提交 cf3842ec 编写于 作者: D David S. Miller

Merge branch 'upstream-davem' of master.kernel.org:/pub/scm/linux/kernel/git/linville/wireless-2.6

How to use packet injection with mac80211
=========================================
mac80211 now allows arbitrary packets to be injected down any Monitor Mode
interface from userland. The packet you inject needs to be composed in the
following format:
[ radiotap header ]
[ ieee80211 header ]
[ payload ]
The radiotap format is discussed in
./Documentation/networking/radiotap-headers.txt.
Despite 13 radiotap argument types are currently defined, most only make sense
to appear on received packets. Currently three kinds of argument are used by
the injection code, although it knows to skip any other arguments that are
present (facilitating replay of captured radiotap headers directly):
- IEEE80211_RADIOTAP_RATE - u8 arg in 500kbps units (0x02 --> 1Mbps)
- IEEE80211_RADIOTAP_ANTENNA - u8 arg, 0x00 = ant1, 0x01 = ant2
- IEEE80211_RADIOTAP_DBM_TX_POWER - u8 arg, dBm
Here is an example valid radiotap header defining these three parameters
0x00, 0x00, // <-- radiotap version
0x0b, 0x00, // <- radiotap header length
0x04, 0x0c, 0x00, 0x00, // <-- bitmap
0x6c, // <-- rate
0x0c, //<-- tx power
0x01 //<-- antenna
The ieee80211 header follows immediately afterwards, looking for example like
this:
0x08, 0x01, 0x00, 0x00,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x13, 0x22, 0x33, 0x44, 0x55, 0x66,
0x13, 0x22, 0x33, 0x44, 0x55, 0x66,
0x10, 0x86
Then lastly there is the payload.
After composing the packet contents, it is sent by send()-ing it to a logical
mac80211 interface that is in Monitor mode. Libpcap can also be used,
(which is easier than doing the work to bind the socket to the right
interface), along the following lines:
ppcap = pcap_open_live(szInterfaceName, 800, 1, 20, szErrbuf);
...
r = pcap_inject(ppcap, u8aSendBuffer, nLength);
You can also find sources for a complete inject test applet here:
http://penumbra.warmcat.com/_twk/tiki-index.php?page=packetspammer
Andy Green <andy@warmcat.com>
How to use radiotap headers
===========================
Pointer to the radiotap include file
------------------------------------
Radiotap headers are variable-length and extensible, you can get most of the
information you need to know on them from:
./include/net/ieee80211_radiotap.h
This document gives an overview and warns on some corner cases.
Structure of the header
-----------------------
There is a fixed portion at the start which contains a u32 bitmap that defines
if the possible argument associated with that bit is present or not. So if b0
of the it_present member of ieee80211_radiotap_header is set, it means that
the header for argument index 0 (IEEE80211_RADIOTAP_TSFT) is present in the
argument area.
< 8-byte ieee80211_radiotap_header >
[ <possible argument bitmap extensions ... > ]
[ <argument> ... ]
At the moment there are only 13 possible argument indexes defined, but in case
we run out of space in the u32 it_present member, it is defined that b31 set
indicates that there is another u32 bitmap following (shown as "possible
argument bitmap extensions..." above), and the start of the arguments is moved
forward 4 bytes each time.
Note also that the it_len member __le16 is set to the total number of bytes
covered by the ieee80211_radiotap_header and any arguments following.
Requirements for arguments
--------------------------
After the fixed part of the header, the arguments follow for each argument
index whose matching bit is set in the it_present member of
ieee80211_radiotap_header.
- the arguments are all stored little-endian!
- the argument payload for a given argument index has a fixed size. So
IEEE80211_RADIOTAP_TSFT being present always indicates an 8-byte argument is
present. See the comments in ./include/net/ieee80211_radiotap.h for a nice
breakdown of all the argument sizes
- the arguments must be aligned to a boundary of the argument size using
padding. So a u16 argument must start on the next u16 boundary if it isn't
already on one, a u32 must start on the next u32 boundary and so on.
- "alignment" is relative to the start of the ieee80211_radiotap_header, ie,
the first byte of the radiotap header. The absolute alignment of that first
byte isn't defined. So even if the whole radiotap header is starting at, eg,
address 0x00000003, still the first byte of the radiotap header is treated as
0 for alignment purposes.
- the above point that there may be no absolute alignment for multibyte
entities in the fixed radiotap header or the argument region means that you
have to take special evasive action when trying to access these multibyte
entities. Some arches like Blackfin cannot deal with an attempt to
dereference, eg, a u16 pointer that is pointing to an odd address. Instead
you have to use a kernel API get_unaligned() to dereference the pointer,
which will do it bytewise on the arches that require that.
- The arguments for a given argument index can be a compound of multiple types
together. For example IEEE80211_RADIOTAP_CHANNEL has an argument payload
consisting of two u16s of total length 4. When this happens, the padding
rule is applied dealing with a u16, NOT dealing with a 4-byte single entity.
Example valid radiotap header
-----------------------------
0x00, 0x00, // <-- radiotap version + pad byte
0x0b, 0x00, // <- radiotap header length
0x04, 0x0c, 0x00, 0x00, // <-- bitmap
0x6c, // <-- rate (in 500kHz units)
0x0c, //<-- tx power
0x01 //<-- antenna
Using the Radiotap Parser
-------------------------
If you are having to parse a radiotap struct, you can radically simplify the
job by using the radiotap parser that lives in net/wireless/radiotap.c and has
its prototypes available in include/net/cfg80211.h. You use it like this:
#include <net/cfg80211.h>
/* buf points to the start of the radiotap header part */
int MyFunction(u8 * buf, int buflen)
{
int pkt_rate_100kHz = 0, antenna = 0, pwr = 0;
struct ieee80211_radiotap_iterator iterator;
int ret = ieee80211_radiotap_iterator_init(&iterator, buf, buflen);
while (!ret) {
ret = ieee80211_radiotap_iterator_next(&iterator);
if (ret)
continue;
/* see if this argument is something we can use */
switch (iterator.this_arg_index) {
/*
* You must take care when dereferencing iterator.this_arg
* for multibyte types... the pointer is not aligned. Use
* get_unaligned((type *)iterator.this_arg) to dereference
* iterator.this_arg for type "type" safely on all arches.
*/
case IEEE80211_RADIOTAP_RATE:
/* radiotap "rate" u8 is in
* 500kbps units, eg, 0x02=1Mbps
*/
pkt_rate_100kHz = (*iterator.this_arg) * 5;
break;
case IEEE80211_RADIOTAP_ANTENNA:
/* radiotap uses 0 for 1st ant */
antenna = *iterator.this_arg);
break;
case IEEE80211_RADIOTAP_DBM_TX_POWER:
pwr = *iterator.this_arg;
break;
default:
break;
}
} /* while more rt headers */
if (ret != -ENOENT)
return TXRX_DROP;
/* discard the radiotap header part */
buf += iterator.max_length;
buflen -= iterator.max_length;
...
