.
</entry>
</row>
<row>
<entry><constant>V4L2_EVENT_EOS</constant></entry>
<entry>2</entry>
<entry>This event is triggered when the end of a stream is reached.
This is typically used with MPEG decoders to report to the application
when the last of the MPEG stream has been decoded.
</entry>
</row>
<row>
<entry><constant>V4L2_EVENT_PRIVATE_START</constant></entry>
<entry>0x08000000</entry>
<entry>Base event number for driver-private events.</entry>
</row>
</tbody>
</tgroup>
</table>
<table frame="none" pgwide="1" id="v4l2-event-vsync">
<title>struct <structname>v4l2_event_vsync</structname></title>
<tgroup cols="3">
&cs-str;
<tbody valign="top">
<row>
<entry>__u8</entry>
<entry><structfield>field</structfield></entry>
<entry>The upcoming field. See &v4l2-field;.</entry>
</row>
</tbody>
</tgroup>
</table>
</refsect1>
</refentry>
<!--
Local Variables:
mode: sgml
sgml-parent-document: "v4l2.sgml"
indent-tabs-mode: nil
End:
-->
......@@ -5518,34 +5518,41 @@ struct _snd_pcm_runtime {
]]>
</programlisting>
</informalexample>
For the raw data, <structfield>size</structfield> field must be
set properly. This specifies the maximum size of the proc file access.
</para>
<para>
The callback is much more complicated than the text-file
version. You need to use a low-level I/O functions such as
The read/write callbacks of raw mode are more direct than the text mode.
You need to use a low-level I/O functions such as
<function>copy_from/to_user()</function> to transfer the
data.
<informalexample>
<programlisting>
<![CDATA[
static long my_file_io_read(struct snd_info_entry *entry,
static ssize_t my_file_io_read(struct snd_info_entry *entry,
void *file_private_data,
struct file *file,
char *buf,
unsigned long count,
unsigned long pos)
size_t count,
loff_t pos)
{
long size = count;
if (pos + size > local_max_size)
size = local_max_size - pos;
if (copy_to_user(buf, local_data + pos, size))
if (copy_to_user(buf, local_data + pos, count))
return -EFAULT;
return size;
return count;
}
]]>
</programlisting>
</informalexample>
If the size of the info entry has been set up properly,
<structfield>count</structfield> and <structfield>pos</structfield> are
guaranteed to fit within 0 and the given size.
You don't have to check the range in the callbacks unless any
other condition is required.
</para>
</chapter>
......
......@@ -342,7 +342,7 @@ static inline void skel_delete (struct usb_skel *dev)
{
kfree (dev->bulk_in_buffer);
if (dev->bulk_out_buffer != NULL)
usb_buffer_free (dev->udev, dev->bulk_out_size,
usb_free_coherent (dev->udev, dev->bulk_out_size,
dev->bulk_out_buffer,
dev->write_urb->transfer_dma);
usb_free_urb (dev->write_urb);
......
......@@ -234,7 +234,7 @@ process is as follows:
Linus, usually the patches that have already been included in the
-next kernel for a few weeks. The preferred way to submit big changes
is using git (the kernel's source management tool, more information
can be found at http://git.or.cz/) but plain patches are also just
can be found at http://git-scm.com/) but plain patches are also just
fine.
- After two weeks a -rc1 kernel is released it is now possible to push
only patches that do not include new features that could affect the
......
......@@ -216,7 +216,7 @@ The driver should return one of the following result codes:
- PCI_ERS_RESULT_NEED_RESET
Driver returns this if it thinks the device is not
recoverable in it's current state and it needs a slot
recoverable in its current state and it needs a slot
reset to proceed.
- PCI_ERS_RESULT_DISCONNECT
......@@ -241,7 +241,7 @@ in working condition.
The driver is not supposed to restart normal driver I/O operations
at this point. It should limit itself to "probing" the device to
check it's recoverability status. If all is right, then the platform
check its recoverability status. If all is right, then the platform
will call resume() once all drivers have ack'd link_reset().
Result codes:
......
......@@ -13,7 +13,7 @@ Reporting (AER) driver and provides information on how to use it, as
well as how to enable the drivers of endpoint devices to conform with
PCI Express AER driver.
1.2 Copyright © Intel Corporation 2006.
1.2 Copyright (C) Intel Corporation 2006.
1.3 What is the PCI Express AER Driver?
......@@ -71,15 +71,11 @@ console. If it's a correctable error, it is outputed as a warning.
Otherwise, it is printed as an error. So users could choose different
log level to filter out correctable error messages.
Below shows an example.
+------ PCI-Express Device Error -----+
Error Severity : Uncorrected (Fatal)
PCIE Bus Error type : Transaction Layer
Unsupported Request : First
Requester ID : 0500
VendorID=8086h, DeviceID=0329h, Bus=05h, Device=00h, Function=00h
TLB Header:
04000001 00200a03 05010000 00050100
Below shows an example:
0000:50:00.0: PCIe Bus Error: severity=Uncorrected (Fatal), type=Transaction Layer, id=0500(Requester ID)
0000:50:00.0: device [8086:0329] error status/mask=00100000/00000000
0000:50:00.0: [20] Unsupported Request (First)
0000:50:00.0: TLP Header: 04000001 00200a03 05010000 00050100
In the example, 'Requester ID' means the ID of the device who sends
the error message to root port. Pls. refer to pci express specs for
......@@ -112,7 +108,7 @@ but the PCI Express link itself is fully functional. Fatal errors, on
the other hand, cause the link to be unreliable.
When AER is enabled, a PCI Express device will automatically send an
error message to the PCIE root port above it when the device captures
error message to the PCIe root port above it when the device captures
an error. The Root Port, upon receiving an error reporting message,
internally processes and logs the error message in its PCI Express
capability structure. Error information being logged includes storing
......@@ -198,8 +194,9 @@ to reset link, AER port service driver is required to provide the
function to reset link. Firstly, kernel looks for if the upstream
component has an aer driver. If it has, kernel uses the reset_link
callback of the aer driver. If the upstream component has no aer driver
and the port is downstream port, we will use the aer driver of the
root port who reports the AER error. As for upstream ports,
and the port is downstream port, we will perform a hot reset as the
default by setting the Secondary Bus Reset bit of the Bridge Control
register associated with the downstream port. As for upstream ports,
they should provide their own aer service drivers with reset_link
function. If error_detected returns PCI_ERS_RESULT_CAN_RECOVER and
reset_link returns PCI_ERS_RESULT_RECOVERED, the error handling goes
......@@ -253,11 +250,11 @@ cleanup uncorrectable status register. Pls. refer to section 3.3.
4. Software error injection
Debugging PCIE AER error recovery code is quite difficult because it
Debugging PCIe AER error recovery code is quite difficult because it
is hard to trigger real hardware errors. Software based error
injection can be used to fake various kinds of PCIE errors.
injection can be used to fake various kinds of PCIe errors.
First you should enable PCIE AER software error injection in kernel
First you should enable PCIe AER software error injection in kernel
configuration, that is, following item should be in your .config.
CONFIG_PCIEAER_INJECT=y or CONFIG_PCIEAER_INJECT=m
......
......@@ -3,35 +3,79 @@ Using RCU's CPU Stall Detector
The CONFIG_RCU_CPU_STALL_DETECTOR kernel config parameter enables
RCU's CPU stall detector, which detects conditions that unduly delay
RCU grace periods. The stall detector's idea of what constitutes
"unduly delayed" is controlled by a pair of C preprocessor macros:
"unduly delayed" is controlled by a set of C preprocessor macros:
RCU_SECONDS_TILL_STALL_CHECK
This macro defines the period of time that RCU will wait from
the beginning of a grace period until it issues an RCU CPU
stall warning. It is normally ten seconds.
stall warning. This time period is normally ten seconds.
RCU_SECONDS_TILL_STALL_RECHECK
This macro defines the period of time that RCU will wait after
issuing a stall warning until it issues another stall warning.
It is normally set to thirty seconds.
issuing a stall warning until it issues another stall warning
for the same stall. This time period is normally set to thirty
seconds.
RCU_STALL_RAT_DELAY
The CPU stall detector tries to make the offending CPU rat on itself,
as this often gives better-quality stack traces. However, if
the offending CPU does not detect its own stall in the number
of jiffies specified by RCU_STALL_RAT_DELAY, then other CPUs will
complain. This is normally set to two jiffies.
The CPU stall detector tries to make the offending CPU print its
own warnings, as this often gives better-quality stack traces.
However, if the offending CPU does not detect its own stall in
the number of jiffies specified by RCU_STALL_RAT_DELAY, then
some other CPU will complain. This delay is normally set to
two jiffies.
The following problems can result in an RCU CPU stall warning:
When a CPU detects that it is stalling, it will print a message similar
to the following:
INFO: rcu_sched_state detected stall on CPU 5 (t=2500 jiffies)
This message indicates that CPU 5 detected that it was causing a stall,
and that the stall was affecting RCU-sched. This message will normally be
followed by a stack dump of the offending CPU. On TREE_RCU kernel builds,
RCU and RCU-sched are implemented by the same underlying mechanism,
while on TREE_PREEMPT_RCU kernel builds, RCU is instead implemented
by rcu_preempt_state.
On the other hand, if the offending CPU fails to print out a stall-warning
message quickly enough, some other CPU will print a message similar to
the following:
INFO: rcu_bh_state detected stalls on CPUs/tasks: { 3 5 } (detected by 2, 2502 jiffies)
This message indicates that CPU 2 detected that CPUs 3 and 5 were both
causing stalls, and that the stall was affecting RCU-bh. This message
will normally be followed by stack dumps for each CPU. Please note that
TREE_PREEMPT_RCU builds can be stalled by tasks as well as by CPUs,
and that the tasks will be indicated by PID, for example, "P3421".
It is even possible for a rcu_preempt_state stall to be caused by both
CPUs -and- tasks, in which case the offending CPUs and tasks will all
be called out in the list.
Finally, if the grace period ends just as the stall warning starts
printing, there will be a spurious stall-warning message:
INFO: rcu_bh_state detected stalls on CPUs/tasks: { } (detected by 4, 2502 jiffies)
This is rare, but does happen from time to time in real life.
So your kernel printed an RCU CPU stall warning. The next question is
"What caused it?" The following problems can result in RCU CPU stall
warnings:
o A CPU looping in an RCU read-side critical section.
o A CPU looping with interrupts disabled.
o A CPU looping with interrupts disabled. This condition can
result in RCU-sched and RCU-bh stalls.
o A CPU looping with preemption disabled.
o A CPU looping with preemption disabled. This condition can
result in RCU-sched stalls and, if ksoftirqd is in use, RCU-bh
stalls.
o A CPU looping with bottom halves disabled. This condition can
result in RCU-sched and RCU-bh stalls.
o For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the kernel
without invoking schedule().