}
Andy Green <andy@warmcat.com>
...@@ -227,6 +227,17 @@ struct ieee80211_cts { ...@@ -227,6 +227,17 @@ struct ieee80211_cts {
#define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10) #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
#define WLAN_CAPABILITY_DSSS_OFDM (1<<13) #define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
/* 802.11g ERP information element */
#define WLAN_ERP_NON_ERP_PRESENT (1<<0)
#define WLAN_ERP_USE_PROTECTION (1<<1)
#define WLAN_ERP_BARKER_PREAMBLE (1<<2)
/* WLAN_ERP_BARKER_PREAMBLE values */
enum {
WLAN_ERP_PREAMBLE_SHORT = 0,
WLAN_ERP_PREAMBLE_LONG = 1,
};
/* Status codes */ /* Status codes */
enum ieee80211_statuscode { enum ieee80211_statuscode {
WLAN_STATUS_SUCCESS = 0, WLAN_STATUS_SUCCESS = 0,
......
...@@ -11,6 +11,44 @@ ...@@ -11,6 +11,44 @@
* Copyright 2006 Johannes Berg <johannes@sipsolutions.net> * Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
*/ */
/* Radiotap header iteration
* implemented in net/wireless/radiotap.c
* docs in Documentation/networking/radiotap-headers.txt
*/
/**
* struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args
* @rtheader: pointer to the radiotap header we are walking through
* @max_length: length of radiotap header in cpu byte ordering
* @this_arg_index: IEEE80211_RADIOTAP_... index of current arg
* @this_arg: pointer to current radiotap arg
* @arg_index: internal next argument index
* @arg: internal next argument pointer
* @next_bitmap: internal pointer to next present u32
* @bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present
*/
struct ieee80211_radiotap_iterator {
struct ieee80211_radiotap_header *rtheader;
int max_length;
int this_arg_index;
u8 *this_arg;
int arg_index;
u8 *arg;
__le32 *next_bitmap;
u32 bitmap_shifter;
};
extern int ieee80211_radiotap_iterator_init(
struct ieee80211_radiotap_iterator *iterator,
struct ieee80211_radiotap_header *radiotap_header,
int max_length);
extern int ieee80211_radiotap_iterator_next(
struct ieee80211_radiotap_iterator *iterator);
/* from net/wireless.h */ /* from net/wireless.h */
struct wiphy; struct wiphy;
......
...@@ -347,9 +347,16 @@ enum ieee80211_if_types { ...@@ -347,9 +347,16 @@ enum ieee80211_if_types {
* @mac_addr: pointer to MAC address of the interface. This pointer is valid * @mac_addr: pointer to MAC address of the interface. This pointer is valid
* until the interface is removed (i.e. it cannot be used after * until the interface is removed (i.e. it cannot be used after
* remove_interface() callback was called for this interface). * remove_interface() callback was called for this interface).
* This pointer will be %NULL for monitor interfaces, be careful.
* *
* This structure is used in add_interface() and remove_interface() * This structure is used in add_interface() and remove_interface()
* callbacks of &struct ieee80211_hw. * callbacks of &struct ieee80211_hw.
*
* When you allow multiple interfaces to be added to your PHY, take care
* that the hardware can actually handle multiple MAC addresses. However,
* also take care that when there's no interface left with mac_addr != %NULL
* you remove the MAC address from the device to avoid acknowledging packets
* in pure monitor mode.
*/ */
struct ieee80211_if_init_conf { struct ieee80211_if_init_conf {
int if_id; int if_id;
...@@ -574,10 +581,11 @@ struct ieee80211_ops { ...@@ -574,10 +581,11 @@ struct ieee80211_ops {
* to returning zero. By returning non-zero addition of the interface * to returning zero. By returning non-zero addition of the interface
* is inhibited. Unless monitor_during_oper is set, it is guaranteed * is inhibited. Unless monitor_during_oper is set, it is guaranteed
* that monitor interfaces and normal interfaces are mutually * that monitor interfaces and normal interfaces are mutually
* exclusive. The open() handler is called after add_interface() * exclusive. If assigned, the open() handler is called after
* if this is the first device added. At least one of the open() * add_interface() if this is the first device added. The
* open() and add_interface() callbacks has to be assigned. If * add_interface() callback has to be assigned because it is the only
* add_interface() is NULL, one STA interface is permitted only. */ * way to obtain the requested MAC address for any interface.
*/
int (*add_interface)(struct ieee80211_hw *hw, int (*add_interface)(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf); struct ieee80211_if_init_conf *conf);
...@@ -921,12 +929,6 @@ struct sk_buff * ...@@ -921,12 +929,6 @@ struct sk_buff *
ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id, ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id,
struct ieee80211_tx_control *control); struct ieee80211_tx_control *control);
/* Low level drivers that have their own MLME and MAC indicate
* the aid for an associating station with this call */
int ieee80211_set_aid_for_sta(struct ieee80211_hw *hw,
u8 *peer_address, u16 aid);
/* Given an sk_buff with a raw 802.11 header at the data pointer this function /* Given an sk_buff with a raw 802.11 header at the data pointer this function
* returns the 802.11 header length in bytes (not including encryption * returns the 802.11 header length in bytes (not including encryption
* headers). If the data in the sk_buff is too short to contain a valid 802.11 * headers). If the data in the sk_buff is too short to contain a valid 802.11
......
...@@ -118,7 +118,7 @@ static ssize_t ieee80211_if_fmt_flags( ...@@ -118,7 +118,7 @@ static ssize_t ieee80211_if_fmt_flags(
sdata->u.sta.authenticated ? "AUTH\n" : "", sdata->u.sta.authenticated ? "AUTH\n" : "",
sdata->u.sta.associated ? "ASSOC\n" : "", sdata->u.sta.associated ? "ASSOC\n" : "",
sdata->u.sta.probereq_poll ? "PROBEREQ POLL\n" : "", sdata->u.sta.probereq_poll ? "PROBEREQ POLL\n" : "",
sdata->u.sta.use_protection ? "CTS prot\n" : ""); sdata->use_protection ? "CTS prot\n" : "");
} }
__IEEE80211_IF_FILE(flags); __IEEE80211_IF_FILE(flags);
......
...@@ -26,24 +26,16 @@ ...@@ -26,24 +26,16 @@
* mess shall be deleted completely. */ * mess shall be deleted completely. */
enum { enum {
PRISM2_PARAM_IEEE_802_1X = 23, PRISM2_PARAM_IEEE_802_1X = 23,
PRISM2_PARAM_ANTSEL_TX = 24,
PRISM2_PARAM_ANTSEL_RX = 25,
/* Instant802 additions */ /* Instant802 additions */
PRISM2_PARAM_CTS_PROTECT_ERP_FRAMES = 1001, PRISM2_PARAM_CTS_PROTECT_ERP_FRAMES = 1001,
PRISM2_PARAM_DROP_UNENCRYPTED = 1002,
PRISM2_PARAM_PREAMBLE = 1003, PRISM2_PARAM_PREAMBLE = 1003,
PRISM2_PARAM_SHORT_SLOT_TIME = 1006, PRISM2_PARAM_SHORT_SLOT_TIME = 1006,
PRISM2_PARAM_NEXT_MODE = 1008, PRISM2_PARAM_NEXT_MODE = 1008,
PRISM2_PARAM_CLEAR_KEYS = 1009,
PRISM2_PARAM_RADIO_ENABLED = 1010, PRISM2_PARAM_RADIO_ENABLED = 1010,
PRISM2_PARAM_ANTENNA_MODE = 1013, PRISM2_PARAM_ANTENNA_MODE = 1013,
PRISM2_PARAM_STAT_TIME = 1016, PRISM2_PARAM_STAT_TIME = 1016,
PRISM2_PARAM_STA_ANTENNA_SEL = 1017, PRISM2_PARAM_STA_ANTENNA_SEL = 1017,
PRISM2_PARAM_FORCE_UNICAST_RATE = 1018,
PRISM2_PARAM_RATE_CTRL_NUM_UP = 1019,
PRISM2_PARAM_RATE_CTRL_NUM_DOWN = 1020,
PRISM2_PARAM_MAX_RATECTRL_RATE = 1021,
PRISM2_PARAM_TX_POWER_REDUCTION = 1022, PRISM2_PARAM_TX_POWER_REDUCTION = 1022,
PRISM2_PARAM_KEY_TX_RX_THRESHOLD = 1024, PRISM2_PARAM_KEY_TX_RX_THRESHOLD = 1024,
PRISM2_PARAM_DEFAULT_WEP_ONLY = 1026, PRISM2_PARAM_DEFAULT_WEP_ONLY = 1026,
......
此差异已折叠。
...@@ -47,21 +47,16 @@ enum ieee80211_msg_type { ...@@ -47,21 +47,16 @@ enum ieee80211_msg_type {
ieee80211_msg_normal = 0, ieee80211_msg_normal = 0,
ieee80211_msg_tx_callback_ack = 1, ieee80211_msg_tx_callback_ack = 1,
ieee80211_msg_tx_callback_fail = 2, ieee80211_msg_tx_callback_fail = 2,
ieee80211_msg_passive_scan = 3, /* hole at 3, was ieee80211_msg_passive_scan but unused */
ieee80211_msg_wep_frame_unknown_key = 4, ieee80211_msg_wep_frame_unknown_key = 4,
ieee80211_msg_michael_mic_failure = 5, ieee80211_msg_michael_mic_failure = 5,
/* hole at 6, was monitor but never sent to userspace */ /* hole at 6, was monitor but never sent to userspace */
ieee80211_msg_sta_not_assoc = 7, ieee80211_msg_sta_not_assoc = 7,
ieee80211_msg_set_aid_for_sta = 8 /* used by Intersil MVC driver */, /* 8 was ieee80211_msg_set_aid_for_sta */
ieee80211_msg_key_threshold_notification = 9, ieee80211_msg_key_threshold_notification = 9,
ieee80211_msg_radar = 11, ieee80211_msg_radar = 11,
}; };
struct ieee80211_msg_set_aid_for_sta {
char sta_address[ETH_ALEN];
u16 aid;
};
struct ieee80211_msg_key_notification { struct ieee80211_msg_key_notification {
int tx_rx_count; int tx_rx_count;
char ifname[IFNAMSIZ]; char ifname[IFNAMSIZ];
......
...@@ -99,6 +99,12 @@ struct ieee80211_sta_bss { ...@@ -99,6 +99,12 @@ struct ieee80211_sta_bss {
int probe_resp; int probe_resp;
unsigned long last_update; unsigned long last_update;
/* during assocation, we save an ERP value from a probe response so
* that we can feed ERP info to the driver when handling the
* association completes. these fields probably won't be up-to-date
* otherwise, you probably don't want to use them. */
int has_erp_value;
u8 erp_value;
}; };
...@@ -235,7 +241,6 @@ struct ieee80211_if_sta { ...@@ -235,7 +241,6 @@ struct ieee80211_if_sta {
unsigned int authenticated:1; unsigned int authenticated:1;
unsigned int associated:1; unsigned int associated:1;
unsigned int probereq_poll:1; unsigned int probereq_poll:1;
unsigned int use_protection:1;
unsigned int create_ibss:1; unsigned int create_ibss:1;
unsigned int mixed_cell:1; unsigned int mixed_cell:1;
unsigned int wmm_enabled:1; unsigned int wmm_enabled:1;
...@@ -278,6 +283,7 @@ struct ieee80211_sub_if_data { ...@@ -278,6 +283,7 @@ struct ieee80211_sub_if_data {
int mc_count; int mc_count;
unsigned int allmulti:1; unsigned int allmulti:1;
unsigned int promisc:1; unsigned int promisc:1;
unsigned int use_protection:1; /* CTS protect ERP frames */
struct net_device_stats stats; struct net_device_stats stats;
int drop_unencrypted; int drop_unencrypted;
...@@ -392,6 +398,7 @@ struct ieee80211_local { ...@@ -392,6 +398,7 @@ struct ieee80211_local {
int monitors; int monitors;
struct iw_statistics wstats; struct iw_statistics wstats;
u8 wstats_flags; u8 wstats_flags;
int tx_headroom; /* required headroom for hardware/radiotap */
enum { enum {
IEEE80211_DEV_UNINITIALIZED = 0, IEEE80211_DEV_UNINITIALIZED = 0,
...@@ -437,7 +444,6 @@ struct ieee80211_local { ...@@ -437,7 +444,6 @@ struct ieee80211_local {
int *basic_rates[NUM_IEEE80211_MODES]; int *basic_rates[NUM_IEEE80211_MODES];
int rts_threshold; int rts_threshold;
int cts_protect_erp_frames;
int fragmentation_threshold; int fragmentation_threshold;
int short_retry_limit; /* dot11ShortRetryLimit */ int short_retry_limit; /* dot11ShortRetryLimit */
int long_retry_limit; /* dot11LongRetryLimit */ int long_retry_limit; /* dot11LongRetryLimit */
...@@ -513,8 +519,6 @@ struct ieee80211_local { ...@@ -513,8 +519,6 @@ struct ieee80211_local {
STA_ANTENNA_SEL_SW_CTRL_DEBUG = 2 STA_ANTENNA_SEL_SW_CTRL_DEBUG = 2
} sta_antenna_sel; } sta_antenna_sel;
int rate_ctrl_num_up, rate_ctrl_num_down;
#ifdef CONFIG_MAC80211_DEBUG_COUNTERS #ifdef CONFIG_MAC80211_DEBUG_COUNTERS
/* TX/RX handler statistics */ /* TX/RX handler statistics */
unsigned int tx_handlers_drop; unsigned int tx_handlers_drop;
...@@ -719,6 +723,8 @@ void ieee80211_prepare_rates(struct ieee80211_local *local, ...@@ -719,6 +723,8 @@ void ieee80211_prepare_rates(struct ieee80211_local *local,
struct ieee80211_hw_mode *mode); struct ieee80211_hw_mode *mode);
void ieee80211_tx_set_iswep(struct ieee80211_txrx_data *tx); void ieee80211_tx_set_iswep(struct ieee80211_txrx_data *tx);
int ieee80211_if_update_wds(struct net_device *dev, u8 *remote_addr); int ieee80211_if_update_wds(struct net_device *dev, u8 *remote_addr);
int ieee80211_monitor_start_xmit(struct sk_buff *skb, struct net_device *dev);
int ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev);
void ieee80211_if_setup(struct net_device *dev); void ieee80211_if_setup(struct net_device *dev);
void ieee80211_if_mgmt_setup(struct net_device *dev); void ieee80211_if_mgmt_setup(struct net_device *dev);
int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local, int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local,
......