......@@ -39,20 +83,24 @@ o For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the kernel
o A bug in the RCU implementation.
o A hardware failure. This is quite unlikely, but has occurred
at least once in a former life. A CPU failed in a running system,
at least once in real life. A CPU failed in a running system,
becoming unresponsive, but not causing an immediate crash.
This resulted in a series of RCU CPU stall warnings, eventually
leading the realization that the CPU had failed.
The RCU, RCU-sched, and RCU-bh implementations have CPU stall warning.
SRCU does not do so directly, but its calls to synchronize_sched() will
result in RCU-sched detecting any CPU stalls that might be occurring.
To diagnose the cause of the stall, inspect the stack traces. The offending
function will usually be near the top of the stack. If you have a series
of stall warnings from a single extended stall, comparing the stack traces
can often help determine where the stall is occurring, which will usually
be in the function nearest the top of the stack that stays the same from
trace to trace.
The RCU, RCU-sched, and RCU-bh implementations have CPU stall
warning. SRCU does not have its own CPU stall warnings, but its
calls to synchronize_sched() will result in RCU-sched detecting
RCU-sched-related CPU stalls. Please note that RCU only detects
CPU stalls when there is a grace period in progress. No grace period,
no CPU stall warnings.
To diagnose the cause of the stall, inspect the stack traces.
The offending function will usually be near the top of the stack.
If you have a series of stall warnings from a single extended stall,
comparing the stack traces can often help determine where the stall
is occurring, which will usually be in the function nearest the top of
that portion of the stack which remains the same from trace to trace.
If you can reliably trigger the stall, ftrace can be quite helpful.
RCU bugs can often be debugged with the help of CONFIG_RCU_TRACE.
......@@ -182,16 +182,6 @@ Similarly, sched_expedited RCU provides the following:
sched_expedited-torture: Reader Pipe: 12660320201 95875 0 0 0 0 0 0 0 0 0
sched_expedited-torture: Reader Batch: 12660424885 0 0 0 0 0 0 0 0 0 0
sched_expedited-torture: Free-Block Circulation: 1090795 1090795 1090794 1090793 1090792 1090791 1090790 1090789 1090788 1090787 0
state: -1 / 0:0 3:0 4:0
As before, the first four lines are similar to those for RCU.
The last line shows the task-migration state. The first number is
-1 if synchronize_sched_expedited() is idle, -2 if in the process of
posting wakeups to the migration kthreads, and N when waiting on CPU N.
Each of the colon-separated fields following the "/" is a CPU:state pair.
Valid states are "0" for idle, "1" for waiting for quiescent state,
"2" for passed through quiescent state, and "3" when a race with a
CPU-hotplug event forces use of the synchronize_sched() primitive.
USAGE
......
......@@ -256,23 +256,23 @@ o Each element of the form "1/1 0:127 ^0" represents one struct
The output of "cat rcu/rcu_pending" looks as follows:
rcu_sched:
0 np=255892 qsp=53936 cbr=0 cng=14417 gpc=10033 gps=24320 nf=6445 nn=146741
1 np=261224 qsp=54638 cbr=0 cng=25723 gpc=16310 gps=2849 nf=5912 nn=155792
2 np=237496 qsp=49664 cbr=0 cng=2762 gpc=45478 gps=1762 nf=1201 nn=136629
3 np=236249 qsp=48766 cbr=0 cng=286 gpc=48049 gps=1218 nf=207 nn=137723
4 np=221310 qsp=46850 cbr=0 cng=26 gpc=43161 gps=4634 nf=3529 nn=123110
5 np=237332 qsp=48449 cbr=0 cng=54 gpc=47920 gps=3252 nf=201 nn=137456
6 np=219995 qsp=46718 cbr=0 cng=50 gpc=42098 gps=6093 nf=4202 nn=120834
7 np=249893 qsp=49390 cbr=0 cng=72 gpc=38400 gps=17102 nf=41 nn=144888
0 np=255892 qsp=53936 rpq=85 cbr=0 cng=14417 gpc=10033 gps=24320 nf=6445 nn=146741
1 np=261224 qsp=54638 rpq=33 cbr=0 cng=25723 gpc=16310 gps=2849 nf=5912 nn=155792
2 np=237496 qsp=49664 rpq=23 cbr=0 cng=2762 gpc=45478 gps=1762 nf=1201 nn=136629
3 np=236249 qsp=48766 rpq=98 cbr=0 cng=286 gpc=48049 gps=1218 nf=207 nn=137723
4 np=221310 qsp=46850 rpq=7 cbr=0 cng=26 gpc=43161 gps=4634 nf=3529 nn=123110
5 np=237332 qsp=48449 rpq=9 cbr=0 cng=54 gpc=47920 gps=3252 nf=201 nn=137456
6 np=219995 qsp=46718 rpq=12 cbr=0 cng=50 gpc=42098 gps=6093 nf=4202 nn=120834
7 np=249893 qsp=49390 rpq=42 cbr=0 cng=72 gpc=38400 gps=17102 nf=41 nn=144888
rcu_bh:
0 np=146741 qsp=1419 cbr=0 cng=6 gpc=0 gps=0 nf=2 nn=145314
1 np=155792 qsp=12597 cbr=0 cng=0 gpc=4 gps=8 nf=3 nn=143180
2 np=136629 qsp=18680 cbr=0 cng=0 gpc=7 gps=6 nf=0 nn=117936
3 np=137723 qsp=2843 cbr=0 cng=0 gpc=10 gps=7 nf=0 nn=134863
4 np=123110 qsp=12433 cbr=0 cng=0 gpc=4 gps=2 nf=0 nn=110671
5 np=137456 qsp=4210 cbr=0 cng=0 gpc=6 gps=5 nf=0 nn=133235
6 np=120834 qsp=9902 cbr=0 cng=0 gpc=6 gps=3 nf=2 nn=110921
7 np=144888 qsp=26336 cbr=0 cng=0 gpc=8 gps=2 nf=0 nn=118542
0 np=146741 qsp=1419 rpq=6 cbr=0 cng=6 gpc=0 gps=0 nf=2 nn=145314
1 np=155792 qsp=12597 rpq=3 cbr=0 cng=0 gpc=4 gps=8 nf=3 nn=143180
2 np=136629 qsp=18680 rpq=1 cbr=0 cng=0 gpc=7 gps=6 nf=0 nn=117936
3 np=137723 qsp=2843 rpq=0 cbr=0 cng=0 gpc=10 gps=7 nf=0 nn=134863
4 np=123110 qsp=12433 rpq=0 cbr=0 cng=0 gpc=4 gps=2 nf=0 nn=110671
5 np=137456 qsp=4210 rpq=1 cbr=0 cng=0 gpc=6 gps=5 nf=0 nn=133235
6 np=120834 qsp=9902 rpq=2 cbr=0 cng=0 gpc=6 gps=3 nf=2 nn=110921
7 np=144888 qsp=26336 rpq=0 cbr=0 cng=0 gpc=8 gps=2 nf=0 nn=118542
As always, this is once again split into "rcu_sched" and "rcu_bh"
portions, with CONFIG_TREE_PREEMPT_RCU kernels having an additional
......@@ -284,6 +284,9 @@ o "np" is the number of times that __rcu_pending() has been invoked
o "qsp" is the number of times that the RCU was waiting for a
quiescent state from this CPU.
o "rpq" is the number of times that the CPU had passed through
a quiescent state, but not yet reported it to RCU.
o "cbr" is the number of times that this CPU had RCU callbacks
that had passed through a grace period, and were thus ready
to be invoked.
......
......@@ -73,7 +73,7 @@ NOTE: Smack labels are limited to 23 characters. The attr command
If you don't do anything special all users will get the floor ("_")
label when they log in. If you do want to log in via the hacked ssh
at other labels use the attr command to set the smack value on the
home directory and it's contents.
home directory and its contents.
You can add access rules in /etc/smack/accesses. They take the form:
......
......@@ -20,6 +20,8 @@ Samsung-S3C24XX
- S3C24XX ARM Linux Overview
Sharp-LH
- Linux on Sharp LH79524 and LH7A40X System On a Chip (SOC)
SPEAr
- ST SPEAr platform Linux Overview
VFP/
- Release notes for Linux Kernel Vector Floating Point support code
empeg/
......
......@@ -32,7 +32,7 @@ Notes:
- The flash on board is divided into 3 partitions.
You should be careful to use flash on board.
It's partition is different from GraphicsClient Plus and GraphicsMaster
Its partition is different from GraphicsClient Plus and GraphicsMaster
- 16bpp mode requires a different cable than what ships with the board.
Contact ADS or look through the manual to wire your own. Currently,
......
SPEAr ARM Linux Overview
==========================
Introduction
------------
SPEAr (Structured Processor Enhanced Architecture).
weblink : http://www.st.com/spear
The ST Microelectronics SPEAr range of ARM9/CortexA9 System-on-Chip CPUs are
supported by the 'spear' platform of ARM Linux. Currently SPEAr300,
SPEAr310, SPEAr320 and SPEAr600 SOCs are supported. Support for the SPEAr13XX
series is in progress.
Hierarchy in SPEAr is as follows:
SPEAr (Platform)
- SPEAr3XX (3XX SOC series, based on ARM9)
- SPEAr300 (SOC)
- SPEAr300_EVB (Evaluation Board)
- SPEAr310 (SOC)
- SPEAr310_EVB (Evaluation Board)
- SPEAr320 (SOC)
- SPEAr320_EVB (Evaluation Board)
- SPEAr6XX (6XX SOC series, based on ARM9)
- SPEAr600 (SOC)
- SPEAr600_EVB (Evaluation Board)
- SPEAr13XX (13XX SOC series, based on ARM CORTEXA9)
- SPEAr1300 (SOC)
Configuration
-------------
A generic configuration is provided for each machine, and can be used as the
default by
make spear600_defconfig
make spear300_defconfig
make spear310_defconfig
make spear320_defconfig
Layout
------
The common files for multiple machine families (SPEAr3XX, SPEAr6XX and
SPEAr13XX) are located in the platform code contained in arch/arm/plat-spear
with headers in plat/.
Each machine series have a directory with name arch/arm/mach-spear followed by
series name. Like mach-spear3xx, mach-spear6xx and mach-spear13xx.
Common file for machines of spear3xx family is mach-spear3xx/spear3xx.c and for
spear6xx is mach-spear6xx/spear6xx.c. mach-spear* also contain soc/machine
specific files, like spear300.c, spear310.c, spear320.c and spear600.c.
mach-spear* also contains board specific files for each machine type.
Document Author
---------------
Viresh Kumar, (c) 2010 ST Microelectronics
......@@ -7,7 +7,7 @@ The driver only implements a four-wire touch panel protocol.
The touchscreen driver is maintenance free except for the pen-down or
touch threshold. Some resistive displays and board combinations may
require tuning of this threshold. The driver exposes some of it's
require tuning of this threshold. The driver exposes some of its
internal state in the sys filesystem. If the kernel is configured
with it, CONFIG_SYSFS, and sysfs is mounted at /sys, there will be a
directory
......
......@@ -320,7 +320,7 @@ counter decrement would not become globally visible until the
obj->active update does.
As a historical note, 32-bit Sparc used to only allow usage of
24-bits of it's atomic_t type. This was because it used 8 bits
24-bits of its atomic_t type. This was because it used 8 bits
as a spinlock for SMP safety. Sparc32 lacked a "compare and swap"
type instruction. However, 32-bit Sparc has since been moved over
to a "hash table of spinlocks" scheme, that allows the full 32-bit
......
......@@ -43,7 +43,7 @@
void bfin_gpio_irq_free(unsigned gpio);
The request functions will record the function state for a certain pin,
the free functions will clear it's function state.
the free functions will clear its function state.
Once a pin is requested, it can't be requested again before it is freed by
previous caller, otherwise kernel will dump stacks, and the request
function fail.
......
......@@ -5,7 +5,7 @@
This document describes the cache/tlb flushing interfaces called
by the Linux VM subsystem. It enumerates over each interface,
describes it's intended purpose, and what side effect is expected
describes its intended purpose, and what side effect is expected
after the interface is invoked.
The side effects described below are stated for a uniprocessor
......@@ -231,7 +231,7 @@ require a whole different set of interfaces to handle properly.
The biggest problem is that of virtual aliasing in the data cache
of a processor.
Is your port susceptible to virtual aliasing in it's D-cache?
Is your port susceptible to virtual aliasing in its D-cache?
Well, if your D-cache is virtually indexed, is larger in size than
PAGE_SIZE, and does not prevent multiple cache lines for the same
physical address from existing at once, you have this problem.
......@@ -249,7 +249,7 @@ one way to solve this (in particular SPARC_FLAG_MMAPSHARED).
Next, you have to solve the D-cache aliasing issue for all
other cases. Please keep in mind that fact that, for a given page
mapped into some user address space, there is always at least one more
mapping, that of the kernel in it's linear mapping starting at
mapping, that of the kernel in its linear mapping starting at
PAGE_OFFSET. So immediately, once the first user maps a given
physical page into its address space, by implication the D-cache
aliasing problem has the potential to exist since the kernel already
......
......@@ -17,6 +17,9 @@ HOWTO
You can do a very simple testing of running two dd threads in two different
cgroups. Here is what you can do.
- Enable Block IO controller
CONFIG_BLK_CGROUP=y
- Enable group scheduling in CFQ
CONFIG_CFQ_GROUP_IOSCHED=y
......@@ -54,32 +57,52 @@ cgroups. Here is what you can do.
Various user visible config options
===================================
CONFIG_CFQ_GROUP_IOSCHED
- Enables group scheduling in CFQ. Currently only 1 level of group
creation is allowed.
CONFIG_DEBUG_CFQ_IOSCHED
- Enables some debugging messages in blktrace. Also creates extra
cgroup file blkio.dequeue.
Config options selected automatically
=====================================
These config options are not user visible and are selected/deselected
automatically based on IO scheduler configuration.
CONFIG_BLK_CGROUP
- Block IO controller. Selected by CONFIG_CFQ_GROUP_IOSCHED.
- Block IO controller.
CONFIG_DEBUG_BLK_CGROUP
- Debug help. Selected by CONFIG_DEBUG_CFQ_IOSCHED.
- Debug help. Right now some additional stats file show up in cgroup
if this option is enabled.
CONFIG_CFQ_GROUP_IOSCHED
- Enables group scheduling in CFQ. Currently only 1 level of group
creation is allowed.
Details of cgroup files
=======================
- blkio.weight
- Specifies per cgroup weight.
- Specifies per cgroup weight. This is default weight of the group
on all the devices until and unless overridden by per device rule.
(See blkio.weight_device).
Currently allowed range of weights is from 100 to 1000.
- blkio.weight_device
- One can specify per cgroup per device rules using this interface.
These rules override the default value of group weight as specified
by blkio.weight.
Following is the format.
#echo dev_maj:dev_minor weight > /path/to/cgroup/blkio.weight_device
Configure weight=300 on /dev/sdb (8:16) in this cgroup
# echo 8:16 300 > blkio.weight_device
# cat blkio.weight_device
dev weight
8:16 300
Configure weight=500 on /dev/sda (8:0) in this cgroup
# echo 8:0 500 > blkio.weight_device
# cat blkio.weight_device
dev weight
8:0 500
8:16 300
Remove specific weight for /dev/sda in this cgroup
# echo 8:0 0 > blkio.weight_device
# cat blkio.weight_device
dev weight
8:16 300
- blkio.time
- disk time allocated to cgroup per device in milliseconds. First
two fields specify the major and minor number of the device and
......@@ -92,13 +115,105 @@ Details of cgroup files
third field specifies the number of sectors transferred by the
group to/from the device.
- blkio.io_service_bytes
- Number of bytes transferred to/from the disk by the group. These
are further divided by the type of operation - read or write, sync
or async. First two fields specify the major and minor number of the
device, third field specifies the operation type and the fourth field
specifies the number of bytes.
- blkio.io_serviced
- Number of IOs completed to/from the disk by the group. These
are further divided by the type of operation - read or write, sync
or async. First two fields specify the major and minor number of the
device, third field specifies the operation type and the fourth field
specifies the number of IOs.
- blkio.io_service_time
- Total amount of time between request dispatch and request completion
for the IOs done by this cgroup. This is in nanoseconds to make it
meaningful for flash devices too. For devices with queue depth of 1,
this time represents the actual service time. When queue_depth > 1,
that is no longer true as requests may be served out of order. This
may cause the service time for a given IO to include the service time
of multiple IOs when served out of order which may result in total
io_service_time > actual time elapsed. This time is further divided by
the type of operation - read or write, sync or async. First two fields
specify the major and minor number of the device, third field
specifies the operation type and the fourth field specifies the
io_service_time in ns.
- blkio.io_wait_time
- Total amount of time the IOs for this cgroup spent waiting in the
scheduler queues for service. This can be greater than the total time
elapsed since it is cumulative io_wait_time for all IOs. It is not a
measure of total time the cgroup spent waiting but rather a measure of
the wait_time for its individual IOs. For devices with queue_depth > 1
this metric does not include the time spent waiting for service once
the IO is dispatched to the device but till it actually gets serviced
(there might be a time lag here due to re-ordering of requests by the
device). This is in nanoseconds to make it meaningful for flash
devices too. This time is further divided by the type of operation -
read or write, sync or async. First two fields specify the major and
minor number of the device, third field specifies the operation type
and the fourth field specifies the io_wait_time in ns.
- blkio.io_merged
- Total number of bios/requests merged into requests belonging to this
cgroup. This is further divided by the type of operation - read or
write, sync or async.
- blkio.io_queued
- Total number of requests queued up at any given instant for this
cgroup. This is further divided by the type of operation - read or
write, sync or async.
- blkio.avg_queue_size
- Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y.
The average queue size for this cgroup over the entire time of this
cgroup's existence. Queue size samples are taken each time one of the
queues of this cgroup gets a timeslice.
- blkio.group_wait_time
- Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y.
This is the amount of time the cgroup had to wait since it became busy
(i.e., went from 0 to 1 request queued) to get a timeslice for one of
its queues. This is different from the io_wait_time which is the
cumulative total of the amount of time spent by each IO in that cgroup
waiting in the scheduler queue. This is in nanoseconds. If this is
read when the cgroup is in a waiting (for timeslice) state, the stat
will only report the group_wait_time accumulated till the last time it
got a timeslice and will not include the current delta.
- blkio.empty_time
- Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y.
This is the amount of time a cgroup spends without any pending
requests when not being served, i.e., it does not include any time
spent idling for one of the queues of the cgroup. This is in
nanoseconds. If this is read when the cgroup is in an empty state,
the stat will only report the empty_time accumulated till the last
time it had a pending request and will not include the current delta.
- blkio.idle_time
- Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y.
This is the amount of time spent by the IO scheduler idling for a
given cgroup in anticipation of a better request than the exising ones
from other queues/cgroups. This is in nanoseconds. If this is read
when the cgroup is in an idling state, the stat will only report the
idle_time accumulated till the last idle period and will not include
the current delta.
- blkio.dequeue
- Debugging aid only enabled if CONFIG_DEBUG_CFQ_IOSCHED=y. This
- Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y. This
gives the statistics about how many a times a group was dequeued
from service tree of the device. First two fields specify the major
and minor number of the device and third field specifies the number
of times a group was dequeued from a particular device.
- blkio.reset_stats
- Writing an int to this file will result in resetting all the stats
for that cgroup.
CFQ sysfs tunable
=================
/sys/block/<disk>/queue/iosched/group_isolation
......
......@@ -235,8 +235,7 @@ containing the following files describing that cgroup:
- cgroup.procs: list of tgids in the cgroup. This list is not
guaranteed to be sorted or free of duplicate tgids, and userspace
should sort/uniquify the list if this property is required.
Writing a tgid into this file moves all threads with that tgid into
this cgroup.
This is a read-only file, for now.
- notify_on_release flag: run the release agent on exit?
- release_agent: the path to use for release notifications (this file
exists in the top cgroup only)
......@@ -573,7 +572,7 @@ void cancel_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
Called when a task attach operation has failed after can_attach() has succeeded.
A subsystem whose can_attach() has some side-effects should provide this
function, so that the subsytem can implement a rollback. If not, not necessary.
function, so that the subsystem can implement a rollback. If not, not necessary.
This will be called only about subsystems whose can_attach() operation have
succeeded.
......
......@@ -42,7 +42,7 @@ Nodes to a set of tasks. In this document "Memory Node" refers to
an on-line node that contains memory.
Cpusets constrain the CPU and Memory placement of tasks to only
the resources within a tasks current cpuset. They form a nested
the resources within a task's current cpuset. They form a nested
hierarchy visible in a virtual file system. These are the essential
hooks, beyond what is already present, required to manage dynamic
job placement on large systems.
......@@ -53,11 +53,11 @@ Documentation/cgroups/cgroups.txt.
Requests by a task, using the sched_setaffinity(2) system call to
include CPUs in its CPU affinity mask, and using the mbind(2) and
set_mempolicy(2) system calls to include Memory Nodes in its memory
policy, are both filtered through that tasks cpuset, filtering out any
policy, are both filtered through that task's cpuset, filtering out any
CPUs or Memory Nodes not in that cpuset. The scheduler will not
schedule a task on a CPU that is not allowed in its cpus_allowed
vector, and the kernel page allocator will not allocate a page on a
node that is not allowed in the requesting tasks mems_allowed vector.
node that is not allowed in the requesting task's mems_allowed vector.