...@@ -157,6 +157,8 @@ void ieee80211_if_set_type(struct net_device *dev, int type) ...@@ -157,6 +157,8 @@ void ieee80211_if_set_type(struct net_device *dev, int type)
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int oldtype = sdata->type; int oldtype = sdata->type;
dev->hard_start_xmit = ieee80211_subif_start_xmit;
sdata->type = type; sdata->type = type;
switch (type) { switch (type) {
case IEEE80211_IF_TYPE_WDS: case IEEE80211_IF_TYPE_WDS:
...@@ -196,6 +198,7 @@ void ieee80211_if_set_type(struct net_device *dev, int type) ...@@ -196,6 +198,7 @@ void ieee80211_if_set_type(struct net_device *dev, int type)
} }
case IEEE80211_IF_TYPE_MNTR: case IEEE80211_IF_TYPE_MNTR:
dev->type = ARPHRD_IEEE80211_RADIOTAP; dev->type = ARPHRD_IEEE80211_RADIOTAP;
dev->hard_start_xmit = ieee80211_monitor_start_xmit;
break; break;
default: default:
printk(KERN_WARNING "%s: %s: Unknown interface type 0x%x", printk(KERN_WARNING "%s: %s: Unknown interface type 0x%x",
......
...@@ -345,6 +345,8 @@ static int ieee80211_ioctl_giwrange(struct net_device *dev, ...@@ -345,6 +345,8 @@ static int ieee80211_ioctl_giwrange(struct net_device *dev,
{ {
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct iw_range *range = (struct iw_range *) extra; struct iw_range *range = (struct iw_range *) extra;
struct ieee80211_hw_mode *mode = NULL;
int c = 0;
data->length = sizeof(struct iw_range); data->length = sizeof(struct iw_range);
memset(range, 0, sizeof(struct iw_range)); memset(range, 0, sizeof(struct iw_range));
...@@ -378,6 +380,29 @@ static int ieee80211_ioctl_giwrange(struct net_device *dev, ...@@ -378,6 +380,29 @@ static int ieee80211_ioctl_giwrange(struct net_device *dev,
range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
list_for_each_entry(mode, &local->modes_list, list) {
int i = 0;
if (!(local->enabled_modes & (1 << mode->mode)) ||
(local->hw_modes & local->enabled_modes &
(1 << MODE_IEEE80211G) && mode->mode == MODE_IEEE80211B))
continue;
while (i < mode->num_channels && c < IW_MAX_FREQUENCIES) {
struct ieee80211_channel *chan = &mode->channels[i];
if (chan->flag & IEEE80211_CHAN_W_SCAN) {
range->freq[c].i = chan->chan;
range->freq[c].m = chan->freq * 100000;
range->freq[c].e = 1;
c++;
}
i++;
}
}
range->num_channels = c;
range->num_frequency = c;
IW_EVENT_CAPA_SET_KERNEL(range->event_capa); IW_EVENT_CAPA_SET_KERNEL(range->event_capa);
IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWTHRSPY); IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWTHRSPY);
IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWAP); IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWAP);
...@@ -838,6 +863,44 @@ static int ieee80211_ioctl_giwscan(struct net_device *dev, ...@@ -838,6 +863,44 @@ static int ieee80211_ioctl_giwscan(struct net_device *dev,
} }
static int ieee80211_ioctl_siwrate(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rate, char *extra)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hw_mode *mode;
int i;
u32 target_rate = rate->value / 100000;
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!sdata->bss)
return -ENODEV;
mode = local->oper_hw_mode;
/* target_rate = -1, rate->fixed = 0 means auto only, so use all rates
* target_rate = X, rate->fixed = 1 means only rate X
* target_rate = X, rate->fixed = 0 means all rates <= X */
sdata->bss->max_ratectrl_rateidx = -1;
sdata->bss->force_unicast_rateidx = -1;
if (rate->value < 0)
return 0;
for (i=0; i< mode->num_rates; i++) {
struct ieee80211_rate *rates = &mode->rates[i];
int this_rate = rates->rate;
if (mode->mode == MODE_ATHEROS_TURBO ||
mode->mode == MODE_ATHEROS_TURBOG)
this_rate *= 2;
if (target_rate == this_rate) {
sdata->bss->max_ratectrl_rateidx = i;
if (rate->fixed)
sdata->bss->force_unicast_rateidx = i;
break;
}
}
return 0;
}
static int ieee80211_ioctl_giwrate(struct net_device *dev, static int ieee80211_ioctl_giwrate(struct net_device *dev,
struct iw_request_info *info, struct iw_request_info *info,
struct iw_param *rate, char *extra) struct iw_param *rate, char *extra)
...@@ -993,118 +1056,6 @@ static int ieee80211_ioctl_giwretry(struct net_device *dev, ...@@ -993,118 +1056,6 @@ static int ieee80211_ioctl_giwretry(struct net_device *dev,
return 0; return 0;
} }
static int ieee80211_ioctl_clear_keys(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_key_conf key;
int i;
u8 addr[ETH_ALEN];
struct ieee80211_key_conf *keyconf;
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta;
memset(addr, 0xff, ETH_ALEN);
read_lock(&local->sub_if_lock);
list_for_each_entry(sdata, &local->sub_if_list, list) {
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
keyconf = NULL;
if (sdata->keys[i] &&
!sdata->keys[i]->force_sw_encrypt &&
local->ops->set_key &&
(keyconf = ieee80211_key_data2conf(local,
sdata->keys[i])))
local->ops->set_key(local_to_hw(local),
DISABLE_KEY, addr,
keyconf, 0);
kfree(keyconf);
ieee80211_key_free(sdata->keys[i]);
sdata->keys[i] = NULL;
}
sdata->default_key = NULL;
}
read_unlock(&local->sub_if_lock);
spin_lock_bh(&local->sta_lock);
list_for_each_entry(sta, &local->sta_list, list) {
keyconf = NULL;
if (sta->key && !sta->key->force_sw_encrypt &&
local->ops->set_key &&