User level code may create and destroy cpusets by name in the cgroup
virtual file system, manage the attributes and permissions of these
......@@ -121,9 +121,9 @@ Cpusets extends these two mechanisms as follows:
- Each task in the system is attached to a cpuset, via a pointer
in the task structure to a reference counted cgroup structure.
- Calls to sched_setaffinity are filtered to just those CPUs
allowed in that tasks cpuset.
allowed in that task's cpuset.
- Calls to mbind and set_mempolicy are filtered to just
those Memory Nodes allowed in that tasks cpuset.
those Memory Nodes allowed in that task's cpuset.
- The root cpuset contains all the systems CPUs and Memory
Nodes.
- For any cpuset, one can define child cpusets containing a subset
......@@ -141,11 +141,11 @@ into the rest of the kernel, none in performance critical paths:
- in init/main.c, to initialize the root cpuset at system boot.
- in fork and exit, to attach and detach a task from its cpuset.
- in sched_setaffinity, to mask the requested CPUs by what's
allowed in that tasks cpuset.
allowed in that task's cpuset.
- in sched.c migrate_live_tasks(), to keep migrating tasks within
the CPUs allowed by their cpuset, if possible.
- in the mbind and set_mempolicy system calls, to mask the requested
Memory Nodes by what's allowed in that tasks cpuset.
Memory Nodes by what's allowed in that task's cpuset.
- in page_alloc.c, to restrict memory to allowed nodes.
- in vmscan.c, to restrict page recovery to the current cpuset.
......@@ -155,7 +155,7 @@ new system calls are added for cpusets - all support for querying and
modifying cpusets is via this cpuset file system.
The /proc/<pid>/status file for each task has four added lines,
displaying the tasks cpus_allowed (on which CPUs it may be scheduled)
displaying the task's cpus_allowed (on which CPUs it may be scheduled)
and mems_allowed (on which Memory Nodes it may obtain memory),
in the two formats seen in the following example:
......@@ -323,17 +323,17 @@ stack segment pages of a task.
By default, both kinds of memory spreading are off, and memory
pages are allocated on the node local to where the task is running,
except perhaps as modified by the tasks NUMA mempolicy or cpuset
except perhaps as modified by the task's NUMA mempolicy or cpuset
configuration, so long as sufficient free memory pages are available.
When new cpusets are created, they inherit the memory spread settings
of their parent.
Setting memory spreading causes allocations for the affected page
or slab caches to ignore the tasks NUMA mempolicy and be spread
or slab caches to ignore the task's NUMA mempolicy and be spread
instead. Tasks using mbind() or set_mempolicy() calls to set NUMA
mempolicies will not notice any change in these calls as a result of
their containing tasks memory spread settings. If memory spreading
their containing task's memory spread settings. If memory spreading
is turned off, then the currently specified NUMA mempolicy once again
applies to memory page allocations.
......@@ -357,7 +357,7 @@ pages from the node returned by cpuset_mem_spread_node().
The cpuset_mem_spread_node() routine is also simple. It uses the
value of a per-task rotor cpuset_mem_spread_rotor to select the next
node in the current tasks mems_allowed to prefer for the allocation.
node in the current task's mems_allowed to prefer for the allocation.
This memory placement policy is also known (in other contexts) as
round-robin or interleave.
......@@ -594,7 +594,7 @@ is attached, is subtle.
If a cpuset has its Memory Nodes modified, then for each task attached
to that cpuset, the next time that the kernel attempts to allocate
a page of memory for that task, the kernel will notice the change
in the tasks cpuset, and update its per-task memory placement to
in the task's cpuset, and update its per-task memory placement to
remain within the new cpusets memory placement. If the task was using
mempolicy MPOL_BIND, and the nodes to which it was bound overlap with
its new cpuset, then the task will continue to use whatever subset
......@@ -603,13 +603,13 @@ was using MPOL_BIND and now none of its MPOL_BIND nodes are allowed
in the new cpuset, then the task will be essentially treated as if it
was MPOL_BIND bound to the new cpuset (even though its NUMA placement,
as queried by get_mempolicy(), doesn't change). If a task is moved
from one cpuset to another, then the kernel will adjust the tasks
from one cpuset to another, then the kernel will adjust the task's
memory placement, as above, the next time that the kernel attempts
to allocate a page of memory for that task.
If a cpuset has its 'cpuset.cpus' modified, then each task in that cpuset
will have its allowed CPU placement changed immediately. Similarly,
if a tasks pid is written to another cpusets 'cpuset.tasks' file, then its
if a task's pid is written to another cpusets 'cpuset.tasks' file, then its
allowed CPU placement is changed immediately. If such a task had been
bound to some subset of its cpuset using the sched_setaffinity() call,
the task will be allowed to run on any CPU allowed in its new cpuset,
......@@ -626,16 +626,16 @@ cpusets memory placement policy 'cpuset.mems' subsequently changes.
If the cpuset flag file 'cpuset.memory_migrate' is set true, then when
tasks are attached to that cpuset, any pages that task had
allocated to it on nodes in its previous cpuset are migrated
to the tasks new cpuset. The relative placement of the page within
to the task's new cpuset. The relative placement of the page within
the cpuset is preserved during these migration operations if possible.
For example if the page was on the second valid node of the prior cpuset
then the page will be placed on the second valid node of the new cpuset.
Also if 'cpuset.memory_migrate' is set true, then if that cpusets
Also if 'cpuset.memory_migrate' is set true, then if that cpuset's
'cpuset.mems' file is modified, pages allocated to tasks in that
cpuset, that were on nodes in the previous setting of 'cpuset.mems',
will be moved to nodes in the new setting of 'mems.'
Pages that were not in the tasks prior cpuset, or in the cpusets
Pages that were not in the task's prior cpuset, or in the cpuset's
prior 'cpuset.mems' setting, will not be moved.
There is an exception to the above. If hotplug functionality is used
......@@ -655,7 +655,7 @@ There is a second exception to the above. GFP_ATOMIC requests are
kernel internal allocations that must be satisfied, immediately.
The kernel may drop some request, in rare cases even panic, if a
GFP_ATOMIC alloc fails. If the request cannot be satisfied within
the current tasks cpuset, then we relax the cpuset, and look for
the current task's cpuset, then we relax the cpuset, and look for
memory anywhere we can find it. It's better to violate the cpuset
than stress the kernel.
......
......@@ -244,7 +244,7 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
we have to check if OLDPAGE/NEWPAGE is a valid page after commit().
8. LRU
Each memcg has its own private LRU. Now, it's handling is under global
Each memcg has its own private LRU. Now, its handling is under global
VM's control (means that it's handled under global zone->lru_lock).
Almost all routines around memcg's LRU is called by global LRU's
list management functions under zone->lru_lock().
......
......@@ -263,7 +263,7 @@ some of the pages cached in the cgroup (page cache pages).
4.2 Task migration
When a task migrates from one cgroup to another, it's charge is not
When a task migrates from one cgroup to another, its charge is not
carried forward by default. The pages allocated from the original cgroup still
remain charged to it, the charge is dropped when the page is freed or
reclaimed.
......
......@@ -88,7 +88,7 @@ int cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask);
int gfp_mask - GFP mask.
Note: When registering new callback user, connector core assigns
netlink group to the user which is equal to it's id.idx.
netlink group to the user which is equal to its id.idx.
/*****************************************/
Protocol description.
......
......@@ -408,9 +408,6 @@ This should be used inside the RCU read lock, as in the following example:
...
}
A function need not get RCU read lock to use __task_cred() if it is holding a
spinlock at the time as this implicitly holds the RCU read lock.
Should it be necessary to hold another task's credentials for a long period of
time, and possibly to sleep whilst doing so, then the caller should get a
reference on them using:
......@@ -426,17 +423,16 @@ credentials, hiding the RCU magic from the caller:
uid_t task_uid(task) Task's real UID
uid_t task_euid(task) Task's effective UID
If the caller is holding a spinlock or the RCU read lock at the time anyway,
then:
If the caller is holding the RCU read lock at the time anyway, then:
__task_cred(task)->uid
__task_cred(task)->euid
should be used instead. Similarly, if multiple aspects of a task's credentials
need to be accessed, RCU read lock or a spinlock should be used, __task_cred()
called, the result stored in a temporary pointer and then the credential
aspects called from that before dropping the lock. This prevents the
potentially expensive RCU magic from being invoked multiple times.
need to be accessed, RCU read lock should be used, __task_cred() called, the
result stored in a temporary pointer and then the credential aspects called
from that before dropping the lock. This prevents the potentially expensive
RCU magic from being invoked multiple times.
Should some other single aspect of another task's credentials need to be
accessed, then this can be used:
......
......@@ -41,7 +41,7 @@ This application requires the following to function properly as of now.
* Cards that fall in this category
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
At present the cards that fall in this category are the Twinhan and it's
At present the cards that fall in this category are the Twinhan and its
clones, these cards are available as VVMER, Tomato, Hercules, Orange and
so on.
......
Thanks go to the following people for patches and contributions:
Michael Hunold <m.hunold@gmx.de>
for the initial saa7146 driver and it's recent overhaul
for the initial saa7146 driver and its recent overhaul
Christian Theiss
for his work on the initial Linux DVB driver
......
......@@ -241,16 +241,6 @@ Who: Thomas Gleixner <tglx@linutronix.de>
---------------------------
What (Why):
- xt_recent: the old ipt_recent proc dir
(superseded by /proc/net/xt_recent)
When: January 2009 or Linux 2.7.0, whichever comes first
Why: Superseded by newer revisions or modules
Who: Jan Engelhardt <jengelh@computergmbh.de>
---------------------------
What: GPIO autorequest on gpio_direction_{input,output}() in gpiolib
When: February 2010
Why: All callers should use explicit gpio_request()/gpio_free().
......@@ -520,26 +510,21 @@ Who: Hans de Goede <hdegoede@redhat.com>
----------------------------
What: corgikbd, spitzkbd, tosakbd driver
When: 2.6.35
Files: drivers/input/keyboard/{corgi,spitz,tosa}kbd.c
Why: We now have a generic GPIO based matrix keyboard driver that
are fully capable of handling all the keys on these devices.
The original drivers manipulate the GPIO registers directly
and so are difficult to maintain.
Who: Eric Miao <eric.y.miao@gmail.com>
What: sysfs-class-rfkill state file
When: Feb 2014
Files: net/rfkill/core.c
Why: Documented as obsolete since Feb 2010. This file is limited to 3
states while the rfkill drivers can have 4 states.