(keyconf = ieee80211_key_data2conf(local, sta->key)))
local->ops->set_key(local_to_hw(local), DISABLE_KEY,
sta->addr, keyconf, sta->aid);
kfree(keyconf);
ieee80211_key_free(sta->key);
sta->key = NULL;
}
spin_unlock_bh(&local->sta_lock);
memset(&key, 0, sizeof(key));
if (local->ops->set_key &&
local->ops->set_key(local_to_hw(local), REMOVE_ALL_KEYS,
NULL, &key, 0))
printk(KERN_DEBUG "%s: failed to remove hwaccel keys\n",
dev->name);
return 0;
}
static int
ieee80211_ioctl_force_unicast_rate(struct net_device *dev,
struct ieee80211_sub_if_data *sdata,
int rate)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hw_mode *mode;
int i;
if (sdata->type != IEEE80211_IF_TYPE_AP)
return -ENOENT;
if (rate == 0) {
sdata->u.ap.force_unicast_rateidx = -1;
return 0;
}
mode = local->oper_hw_mode;
for (i = 0; i < mode->num_rates; i++) {
if (mode->rates[i].rate == rate) {
sdata->u.ap.force_unicast_rateidx = i;
return 0;
}
}
return -EINVAL;
}
static int
ieee80211_ioctl_max_ratectrl_rate(struct net_device *dev,
struct ieee80211_sub_if_data *sdata,
int rate)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hw_mode *mode;
int i;
if (sdata->type != IEEE80211_IF_TYPE_AP)
return -ENOENT;
if (rate == 0) {
sdata->u.ap.max_ratectrl_rateidx = -1;
return 0;
}
mode = local->oper_hw_mode;
for (i = 0; i < mode->num_rates; i++) {
if (mode->rates[i].rate == rate) {
sdata->u.ap.max_ratectrl_rateidx = i;
return 0;
}
}
return -EINVAL;
}
static void ieee80211_key_enable_hwaccel(struct ieee80211_local *local, static void ieee80211_key_enable_hwaccel(struct ieee80211_local *local,
struct ieee80211_key *key) struct ieee80211_key *key)
{ {
...@@ -1228,24 +1179,11 @@ static int ieee80211_ioctl_prism2_param(struct net_device *dev, ...@@ -1228,24 +1179,11 @@ static int ieee80211_ioctl_prism2_param(struct net_device *dev,
sdata->ieee802_1x = value; sdata->ieee802_1x = value;
break; break;
case PRISM2_PARAM_ANTSEL_TX:
local->hw.conf.antenna_sel_tx = value;
if (ieee80211_hw_config(local))
ret = -EINVAL;
break;
case PRISM2_PARAM_ANTSEL_RX:
local->hw.conf.antenna_sel_rx = value;
if (ieee80211_hw_config(local))
ret = -EINVAL;
break;
case PRISM2_PARAM_CTS_PROTECT_ERP_FRAMES: case PRISM2_PARAM_CTS_PROTECT_ERP_FRAMES:
local->cts_protect_erp_frames = value; if (sdata->type != IEEE80211_IF_TYPE_AP)
break; ret = -ENOENT;
else
case PRISM2_PARAM_DROP_UNENCRYPTED: sdata->use_protection = value;
sdata->drop_unencrypted = value;
break; break;
case PRISM2_PARAM_PREAMBLE: case PRISM2_PARAM_PREAMBLE:
...@@ -1274,10 +1212,6 @@ static int ieee80211_ioctl_prism2_param(struct net_device *dev, ...@@ -1274,10 +1212,6 @@ static int ieee80211_ioctl_prism2_param(struct net_device *dev,
local->next_mode = value; local->next_mode = value;
break; break;
case PRISM2_PARAM_CLEAR_KEYS:
ret = ieee80211_ioctl_clear_keys(dev);
break;
case PRISM2_PARAM_RADIO_ENABLED: case PRISM2_PARAM_RADIO_ENABLED:
ret = ieee80211_ioctl_set_radio_enabled(dev, value); ret = ieee80211_ioctl_set_radio_enabled(dev, value);
break; break;
...@@ -1292,22 +1226,6 @@ static int ieee80211_ioctl_prism2_param(struct net_device *dev, ...@@ -1292,22 +1226,6 @@ static int ieee80211_ioctl_prism2_param(struct net_device *dev,
local->sta_antenna_sel = value; local->sta_antenna_sel = value;
break; break;
case PRISM2_PARAM_FORCE_UNICAST_RATE:
ret = ieee80211_ioctl_force_unicast_rate(dev, sdata, value);
break;
case PRISM2_PARAM_MAX_RATECTRL_RATE:
ret = ieee80211_ioctl_max_ratectrl_rate(dev, sdata, value);
break;
case PRISM2_PARAM_RATE_CTRL_NUM_UP:
local->rate_ctrl_num_up = value;
break;
case PRISM2_PARAM_RATE_CTRL_NUM_DOWN:
local->rate_ctrl_num_down = value;
break;
case PRISM2_PARAM_TX_POWER_REDUCTION: case PRISM2_PARAM_TX_POWER_REDUCTION:
if (value < 0) if (value < 0)
ret = -EINVAL; ret = -EINVAL;
...@@ -1387,20 +1305,8 @@ static int ieee80211_ioctl_get_prism2_param(struct net_device *dev, ...@@ -1387,20 +1305,8 @@ static int ieee80211_ioctl_get_prism2_param(struct net_device *dev,
*param = sdata->ieee802_1x; *param = sdata->ieee802_1x;
break; break;
case PRISM2_PARAM_ANTSEL_TX:
*param = local->hw.conf.antenna_sel_tx;
break;
case PRISM2_PARAM_ANTSEL_RX:
*param = local->hw.conf.antenna_sel_rx;
break;
case PRISM2_PARAM_CTS_PROTECT_ERP_FRAMES: case PRISM2_PARAM_CTS_PROTECT_ERP_FRAMES:
*param = local->cts_protect_erp_frames; *param = sdata->use_protection;
break;
case PRISM2_PARAM_DROP_UNENCRYPTED:
*param = sdata->drop_unencrypted;
break; break;
case PRISM2_PARAM_PREAMBLE: case PRISM2_PARAM_PREAMBLE:
...@@ -1426,14 +1332,6 @@ static int ieee80211_ioctl_get_prism2_param(struct net_device *dev, ...@@ -1426,14 +1332,6 @@ static int ieee80211_ioctl_get_prism2_param(struct net_device *dev,
*param = local->sta_antenna_sel; *param = local->sta_antenna_sel;
break; break;
case PRISM2_PARAM_RATE_CTRL_NUM_UP:
*param = local->rate_ctrl_num_up;
break;
case PRISM2_PARAM_RATE_CTRL_NUM_DOWN:
*param = local->rate_ctrl_num_down;
break;
case PRISM2_PARAM_TX_POWER_REDUCTION: case PRISM2_PARAM_TX_POWER_REDUCTION:
*param = local->hw.conf.tx_power_reduction; *param = local->hw.conf.tx_power_reduction;
break; break;
...@@ -1801,7 +1699,7 @@ static const iw_handler ieee80211_handler[] = ...@@ -1801,7 +1699,7 @@ static const iw_handler ieee80211_handler[] =