Who: anybody or Florian Mickler <florian@mickler.org>
----------------------------
What: corgi_ssp and corgi_ts driver
When: 2.6.35
Files: arch/arm/mach-pxa/corgi_ssp.c, drivers/input/touchscreen/corgi_ts.c
Why: The corgi touchscreen is now deprecated in favour of the generic
ads7846.c driver. The noise reduction technique used in corgi_ts.c,
that's to wait till vsync before ADC sampling, is also integrated into
ads7846 driver now. Provided that the original driver is not generic
and is difficult to maintain, it will be removed later.
Who: Eric Miao <eric.y.miao@gmail.com>
What: sysfs-class-rfkill claim file
When: Feb 2012
Files: net/rfkill/core.c
Why: It is not possible to claim an rfkill driver since 2007. This is
Documented as obsolete since Feb 2010.
Who: anybody or Florian Mickler <florian@mickler.org>
----------------------------
......@@ -564,6 +549,16 @@ Who: Avi Kivity <avi@redhat.com>
----------------------------
What: xtime, wall_to_monotonic
When: 2.6.36+
Files: kernel/time/timekeeping.c include/linux/time.h
Why: Cleaning up timekeeping internal values. Please use
existing timekeeping accessor functions to access
the equivalent functionality.
Who: John Stultz <johnstul@us.ibm.com>
----------------------------
What: KVM kernel-allocated memory slots
When: July 2010
Why: Since 2.6.25, kvm supports user-allocated memory slots, which are
......@@ -589,3 +584,65 @@ Why: Useful in 2003, implementation is a hack.
Generally invoked by accident today.
Seen as doing more harm than good.
Who: Len Brown <len.brown@intel.com>
----------------------------
What: iwlwifi 50XX module parameters
When: 2.6.40
Why: The "..50" modules parameters were used to configure 5000 series and
up devices; different set of module parameters also available for 4965
with same functionalities. Consolidate both set into single place
in drivers/net/wireless/iwlwifi/iwl-agn.c
Who: Wey-Yi Guy <wey-yi.w.guy@intel.com>
----------------------------
What: iwl4965 alias support
When: 2.6.40
Why: Internal alias support has been present in module-init-tools for some
time, the MODULE_ALIAS("iwl4965") boilerplate aliases can be removed
with no impact.
Who: Wey-Yi Guy <wey-yi.w.guy@intel.com>
---------------------------
What: xt_NOTRACK
Files: net/netfilter/xt_NOTRACK.c
When: April 2011
Why: Superseded by xt_CT
Who: Netfilter developer team <netfilter-devel@vger.kernel.org>
---------------------------
What: video4linux /dev/vtx teletext API support
When: 2.6.35
Files: drivers/media/video/saa5246a.c drivers/media/video/saa5249.c
include/linux/videotext.h
Why: The vtx device nodes have been superseded by vbi device nodes
for many years. No applications exist that use the vtx support.
Of the two i2c drivers that actually support this API the saa5249
has been impossible to use for a year now and no known hardware
that supports this device exists. The saa5246a is theoretically
supported by the old mxb boards, but it never actually worked.
In summary: there is no hardware that can use this API and there
are no applications actually implementing this API.
The vtx support still reserves minors 192-223 and we would really
like to reuse those for upcoming new functionality. In the unlikely
event that new hardware appears that wants to use the functionality
provided by the vtx API, then that functionality should be build
around the sliced VBI API instead.
Who: Hans Verkuil <hverkuil@xs4all.nl>
----------------------------
What: IRQF_DISABLED
When: 2.6.36
Why: The flag is a NOOP as we run interrupt handlers with interrupts disabled
Who: Thomas Gleixner <tglx@linutronix.de>
----------------------------
......@@ -178,7 +178,7 @@ prototypes:
locking rules:
All except set_page_dirty may block
BKL PageLocked(page) i_sem
BKL PageLocked(page) i_mutex
writepage: no yes, unlocks (see below)
readpage: no yes, unlocks
sync_page: no maybe
......@@ -429,7 +429,7 @@ check_flags: no
implementations. If your fs is not using generic_file_llseek, you
need to acquire and release the appropriate locks in your ->llseek().
For many filesystems, it is probably safe to acquire the inode
semaphore. Note some filesystems (i.e. remote ones) provide no
mutex. Note some filesystems (i.e. remote ones) provide no
protection for i_size so you will need to use the BKL.
Note: ext2_release() was *the* source of contention on fs-intensive
......
......@@ -146,7 +146,7 @@ found to be inadequate, in this case. The Generic Netlink system was
used for this as raw Netlink would lead to a significant increase in
complexity. There's no question that the Generic Netlink system is an
elegant solution for common case ioctl functions but it's not a complete
replacement probably because it's primary purpose in life is to be a
replacement probably because its primary purpose in life is to be a
message bus implementation rather than specifically an ioctl replacement.
While it would be possible to work around this there is one concern
that lead to the decision to not use it. This is that the autofs
......
......@@ -90,7 +90,7 @@ Mount Options
Specify the IP and/or port the client should bind to locally.
There is normally not much reason to do this. If the IP is not
specified, the client's IP address is determined by looking at the
address it's connection to the monitor originates from.
address its connection to the monitor originates from.
wsize=X
Specify the maximum write size in bytes. By default there is no
......
......@@ -47,7 +47,7 @@ You'll want to start heartbeating on a volume which all the nodes in
your lockspace can access. The easiest way to do this is via
ocfs2_hb_ctl (distributed with ocfs2-tools). Right now it requires
that an OCFS2 file system be in place so that it can automatically
find it's heartbeat area, though it will eventually support heartbeat
find its heartbeat area, though it will eventually support heartbeat
against raw disks.
Please see the ocfs2_hb_ctl and mkfs.ocfs2 manual pages distributed
......
......@@ -59,8 +59,19 @@ commit=nrsec (*) Ext3 can be told to sync all its data and metadata
Setting it to very large values will improve
performance.
barrier=1 This enables/disables barriers. barrier=0 disables
it, barrier=1 enables it.
barrier=<0(*)|1> This enables/disables the use of write barriers in
barrier the jbd code. barrier=0 disables, barrier=1 enables.
nobarrier (*) This also requires an IO stack which can support
barriers, and if jbd gets an error on a barrier
write, it will disable again with a warning.
Write barriers enforce proper on-disk ordering
of journal commits, making volatile disk write caches
safe to use, at some performance penalty. If
your disks are battery-backed in one way or another,
disabling barriers may safely improve performance.
The mount options "barrier" and "nobarrier" can
also be used to enable or disable barriers, for
consistency with other ext3 mount options.
orlov (*) This enables the new Orlov block allocator. It is
enabled by default.
......
......@@ -38,7 +38,7 @@ flags, it will return EBADR and the contents of fm_flags will contain
the set of flags which caused the error. If the kernel is compatible
with all flags passed, the contents of fm_flags will be unmodified.
It is up to userspace to determine whether rejection of a particular
flag is fatal to it's operation. This scheme is intended to allow the
flag is fatal to its operation. This scheme is intended to allow the
fiemap interface to grow in the future but without losing
compatibility with old software.
......@@ -56,7 +56,7 @@ If this flag is set, the kernel will sync the file before mapping extents.
* FIEMAP_FLAG_XATTR
If this flag is set, the extents returned will describe the inodes
extended attribute lookup tree, instead of it's data tree.
extended attribute lookup tree, instead of its data tree.
Extent Mapping
......@@ -89,7 +89,7 @@ struct fiemap_extent {
};
All offsets and lengths are in bytes and mirror those on disk. It is valid
for an extents logical offset to start before the request or it's logical
for an extents logical offset to start before the request or its logical
length to extend past the request. Unless FIEMAP_EXTENT_NOT_ALIGNED is
returned, fe_logical, fe_physical, and fe_length will be aligned to the
block size of the file system. With the exception of extents flagged as
......@@ -125,7 +125,7 @@ been allocated for the file yet.
* FIEMAP_EXTENT_DELALLOC
- This will also set FIEMAP_EXTENT_UNKNOWN.
Delayed allocation - while there is data for this extent, it's
Delayed allocation - while there is data for this extent, its
physical location has not been allocated yet.
* FIEMAP_EXTENT_ENCODED
......@@ -159,7 +159,7 @@ Data is located within a meta data block.
Data is packed into a block with data from other files.
* FIEMAP_EXTENT_UNWRITTEN
Unwritten extent - the extent is allocated but it's data has not been
Unwritten extent - the extent is allocated but its data has not been
initialized. This indicates the extent's data will be all zero if read
through the filesystem but the contents are undefined if read directly from
the device.
......@@ -176,7 +176,7 @@ VFS -> File System Implementation
File systems wishing to support fiemap must implement a ->fiemap callback on
their inode_operations structure. The fs ->fiemap call is responsible for
defining it's set of supported fiemap flags, and calling a helper function on
defining its set of supported fiemap flags, and calling a helper function on
each discovered extent:
struct inode_operations {
......
......@@ -91,7 +91,7 @@ Mount options
'default_permissions'
By default FUSE doesn't check file access permissions, the
filesystem is free to implement it's access policy or leave it to
filesystem is free to implement its access policy or leave it to
the underlying file access mechanism (e.g. in case of network
filesystems). This option enables permission checking, restricting
access based on file mode. It is usually useful together with the
......@@ -171,7 +171,7 @@ or may honor them by sending a reply to the _original_ request, with
the error set to EINTR.
It is also possible that there's a race between processing the
original request and it's INTERRUPT request. There are two possibilities:
original request and its INTERRUPT request. There are two possibilities:
1) The INTERRUPT request is processed before the original request is
processed
......
Global File System
------------------
http://sources.redhat.com/cluster/
http://sources.redhat.com/cluster/wiki/
GFS is a cluster file system. It allows a cluster of computers to
simultaneously use a block device that is shared between them (with FC,
......@@ -36,11 +36,11 @@ GFS2 is not on-disk compatible with previous versions of GFS, but it
is pretty close.
The following man pages can be found at the URL above:
fsck.gfs2 to repair a filesystem
gfs2_grow to expand a filesystem online
gfs2_jadd to add journals to a filesystem online
gfs2_tool to manipulate, examine and tune a filesystem
fsck.gfs2 to repair a filesystem
gfs2_grow to expand a filesystem online
gfs2_jadd to add journals to a filesystem online
gfs2_tool to manipulate, examine and tune a filesystem
gfs2_quota to examine and change quota values in a filesystem
gfs2_convert to convert a gfs filesystem to gfs2 in-place
mount.gfs2 to help mount(8) mount a filesystem
mkfs.gfs2 to make a filesystem
mkfs.gfs2 to make a filesystem
......@@ -103,7 +103,7 @@ to analyze or change OS2SYS.INI.
Codepages
HPFS can contain several uppercasing tables for several codepages and each
file has a pointer to codepage it's name is in. However OS/2 was created in
file has a pointer to codepage its name is in. However OS/2 was created in
America where people don't care much about codepages and so multiple codepages
support is quite buggy. I have Czech OS/2 working in codepage 852 on my disk.