(iw_handler) NULL, /* SIOCGIWNICKN */ (iw_handler) NULL, /* SIOCGIWNICKN */
(iw_handler) NULL, /* -- hole -- */ (iw_handler) NULL, /* -- hole -- */
(iw_handler) NULL, /* -- hole -- */ (iw_handler) NULL, /* -- hole -- */
(iw_handler) NULL, /* SIOCSIWRATE */ (iw_handler) ieee80211_ioctl_siwrate, /* SIOCSIWRATE */
(iw_handler) ieee80211_ioctl_giwrate, /* SIOCGIWRATE */ (iw_handler) ieee80211_ioctl_giwrate, /* SIOCGIWRATE */
(iw_handler) ieee80211_ioctl_siwrts, /* SIOCSIWRTS */ (iw_handler) ieee80211_ioctl_siwrts, /* SIOCSIWRTS */
(iw_handler) ieee80211_ioctl_giwrts, /* SIOCGIWRTS */ (iw_handler) ieee80211_ioctl_giwrts, /* SIOCGIWRTS */
......
...@@ -76,33 +76,36 @@ static int ieee80211_sta_config_auth(struct net_device *dev, ...@@ -76,33 +76,36 @@ static int ieee80211_sta_config_auth(struct net_device *dev,
/* Parsed Information Elements */ /* Parsed Information Elements */
struct ieee802_11_elems { struct ieee802_11_elems {
/* pointers to IEs */
u8 *ssid; u8 *ssid;
u8 ssid_len;
u8 *supp_rates; u8 *supp_rates;
u8 supp_rates_len;
u8 *fh_params; u8 *fh_params;
u8 fh_params_len;
u8 *ds_params; u8 *ds_params;
u8 ds_params_len;
u8 *cf_params; u8 *cf_params;
u8 cf_params_len;
u8 *tim; u8 *tim;
u8 tim_len;
u8 *ibss_params; u8 *ibss_params;
u8 ibss_params_len;
u8 *challenge; u8 *challenge;
u8 challenge_len;
u8 *wpa; u8 *wpa;
u8 wpa_len;
u8 *rsn; u8 *rsn;
u8 rsn_len;
u8 *erp_info; u8 *erp_info;
u8 erp_info_len;
u8 *ext_supp_rates; u8 *ext_supp_rates;
u8 ext_supp_rates_len;
u8 *wmm_info; u8 *wmm_info;
u8 wmm_info_len;
u8 *wmm_param; u8 *wmm_param;
/* length of them, respectively */
u8 ssid_len;
u8 supp_rates_len;
u8 fh_params_len;
u8 ds_params_len;
u8 cf_params_len;
u8 tim_len;
u8 ibss_params_len;
u8 challenge_len;
u8 wpa_len;
u8 rsn_len;
u8 erp_info_len;
u8 ext_supp_rates_len;
u8 wmm_info_len;
u8 wmm_param_len; u8 wmm_param_len;
}; };
...@@ -311,6 +314,25 @@ static void ieee80211_sta_wmm_params(struct net_device *dev, ...@@ -311,6 +314,25 @@ static void ieee80211_sta_wmm_params(struct net_device *dev,
} }
static void ieee80211_handle_erp_ie(struct net_device *dev, u8 erp_value)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
int use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
if (use_protection != sdata->use_protection) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
MAC_FMT ")\n",
dev->name,
use_protection ? "enabled" : "disabled",
MAC_ARG(ifsta->bssid));
}
sdata->use_protection = use_protection;
}
}
static void ieee80211_sta_send_associnfo(struct net_device *dev, static void ieee80211_sta_send_associnfo(struct net_device *dev,
struct ieee80211_if_sta *ifsta) struct ieee80211_if_sta *ifsta)
{ {
...@@ -366,6 +388,7 @@ static void ieee80211_set_associated(struct net_device *dev, ...@@ -366,6 +388,7 @@ static void ieee80211_set_associated(struct net_device *dev,
struct ieee80211_if_sta *ifsta, int assoc) struct ieee80211_if_sta *ifsta, int assoc)
{ {
union iwreq_data wrqu; union iwreq_data wrqu;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (ifsta->associated == assoc) if (ifsta->associated == assoc)
return; return;
...@@ -374,9 +397,18 @@ static void ieee80211_set_associated(struct net_device *dev, ...@@ -374,9 +397,18 @@ static void ieee80211_set_associated(struct net_device *dev,
if (assoc) { if (assoc) {
struct ieee80211_sub_if_data *sdata; struct ieee80211_sub_if_data *sdata;
struct ieee80211_sta_bss *bss;
sdata = IEEE80211_DEV_TO_SUB_IF(dev); sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->type != IEEE80211_IF_TYPE_STA) if (sdata->type != IEEE80211_IF_TYPE_STA)
return; return;
bss = ieee80211_rx_bss_get(dev, ifsta->bssid);
if (bss) {
if (bss->has_erp_value)
ieee80211_handle_erp_ie(dev, bss->erp_value);
ieee80211_rx_bss_put(dev, bss);
}
netif_carrier_on(dev); netif_carrier_on(dev);
ifsta->prev_bssid_set = 1; ifsta->prev_bssid_set = 1;
memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN); memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
...@@ -384,6 +416,7 @@ static void ieee80211_set_associated(struct net_device *dev, ...@@ -384,6 +416,7 @@ static void ieee80211_set_associated(struct net_device *dev,
ieee80211_sta_send_associnfo(dev, ifsta); ieee80211_sta_send_associnfo(dev, ifsta);
} else { } else {
netif_carrier_off(dev); netif_carrier_off(dev);
sdata->use_protection = 0;
memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN); memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
} }
wrqu.ap_addr.sa_family = ARPHRD_ETHER; wrqu.ap_addr.sa_family = ARPHRD_ETHER;
...@@ -1174,6 +1207,18 @@ static void ieee80211_rx_mgmt_assoc_resp(struct net_device *dev, ...@@ -1174,6 +1207,18 @@ static void ieee80211_rx_mgmt_assoc_resp(struct net_device *dev,
return; return;
} }
/* it probably doesn't, but if the frame includes an ERP value then
* update our stored copy */
if (elems.erp_info && elems.erp_info_len >= 1) {
struct ieee80211_sta_bss *bss
= ieee80211_rx_bss_get(dev, ifsta->bssid);
if (bss) {
bss->erp_value = elems.erp_info[0];
bss->has_erp_value = 1;
ieee80211_rx_bss_put(dev, bss);
}
}
printk(KERN_DEBUG "%s: associated\n", dev->name); printk(KERN_DEBUG "%s: associated\n", dev->name);