Once I booted English OS/2 working in cp 850 and I created a file on my 852
......
......@@ -59,7 +59,7 @@ Levels
------
Garbage collection (GC) may fail if all data is written
indiscriminately. One requirement of GC is that data is seperated
indiscriminately. One requirement of GC is that data is separated
roughly according to the distance between the tree root and the data.
Effectively that means all file data is on level 0, indirect blocks
are on levels 1, 2, 3 4 or 5 for 1x, 2x, 3x, 4x or 5x indirect blocks,
......@@ -67,7 +67,7 @@ respectively. Inode file data is on level 6 for the inodes and 7-11
for indirect blocks.
Each segment contains objects of a single level only. As a result,
each level requires its own seperate segment to be open for writing.
each level requires its own separate segment to be open for writing.
Inode File
----------
......@@ -106,9 +106,9 @@ Vim
---
By cleverly predicting the life time of data, it is possible to
seperate long-living data from short-living data and thereby reduce
separate long-living data from short-living data and thereby reduce
the GC overhead later. Each type of distinc life expectency (vim) can
have a seperate segment open for writing. Each (level, vim) tupel can
have a separate segment open for writing. Each (level, vim) tupel can
be open just once. If an open segment with unknown vim is encountered
at mount time, it is closed and ignored henceforth.
......
......@@ -137,7 +137,7 @@ NS*| OPENATTR | OPT | | Section 18.17 |
| READ | REQ | | Section 18.22 |
| READDIR | REQ | | Section 18.23 |
| READLINK | OPT | | Section 18.24 |
NS | RECLAIM_COMPLETE | REQ | | Section 18.51 |
| RECLAIM_COMPLETE | REQ | | Section 18.51 |
| RELEASE_LOCKOWNER | MNI | | N/A |
| REMOVE | REQ | | Section 18.25 |
| RENAME | REQ | | Section 18.26 |
......
......@@ -185,7 +185,7 @@ failed lookup meant a definite 'no'.
request/response format
-----------------------
While each cache is free to use it's own format for requests
While each cache is free to use its own format for requests
and responses over channel, the following is recommended as
appropriate and support routines are available to help:
Each request or response record should be printable ASCII
......
......@@ -50,8 +50,8 @@ NILFS2 supports the following mount options:
(*) == default
nobarrier Disables barriers.
errors=continue(*) Keep going on a filesystem error.
errors=remount-ro Remount the filesystem read-only on an error.
errors=continue Keep going on a filesystem error.
errors=remount-ro(*) Remount the filesystem read-only on an error.
errors=panic Panic and halt the machine if an error occurs.
cp=n Specify the checkpoint-number of the snapshot to be
mounted. Checkpoints and snapshots are listed by lscp
......
......@@ -80,3 +80,10 @@ user_xattr (*) Enables Extended User Attributes.
nouser_xattr Disables Extended User Attributes.
acl Enables POSIX Access Control Lists support.
noacl (*) Disables POSIX Access Control Lists support.
resv_level=2 (*) Set how agressive allocation reservations will be.
Valid values are between 0 (reservations off) to 8
(maximum space for reservations).
dir_resv_level= (*) By default, directory reservations will scale with file
reservations - users should rarely need to change this
value. If allocation reservations are turned off, this
option will have no effect.
......@@ -305,7 +305,7 @@ Table 1-4: Contents of the stat files (as of 2.6.30-rc7)
cgtime guest time of the task children in jiffies
..............................................................................
The /proc/PID/map file containing the currently mapped memory regions and
The /proc/PID/maps file containing the currently mapped memory regions and
their access permissions.
The format is:
......@@ -316,7 +316,7 @@ address perms offset dev inode pathname
08049000-0804a000 rw-p 00001000 03:00 8312 /opt/test
0804a000-0806b000 rw-p 00000000 00:00 0 [heap]
a7cb1000-a7cb2000 ---p 00000000 00:00 0
a7cb2000-a7eb2000 rw-p 00000000 00:00 0 [threadstack:001ff4b4]
a7cb2000-a7eb2000 rw-p 00000000 00:00 0
a7eb2000-a7eb3000 ---p 00000000 00:00 0
a7eb3000-a7ed5000 rw-p 00000000 00:00 0
a7ed5000-a8008000 r-xp 00000000 03:00 4222 /lib/libc.so.6
......@@ -352,7 +352,6 @@ is not associated with a file:
[stack] = the stack of the main process
[vdso] = the "virtual dynamic shared object",
the kernel system call handler
[threadstack:xxxxxxxx] = the stack of the thread, xxxxxxxx is the stack size
or if empty, the mapping is anonymous.
......@@ -566,6 +565,10 @@ The default_smp_affinity mask applies to all non-active IRQs, which are the
IRQs which have not yet been allocated/activated, and hence which lack a
/proc/irq/[0-9]* directory.
The node file on an SMP system shows the node to which the device using the IRQ
reports itself as being attached. This hardware locality information does not
include information about any possible driver locality preference.
prof_cpu_mask specifies which CPUs are to be profiled by the system wide
profiler. Default value is ffffffff (all cpus).
......@@ -965,7 +968,7 @@ your system and how much traffic was routed over those devices:
...] 1375103 17405 0 0 0 0 0 0
...] 1703981 5535 0 0 0 3 0 0
In addition, each Channel Bond interface has it's own directory. For
In addition, each Channel Bond interface has its own directory. For
example, the bond0 device will have a directory called /proc/net/bond0/.
It will contain information that is specific to that bond, such as the
current slaves of the bond, the link status of the slaves, and how
......@@ -1362,7 +1365,7 @@ been accounted as having caused 1MB of write.
In other words: The number of bytes which this process caused to not happen,
by truncating pagecache. A task can cause "negative" IO too. If this task
truncates some dirty pagecache, some IO which another task has been accounted
for (in it's write_bytes) will not be happening. We _could_ just subtract that
for (in its write_bytes) will not be happening. We _could_ just subtract that
from the truncating task's write_bytes, but there is information loss in doing
that.
......
......@@ -3,6 +3,6 @@ protocol used by Windows for Workgroups, Windows 95 and Windows NT.
Smbfs was inspired by Samba, the program written by Andrew Tridgell
that turns any Unix host into a file server for DOS or Windows clients.
Smbfs is a SMB client, but uses parts of samba for it's operation. For
Smbfs is a SMB client, but uses parts of samba for its operation. For
more info on samba, including documentation, please go to
http://www.samba.org/ and then on to your nearest mirror.
Sysfs tagging
-------------
(Taken almost verbatim from Eric Biederman's netns tagging patch
commit msg)
The problem. Network devices show up in sysfs and with the network
namespace active multiple devices with the same name can show up in
the same directory, ouch!
To avoid that problem and allow existing applications in network
namespaces to see the same interface that is currently presented in
sysfs, sysfs now has tagging directory support.
By using the network namespace pointers as tags to separate out the
the sysfs directory entries we ensure that we don't have conflicts
in the directories and applications only see a limited set of
the network devices.
Each sysfs directory entry may be tagged with zero or one
namespaces. A sysfs_dirent is augmented with a void *s_ns. If a
directory entry is tagged, then sysfs_dirent->s_flags will have a
flag between KOBJ_NS_TYPE_NONE and KOBJ_NS_TYPES, and s_ns will
point to the namespace to which it belongs.
Each sysfs superblock's sysfs_super_info contains an array void
*ns[KOBJ_NS_TYPES]. When a a task in a tagging namespace
kobj_nstype first mounts sysfs, a new superblock is created. It
will be differentiated from other sysfs mounts by having its
s_fs_info->ns[kobj_nstype] set to the new namespace. Note that
through bind mounting and mounts propagation, a task can easily view
the contents of other namespaces' sysfs mounts. Therefore, when a
namespace exits, it will call kobj_ns_exit() to invalidate any
sysfs_dirent->s_ns pointers pointing to it.
Users of this interface:
- define a type in the kobj_ns_type enumeration.
- call kobj_ns_type_register() with its kobj_ns_type_operations which has
- current_ns() which returns current's namespace
- netlink_ns() which returns a socket's namespace
- initial_ns() which returns the initial namesapce
- call kobj_ns_exit() when an individual tag is no longer valid
......@@ -72,7 +72,7 @@ structure (this is the kernel-side implementation of file
descriptors). The freshly allocated file structure is initialized with
a pointer to the dentry and a set of file operation member functions.
These are taken from the inode data. The open() file method is then
called so the specific filesystem implementation can do it's work. You
called so the specific filesystem implementation can do its work. You
can see that this is another switch performed by the VFS. The file
structure is placed into the file descriptor table for the process.
......
......@@ -157,7 +157,7 @@ temperature configuration points:
There are three PWM outputs. The LM85 datasheet suggests that the
pwm3 output control both fan3 and fan4. Each PWM can be individually
configured and assigned to a zone for it's control value. Each PWM can be
configured and assigned to a zone for its control value. Each PWM can be
configured individually according to the following options.
* pwm#_auto_pwm_min - this specifies the PWM value for temp#_auto_temp_off
......
......@@ -27,7 +27,13 @@ Authors:
Module Parameters
-----------------
None.
* disable_features (bit vector)
Disable selected features normally supported by the device. This makes it
possible to work around possible driver or hardware bugs if the feature in
question doesn't work as intended for whatever reason. Bit values:
1 disable SMBus PEC
2 disable the block buffer
8 disable the I2C block read functionality
Description
......
......@@ -74,6 +74,11 @@ structure at all. You should use this to keep device-specific data.
/* retrieve the value */
void *i2c_get_clientdata(const struct i2c_client *client);
Note that starting with kernel 2.6.34, you don't have to set the `data' field
to NULL in remove() or if probe() failed anymore. The i2c-core does this
automatically on these occasions. Those are also the only times the core will
touch this field.
Accessing the client
====================
......
......@@ -333,14 +333,14 @@ byte 0:
byte 1:
bit 7 6 5 4 3 2 1 0
x15 x14 x13 x12 x11 x10 x9 x8
. . . . . x10 x9 x8
byte 2:
bit 7 6 5 4 3 2 1 0
x7 x6 x5 x4 x4 x2 x1 x0
x15..x0 = absolute x value (horizontal)
x10..x0 = absolute x value (horizontal)
byte 3:
......@@ -350,14 +350,14 @@ byte 3:
byte 4:
bit 7 6 5 4 3 2 1 0
y15 y14 y13 y12 y11 y10 y8 y8
. . . . . . y9 y8
byte 5:
bit 7 6 5 4 3 2 1 0
y7 y6 y5 y4 y3 y2 y1 y0
y15..y0 = absolute y value (vertical)
y9..y0 = absolute y value (vertical)
4.2.2 Two finger touch
......
......@@ -402,7 +402,7 @@ for the port of the SoundFusion is supported by the cs461x.c module.
~~~~~~~~~~~~~~~~~~~~~~~~
The Live! has a special PCI gameport, which, although it doesn't provide
any "Enhanced" stuff like 4DWave and friends, is quite a bit faster than
it's ISA counterparts. It also requires special support, hence the
its ISA counterparts. It also requires special support, hence the
emu10k1-gp.c module for it instead of the normal ns558.c one.
3.15 SoundBlaster 64 and 128 - ES1370 and ES1371, ESS Solo1 and S3 SonicVibes
......
......@@ -126,7 +126,7 @@ o Tboot then applies an (optional) user-defined launch policy to
o Tboot adjusts the e820 table provided by the bootloader to reserve
its own location in memory as well as to reserve certain other
TXT-related regions.
o As part of it's launch, tboot DMA protects all of RAM (using the
o As part of its launch, tboot DMA protects all of RAM (using the
VT-d PMRs). Thus, the kernel must be booted with 'intel_iommu=on'
in order to remove this blanket protection and use VT-d's
page-level protection.
......@@ -161,13 +161,15 @@ o In order to put a system into any of the sleep states after a TXT
has been restored, it will restore the TPM PCRs and then
transfer control back to the kernel's S3 resume vector.
In order to preserve system integrity across S3, the kernel
provides tboot with a set of memory ranges (kernel
code/data/bss, S3 resume code, and AP trampoline) that tboot
will calculate a MAC (message authentication code) over and then
seal with the TPM. On resume and once the measured environment
has been re-established, tboot will re-calculate the MAC and
verify it against the sealed value. Tboot's policy determines
what happens if the verification fails.
provides tboot with a set of memory ranges (RAM and RESERVED_KERN
in the e820 table, but not any memory that BIOS might alter over
the S3 transition) that tboot will calculate a MAC (message
authentication code) over and then seal with the TPM. On resume
and once the measured environment has been re-established, tboot
will re-calculate the MAC and verify it against the sealed value.
Tboot's policy determines what happens if the verification fails.
Note that the c/s 194 of tboot which has the new MAC code supports
this.
That's pretty much it for TXT support.
......
......@@ -181,7 +181,7 @@ Expressions are listed in decreasing order of precedence.
(7) Returns the result of max(/expr/, /expr/).
An expression can have a value of 'n', 'm' or 'y' (or 0, 1, 2
respectively for calculations). A menu entry becomes visible when it's
respectively for calculations). A menu entry becomes visible when its
expression evaluates to 'm' or 'y'.
There are two types of symbols: constant and non-constant symbols.
......
......@@ -96,7 +96,7 @@ Environment variables for 'silentoldconfig'
KCONFIG_NOSILENTUPDATE
--------------------------------------------------
If this variable has a non-blank value, it prevents silent kernel
config udpates (requires explicit updates).
config updates (requires explicit updates).
KCONFIG_AUTOCONFIG
--------------------------------------------------
......
......@@ -116,7 +116,7 @@
Author: Ingo Molnar, Gadi Oxman and Miguel de Icaza.
URL: http://www.linuxjournal.com/article.php?sid=2391
Keywords: RAID, MD driver.
Description: Linux Journal Kernel Korner article. Here is it's
Description: Linux Journal Kernel Korner article. Here is its
abstract: "A description of the implementation of the RAID-1,
RAID-4 and RAID-5 personalities of the MD device driver in the
Linux kernel, providing users with high performance and reliable,
......@@ -127,7 +127,7 @@
URL: http://www.linuxjournal.com/article.php?sid=1219
Keywords: device driver, module, loading/unloading modules,
allocating resources.
Description: Linux Journal Kernel Korner article. Here is it's
Description: Linux Journal Kernel Korner article. Here is its
abstract: "This is the first of a series of four articles
co-authored by Alessandro Rubini and Georg Zezchwitz which present
a practical approach to writing Linux device drivers as kernel
......@@ -141,7 +141,7 @@
Keywords: character driver, init_module, clean_up module,
autodetection, mayor number, minor number, file operations,
open(), close().
Description: Linux Journal Kernel Korner article. Here is it's
Description: Linux Journal Kernel Korner article. Here is its
abstract: "This article, the second of four, introduces part of
the actual code to create custom module implementing a character
device driver. It describes the code for module initialization and
......@@ -152,7 +152,7 @@
URL: http://www.linuxjournal.com/article.php?sid=1221
Keywords: read(), write(), select(), ioctl(), blocking/non
blocking mode, interrupt handler.
Description: Linux Journal Kernel Korner article. Here is it's
Description: Linux Journal Kernel Korner article. Here is its
abstract: "This article, the third of four on writing character
device drivers, introduces concepts of reading, writing, and using
ioctl-calls".
......@@ -161,7 +161,7 @@
Author: Alessandro Rubini and Georg v. Zezschwitz.
URL: http://www.linuxjournal.com/article.php?sid=1222
Keywords: interrupts, irqs, DMA, bottom halves, task queues.
Description: Linux Journal Kernel Korner article. Here is it's
Description: Linux Journal Kernel Korner article. Here is its
abstract: "This is the fourth in a series of articles about
writing character device drivers as loadable kernel modules. This
month, we further investigate the field of interrupt handling.
......
......@@ -58,6 +58,7 @@ parameter is applicable:
ISAPNP ISA PnP code is enabled.
ISDN Appropriate ISDN support is enabled.
JOY Appropriate joystick support is enabled.
KGDB Kernel debugger support is enabled.
KVM Kernel Virtual Machine support is enabled.
LIBATA Libata driver is enabled
LP Printer support is enabled.
......@@ -99,6 +100,7 @@ parameter is applicable:
SWSUSP Software suspend (hibernation) is enabled.
SUSPEND System suspend states are enabled.
FTRACE Function tracing enabled.
TPM TPM drivers are enabled.
TS Appropriate touchscreen support is enabled.
UMS USB Mass Storage support is enabled.
USB USB support is enabled.
......@@ -151,6 +153,7 @@ and is between 256 and 4096 characters. It is defined in the file
strict -- Be less tolerant of platforms that are not
strictly ACPI specification compliant.
rsdt -- prefer RSDT over (default) XSDT
copy_dsdt -- copy DSDT to memory
See also Documentation/power/pm.txt, pci=noacpi
......@@ -324,6 +327,8 @@ and is between 256 and 4096 characters. It is defined in the file
they are unmapped. Otherwise they are
flushed before they will be reused, which
is a lot of faster
off - do not initialize any AMD IOMMU found in
the system
amijoy.map= [HW,JOY] Amiga joystick support
Map of devices attached to JOY0DAT and JOY1DAT
......@@ -708,6 +713,12 @@ and is between 256 and 4096 characters. It is defined in the file
The VGA output is eventually overwritten by the real
console.
ekgdboc= [X86,KGDB] Allow early kernel console debugging
ekgdboc=kbd
This is desgined to be used in conjunction with
the boot argument: earlyprintk=vga
eata= [HW,SCSI]
edd= [EDD]
......@@ -784,8 +795,12 @@ and is between 256 and 4096 characters. It is defined in the file
as early as possible in order to facilitate early
boot debugging.
ftrace_dump_on_oops
ftrace_dump_on_oops[=orig_cpu]
[FTRACE] will dump the trace buffers on oops.
If no parameter is passed, ftrace will dump
buffers of all CPUs, but if you pass orig_cpu, it will
dump only the buffer of the CPU that triggered the
oops.
ftrace_filter=[function-list]
[FTRACE] Limit the functions traced by the function
......@@ -1112,10 +1127,26 @@ and is between 256 and 4096 characters. It is defined in the file
use the HighMem zone if it exists, and the Normal
zone if it does not.
kgdboc= [HW] kgdb over consoles.
Requires a tty driver that supports console polling.
(only serial supported for now)
Format: <serial_device>[,baud]
kgdbdbgp= [KGDB,HW] kgdb over EHCI usb debug port.
Format: <Controller#>[,poll interval]
The controller # is the number of the ehci usb debug
port as it is probed via PCI. The poll interval is
optional and is the number seconds in between
each poll cycle to the debug port in case you need
the functionality for interrupting the kernel with
gdb or control-c on the dbgp connection. When
not using this parameter you use sysrq-g to break into
the kernel debugger.
kgdboc= [KGDB,HW] kgdb over consoles.
Requires a tty driver that supports console polling,
or a supported polling keyboard driver (non-usb).
Serial only format: <serial_device>[,baud]
keyboard only format: kbd
keyboard and serial format: kbd,<serial_device>[,baud]
kgdbwait [KGDB] Stop kernel execution and enter the
kernel debugger at the earliest opportunity.
kmac= [MIPS] korina ethernet MAC address.
Configure the RouterBoard 532 series on-chip
......@@ -1194,7 +1225,7 @@ and is between 256 and 4096 characters. It is defined in the file
libata.force= [LIBATA] Force configurations. The format is comma
separated list of "[ID:]VAL" where ID is
PORT[:DEVICE]. PORT and DEVICE are decimal numbers
PORT[.DEVICE]. PORT and DEVICE are decimal numbers
matching port, link or device. Basically, it matches
the ATA ID string printed on console by libata. If
the whole ID part is omitted, the last PORT and DEVICE
......@@ -2610,6 +2641,15 @@ and is between 256 and 4096 characters. It is defined in the file
tp720= [HW,PS2]
tpm_suspend_pcr=[HW,TPM]
Format: integer pcr id
Specify that at suspend time, the tpm driver
should extend the specified pcr with zeros,
as a workaround for some chips which fail to
flush the last written pcr on TPM_SaveState.
This will guarantee that all the other pcrs
are saved.
trace_buf_size=nn[KMG]
[FTRACE] will set tracing buffer size.
......
......@@ -165,8 +165,8 @@ the user entry_handler invocation is also skipped.
1.4 How Does Jump Optimization Work?
If you configured your kernel with CONFIG_OPTPROBES=y (currently
this option is supported on x86/x86-64, non-preemptive kernel) and
If your kernel is built with CONFIG_OPTPROBES=y (currently this flag
is automatically set 'y' on x86/x86-64, non-preemptive kernel) and
the "debug.kprobes_optimization" kernel parameter is set to 1 (see
sysctl(8)), Kprobes tries to reduce probe-hit overhead by using a jump
instruction instead of a breakpoint instruction at each probepoint.
......@@ -271,8 +271,6 @@ tweak the kernel's execution path, you need to suppress optimization,
using one of the following techniques:
- Specify an empty function for the kprobe's post_handler or break_handler.
or
- Config CONFIG_OPTPROBES=n.
or
- Execute 'sysctl -w debug.kprobes_optimization=n'
2. Architectures Supported
......@@ -307,10 +305,6 @@ it useful to "Compile the kernel with debug info" (CONFIG_DEBUG_INFO),
so you can use "objdump -d -l vmlinux" to see the source-to-object
code mapping.