ifsta->aid = aid; ifsta->aid = aid;
ifsta->ap_capab = capab_info; ifsta->ap_capab = capab_info;
...@@ -1496,6 +1541,12 @@ static void ieee80211_rx_bss_info(struct net_device *dev, ...@@ -1496,6 +1541,12 @@ static void ieee80211_rx_bss_info(struct net_device *dev,
return; return;
} }
/* save the ERP value so that it is available at association time */
if (elems.erp_info && elems.erp_info_len >= 1) {
bss->erp_value = elems.erp_info[0];
bss->has_erp_value = 1;
}
bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int); bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info); bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
if (elems.ssid && elems.ssid_len <= IEEE80211_MAX_SSID_LEN) { if (elems.ssid && elems.ssid_len <= IEEE80211_MAX_SSID_LEN) {
...@@ -1611,10 +1662,8 @@ static void ieee80211_rx_mgmt_beacon(struct net_device *dev, ...@@ -1611,10 +1662,8 @@ static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
size_t len, size_t len,
struct ieee80211_rx_status *rx_status) struct ieee80211_rx_status *rx_status)
{ {
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata; struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta; struct ieee80211_if_sta *ifsta;
int use_protection;
size_t baselen; size_t baselen;
struct ieee802_11_elems elems; struct ieee802_11_elems elems;
...@@ -1638,23 +1687,8 @@ static void ieee80211_rx_mgmt_beacon(struct net_device *dev, ...@@ -1638,23 +1687,8 @@ static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
&elems) == ParseFailed) &elems) == ParseFailed)
return; return;
use_protection = 0; if (elems.erp_info && elems.erp_info_len >= 1)
if (elems.erp_info && elems.erp_info_len >= 1) { ieee80211_handle_erp_ie(dev, elems.erp_info[0]);
use_protection =
(elems.erp_info[0] & ERP_INFO_USE_PROTECTION) != 0;
}
if (use_protection != !!ifsta->use_protection) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
MAC_FMT ")\n",
dev->name,
use_protection ? "enabled" : "disabled",
MAC_ARG(ifsta->bssid));
}
ifsta->use_protection = use_protection ? 1 : 0;
local->cts_protect_erp_frames = use_protection;
}
if (elems.wmm_param && ifsta->wmm_enabled) { if (elems.wmm_param && ifsta->wmm_enabled) {
ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param, ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
......
...@@ -187,9 +187,13 @@ static void rate_control_simple_tx_status(void *priv, struct net_device *dev, ...@@ -187,9 +187,13 @@ static void rate_control_simple_tx_status(void *priv, struct net_device *dev,
} }
#endif #endif
if (per_failed > local->rate_ctrl_num_down) { /*
* XXX: Make these configurable once we have an
* interface to the rate control algorithms
*/
if (per_failed > RATE_CONTROL_NUM_DOWN) {
rate_control_rate_dec(local, sta); rate_control_rate_dec(local, sta);
} else if (per_failed < local->rate_ctrl_num_up) { } else if (per_failed < RATE_CONTROL_NUM_UP) {
rate_control_rate_inc(local, sta); rate_control_rate_inc(local, sta);
} }
srctrl->tx_avg_rate_sum += status->control.rate->rate; srctrl->tx_avg_rate_sum += status->control.rate->rate;
......
obj-$(CONFIG_WIRELESS_EXT) += wext.o obj-$(CONFIG_WIRELESS_EXT) += wext.o
obj-$(CONFIG_CFG80211) += cfg80211.o obj-$(CONFIG_CFG80211) += cfg80211.o
cfg80211-y += core.o sysfs.o cfg80211-y += core.o sysfs.o radiotap.o
/*
* Radiotap parser
*
* Copyright 2007 Andy Green <andy@warmcat.com>
*/
#include <net/cfg80211.h>
#include <net/ieee80211_radiotap.h>
#include <asm/unaligned.h>
/* function prototypes and related defs are in include/net/cfg80211.h */
/**
* ieee80211_radiotap_iterator_init - radiotap parser iterator initialization
* @iterator: radiotap_iterator to initialize
* @radiotap_header: radiotap header to parse
* @max_length: total length we can parse into (eg, whole packet length)
*
* Returns: 0 or a negative error code if there is a problem.
*
* This function initializes an opaque iterator struct which can then
* be passed to ieee80211_radiotap_iterator_next() to visit every radiotap
* argument which is present in the header. It knows about extended
* present headers and handles them.
*
* How to use:
* call __ieee80211_radiotap_iterator_init() to init a semi-opaque iterator
* struct ieee80211_radiotap_iterator (no need to init the struct beforehand)
* checking for a good 0 return code. Then loop calling
* __ieee80211_radiotap_iterator_next()... it returns either 0,
* -ENOENT if there are no more args to parse, or -EINVAL if there is a problem.
* The iterator's @this_arg member points to the start of the argument
* associated with the current argument index that is present, which can be
* found in the iterator's @this_arg_index member. This arg index corresponds
* to the IEEE80211_RADIOTAP_... defines.
*
* Radiotap header length:
* You can find the CPU-endian total radiotap header length in
* iterator->max_length after executing ieee80211_radiotap_iterator_init()
* successfully.
*
* Alignment Gotcha:
* You must take care when dereferencing iterator.this_arg
* for multibyte types... the pointer is not aligned. Use
* get_unaligned((type *)iterator.this_arg) to dereference
* iterator.this_arg for type "type" safely on all arches.