If you want to reduce probing overhead, set "Kprobes jump optimization
support" (CONFIG_OPTPROBES) to "y". You can find this option under the
"Kprobes" line.
4. API Reference
The Kprobes API includes a "register" function and an "unregister"
......@@ -332,7 +326,7 @@ occurs during execution of kp->pre_handler or kp->post_handler,
or during single-stepping of the probed instruction, Kprobes calls
kp->fault_handler. Any or all handlers can be NULL. If kp->flags
is set KPROBE_FLAG_DISABLED, that kp will be registered but disabled,
so, it's handlers aren't hit until calling enable_kprobe(kp).
so, its handlers aren't hit until calling enable_kprobe(kp).
NOTE:
1. With the introduction of the "symbol_name" field to struct kprobe,
......
......@@ -656,6 +656,7 @@ struct kvm_clock_data {
4.29 KVM_GET_VCPU_EVENTS
Capability: KVM_CAP_VCPU_EVENTS
Extended by: KVM_CAP_INTR_SHADOW
Architectures: x86
Type: vm ioctl
Parameters: struct kvm_vcpu_event (out)
......@@ -676,7 +677,7 @@ struct kvm_vcpu_events {
__u8 injected;
__u8 nr;
__u8 soft;
__u8 pad;
__u8 shadow;
} interrupt;
struct {
__u8 injected;
......@@ -688,9 +689,13 @@ struct kvm_vcpu_events {
__u32 flags;
};
KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
interrupt.shadow contains a valid state. Otherwise, this field is undefined.
4.30 KVM_SET_VCPU_EVENTS
Capability: KVM_CAP_VCPU_EVENTS
Extended by: KVM_CAP_INTR_SHADOW
Architectures: x86
Type: vm ioctl
Parameters: struct kvm_vcpu_event (in)
......@@ -709,6 +714,183 @@ current in-kernel state. The bits are:
KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
the flags field to signal that interrupt.shadow contains a valid state and
shall be written into the VCPU.
4.32 KVM_GET_DEBUGREGS
Capability: KVM_CAP_DEBUGREGS
Architectures: x86
Type: vm ioctl
Parameters: struct kvm_debugregs (out)
Returns: 0 on success, -1 on error
Reads debug registers from the vcpu.
struct kvm_debugregs {
__u64 db[4];
__u64 dr6;
__u64 dr7;
__u64 flags;
__u64 reserved[9];
};
4.33 KVM_SET_DEBUGREGS
Capability: KVM_CAP_DEBUGREGS
Architectures: x86
Type: vm ioctl
Parameters: struct kvm_debugregs (in)
Returns: 0 on success, -1 on error
Writes debug registers into the vcpu.
See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
yet and must be cleared on entry.
4.34 KVM_SET_USER_MEMORY_REGION
Capability: KVM_CAP_USER_MEM
Architectures: all
Type: vm ioctl
Parameters: struct kvm_userspace_memory_region (in)
Returns: 0 on success, -1 on error
struct kvm_userspace_memory_region {
__u32 slot;
__u32 flags;
__u64 guest_phys_addr;
__u64 memory_size; /* bytes */
__u64 userspace_addr; /* start of the userspace allocated memory */
};
/* for kvm_memory_region::flags */
#define KVM_MEM_LOG_DIRTY_PAGES 1UL
This ioctl allows the user to create or modify a guest physical memory
slot. When changing an existing slot, it may be moved in the guest
physical memory space, or its flags may be modified. It may not be
resized. Slots may not overlap in guest physical address space.
Memory for the region is taken starting at the address denoted by the
field userspace_addr, which must point at user addressable memory for
the entire memory slot size. Any object may back this memory, including
anonymous memory, ordinary files, and hugetlbfs.
It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
be identical. This allows large pages in the guest to be backed by large
pages in the host.
The flags field supports just one flag, KVM_MEM_LOG_DIRTY_PAGES, which
instructs kvm to keep track of writes to memory within the slot. See
the KVM_GET_DIRTY_LOG ioctl.
When the KVM_CAP_SYNC_MMU capability, changes in the backing of the memory
region are automatically reflected into the guest. For example, an mmap()
that affects the region will be made visible immediately. Another example
is madvise(MADV_DROP).
It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
allocation and is deprecated.
4.35 KVM_SET_TSS_ADDR
Capability: KVM_CAP_SET_TSS_ADDR
Architectures: x86
Type: vm ioctl
Parameters: unsigned long tss_address (in)
Returns: 0 on success, -1 on error
This ioctl defines the physical address of a three-page region in the guest
physical address space. The region must be within the first 4GB of the
guest physical address space and must not conflict with any memory slot
or any mmio address. The guest may malfunction if it accesses this memory
region.
This ioctl is required on Intel-based hosts. This is needed on Intel hardware
because of a quirk in the virtualization implementation (see the internals
documentation when it pops into existence).
4.36 KVM_ENABLE_CAP
Capability: KVM_CAP_ENABLE_CAP
Architectures: ppc
Type: vcpu ioctl
Parameters: struct kvm_enable_cap (in)
Returns: 0 on success; -1 on error
+Not all extensions are enabled by default. Using this ioctl the application
can enable an extension, making it available to the guest.
On systems that do not support this ioctl, it always fails. On systems that
do support it, it only works for extensions that are supported for enablement.
To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
be used.
struct kvm_enable_cap {
/* in */
__u32 cap;
The capability that is supposed to get enabled.
__u32 flags;
A bitfield indicating future enhancements. Has to be 0 for now.
__u64 args[4];
Arguments for enabling a feature. If a feature needs initial values to
function properly, this is the place to put them.
__u8 pad[64];
};
4.37 KVM_GET_MP_STATE
Capability: KVM_CAP_MP_STATE
Architectures: x86, ia64
Type: vcpu ioctl
Parameters: struct kvm_mp_state (out)
Returns: 0 on success; -1 on error
struct kvm_mp_state {
__u32 mp_state;
};
Returns the vcpu's current "multiprocessing state" (though also valid on
uniprocessor guests).
Possible values are:
- KVM_MP_STATE_RUNNABLE: the vcpu is currently running
- KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
which has not yet received an INIT signal
- KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
now ready for a SIPI
- KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
is waiting for an interrupt
- KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
accesible via KVM_GET_VCPU_EVENTS)
This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
irqchip, the multiprocessing state must be maintained by userspace.
4.38 KVM_SET_MP_STATE
Capability: KVM_CAP_MP_STATE
Architectures: x86, ia64
Type: vcpu ioctl
Parameters: struct kvm_mp_state (in)
Returns: 0 on success; -1 on error
Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
arguments.
This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
irqchip, the multiprocessing state must be maintained by userspace.
5. The kvm_run structure
......@@ -820,6 +1002,13 @@ executed a memory-mapped I/O instruction which could not be satisfied
by kvm. The 'data' member contains the written data if 'is_write' is
true, and should be filled by application code otherwise.
NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO and KVM_EXIT_OSI, the corresponding
operations are complete (and guest state is consistent) only after userspace
has re-entered the kernel with KVM_RUN. The kernel side will first finish
incomplete operations and then check for pending signals. Userspace
can re-enter the guest with an unmasked signal pending to complete
pending operations.
/* KVM_EXIT_HYPERCALL */
struct {
__u64 nr;
......@@ -829,7 +1018,9 @@ true, and should be filled by application code otherwise.
__u32 pad;
} hypercall;
Unused.
Unused. This was once used for 'hypercall to userspace'. To implement
such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
/* KVM_EXIT_TPR_ACCESS */
struct {
......@@ -870,6 +1061,19 @@ s390 specific.
powerpc specific.
/* KVM_EXIT_OSI */
struct {
__u64 gprs[32];
} osi;
MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
hypercalls and exit with this exit struct that contains all the guest gprs.
If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
Userspace can now handle the hypercall and when it's done modify the gprs as
necessary. Upon guest entry all guest GPRs will then be replaced by the values
in this struct.
/* Fix the size of the union. */
char padding[256];
};
......
KVM CPUID bits
Glauber Costa <glommer@redhat.com>, Red Hat Inc, 2010
=====================================================
A guest running on a kvm host, can check some of its features using
cpuid. This is not always guaranteed to work, since userspace can
mask-out some, or even all KVM-related cpuid features before launching
a guest.
KVM cpuid functions are:
function: KVM_CPUID_SIGNATURE (0x40000000)
returns : eax = 0,
ebx = 0x4b4d564b,
ecx = 0x564b4d56,
edx = 0x4d.
Note that this value in ebx, ecx and edx corresponds to the string "KVMKVMKVM".
This function queries the presence of KVM cpuid leafs.
function: define KVM_CPUID_FEATURES (0x40000001)
returns : ebx, ecx, edx = 0
eax = and OR'ed group of (1 << flag), where each flags is:
flag || value || meaning
=============================================================================
KVM_FEATURE_CLOCKSOURCE || 0 || kvmclock available at msrs
|| || 0x11 and 0x12.
------------------------------------------------------------------------------
KVM_FEATURE_NOP_IO_DELAY || 1 || not necessary to perform delays
|| || on PIO operations.
------------------------------------------------------------------------------
KVM_FEATURE_MMU_OP || 2 || deprecated.
------------------------------------------------------------------------------
KVM_FEATURE_CLOCKSOURCE2 || 3 || kvmclock available at msrs
|| || 0x4b564d00 and 0x4b564d01
------------------------------------------------------------------------------
KVM_FEATURE_CLOCKSOURCE_STABLE_BIT || 24 || host will warn if no guest-side
|| || per-cpu warps are expected in
|| || kvmclock.
------------------------------------------------------------------------------
此差异已折叠。
......@@ -207,7 +207,7 @@ Tips & Tricks
* Drew Scott Daniels observed: "I don't know why, but when I decrease the number
of colours that my display uses it consumes less battery power. I've seen
this on powerbooks too. I hope that this is a piece of information that
might be useful to the Laptop Mode patch or it's users."
might be useful to the Laptop Mode patch or its users."
* In syslog.conf, you can prefix entries with a dash ``-'' to omit syncing the
file after every logging. When you're using laptop-mode and your disk doesn't
......
......@@ -263,7 +263,7 @@ static u8 *get_feature_bits(struct device *dev)
* Launcher virtual with an offset.
*
* This can be tough to get your head around, but usually it just means that we
* use these trivial conversion functions when the Guest gives us it's
* use these trivial conversion functions when the Guest gives us its
* "physical" addresses:
*/
static void *from_guest_phys(unsigned long addr)
......
......@@ -136,7 +136,7 @@ raid_disks != 0.
Then uninitialized devices can be added with ADD_NEW_DISK. The
structure passed to ADD_NEW_DISK must specify the state of the device
and it's role in the array.
and its role in the array.
Once started with RUN_ARRAY, uninitialized spares can be added with
HOT_ADD_DISK.
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册