*
* Example code:
* See Documentation/networking/radiotap-headers.txt
*/
int ieee80211_radiotap_iterator_init(
struct ieee80211_radiotap_iterator *iterator,
struct ieee80211_radiotap_header *radiotap_header,
int max_length)
{
/* Linux only supports version 0 radiotap format */
if (radiotap_header->it_version)
return -EINVAL;
/* sanity check for allowed length and radiotap length field */
if (max_length < le16_to_cpu(get_unaligned(&radiotap_header->it_len)))
return -EINVAL;
iterator->rtheader = radiotap_header;
iterator->max_length = le16_to_cpu(get_unaligned(
&radiotap_header->it_len));
iterator->arg_index = 0;
iterator->bitmap_shifter = le32_to_cpu(get_unaligned(
&radiotap_header->it_present));
iterator->arg = (u8 *)radiotap_header + sizeof(*radiotap_header);
iterator->this_arg = NULL;
/* find payload start allowing for extended bitmap(s) */
if (unlikely(iterator->bitmap_shifter & (1<<IEEE80211_RADIOTAP_EXT))) {
while (le32_to_cpu(get_unaligned((__le32 *)iterator->arg)) &
(1<<IEEE80211_RADIOTAP_EXT)) {
iterator->arg += sizeof(u32);
/*
* check for insanity where the present bitmaps
* keep claiming to extend up to or even beyond the
* stated radiotap header length
*/
if (((ulong)iterator->arg -
(ulong)iterator->rtheader) > iterator->max_length)
return -EINVAL;
}
iterator->arg += sizeof(u32);
/*
* no need to check again for blowing past stated radiotap
* header length, because ieee80211_radiotap_iterator_next
* checks it before it is dereferenced
*/
}
/* we are all initialized happily */
return 0;
}
EXPORT_SYMBOL(ieee80211_radiotap_iterator_init);
/**
* ieee80211_radiotap_iterator_next - return next radiotap parser iterator arg
* @iterator: radiotap_iterator to move to next arg (if any)
*
* Returns: 0 if there is an argument to handle,
* -ENOENT if there are no more args or -EINVAL
* if there is something else wrong.
*
* This function provides the next radiotap arg index (IEEE80211_RADIOTAP_*)
* in @this_arg_index and sets @this_arg to point to the
* payload for the field. It takes care of alignment handling and extended
* present fields. @this_arg can be changed by the caller (eg,
* incremented to move inside a compound argument like
* IEEE80211_RADIOTAP_CHANNEL). The args pointed to are in
* little-endian format whatever the endianess of your CPU.
*
* Alignment Gotcha:
* You must take care when dereferencing iterator.this_arg
* for multibyte types... the pointer is not aligned. Use
* get_unaligned((type *)iterator.this_arg) to dereference
* iterator.this_arg for type "type" safely on all arches.
*/
int ieee80211_radiotap_iterator_next(
struct ieee80211_radiotap_iterator *iterator)
{
/*
* small length lookup table for all radiotap types we heard of
* starting from b0 in the bitmap, so we can walk the payload
* area of the radiotap header
*
* There is a requirement to pad args, so that args
* of a given length must begin at a boundary of that length
* -- but note that compound args are allowed (eg, 2 x u16
* for IEEE80211_RADIOTAP_CHANNEL) so total arg length is not
* a reliable indicator of alignment requirement.
*
* upper nybble: content alignment for arg
* lower nybble: content length for arg
*/
static const u8 rt_sizes[] = {
[IEEE80211_RADIOTAP_TSFT] = 0x88,
[IEEE80211_RADIOTAP_FLAGS] = 0x11,
[IEEE80211_RADIOTAP_RATE] = 0x11,
[IEEE80211_RADIOTAP_CHANNEL] = 0x24,
[IEEE80211_RADIOTAP_FHSS] = 0x22,
[IEEE80211_RADIOTAP_DBM_ANTSIGNAL] = 0x11,
[IEEE80211_RADIOTAP_DBM_ANTNOISE] = 0x11,
[IEEE80211_RADIOTAP_LOCK_QUALITY] = 0x22,
[IEEE80211_RADIOTAP_TX_ATTENUATION] = 0x22,
[IEEE80211_RADIOTAP_DB_TX_ATTENUATION] = 0x22,
[IEEE80211_RADIOTAP_DBM_TX_POWER] = 0x11,
[IEEE80211_RADIOTAP_ANTENNA] = 0x11,
[IEEE80211_RADIOTAP_DB_ANTSIGNAL] = 0x11,
[IEEE80211_RADIOTAP_DB_ANTNOISE] = 0x11
/*
* add more here as they are defined in
* include/net/ieee80211_radiotap.h
*/
};
/*
* for every radiotap entry we can at
* least skip (by knowing the length)...
*/
while (iterator->arg_index < sizeof(rt_sizes)) {
int hit = 0;
int pad;
if (!(iterator->bitmap_shifter & 1))
goto next_entry; /* arg not present */
/*
* arg is present, account for alignment padding
* 8-bit args can be at any alignment
* 16-bit args must start on 16-bit boundary
* 32-bit args must start on 32-bit boundary
* 64-bit args must start on 64-bit boundary
*
* note that total arg size can differ from alignment of
* elements inside arg, so we use upper nybble of length
* table to base alignment on
*
* also note: these alignments are ** relative to the
* start of the radiotap header **. There is no guarantee
* that the radiotap header itself is aligned on any
* kind of boundary.
*
* the above is why get_unaligned() is used to dereference
* multibyte elements from the radiotap area
*/
pad = (((ulong)iterator->arg) -
((ulong)iterator->rtheader)) &
((rt_sizes[iterator->arg_index] >> 4) - 1);
if (pad)
iterator->arg +=
(rt_sizes[iterator->arg_index] >> 4) - pad;
/*
* this is what we will return to user, but we need to
* move on first so next call has something fresh to test
*/
iterator->this_arg_index = iterator->arg_index;
iterator->this_arg = iterator->arg;
hit = 1;
/* internally move on the size of this arg */
iterator->arg += rt_sizes[iterator->arg_index] & 0x0f;
/*
* check for insanity where we are given a bitmap that
* claims to have more arg content than the length of the
* radiotap section. We will normally end up equalling this
* max_length on the last arg, never exceeding it.
*/
if (((ulong)iterator->arg - (ulong)iterator->rtheader) >
iterator->max_length)
return -EINVAL;
next_entry:
iterator->arg_index++;
if (unlikely((iterator->arg_index & 31) == 0)) {
/* completed current u32 bitmap */
if (iterator->bitmap_shifter & 1) {
/* b31 was set, there is more */
/* move to next u32 bitmap */
iterator->bitmap_shifter = le32_to_cpu(
get_unaligned(iterator->next_bitmap));
iterator->next_bitmap++;
} else
/* no more bitmaps: end */
iterator->arg_index = sizeof(rt_sizes);
} else /* just try the next bit */
iterator->bitmap_shifter >>= 1;
/* if we found a valid arg earlier, return it now */
if (hit)
return 0;
}
/* we don't know how to handle any more args, we're done */
return -ENOENT;
}
EXPORT_SYMBOL(ieee80211_radiotap_iterator_next);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册