提交 c5850150 编写于 作者: L Linus Torvalds

Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs

* 'for-linus' of git://oss.sgi.com/xfs/xfs:
  xfs: stop using the page cache to back the buffer cache
  xfs: register the inode cache shrinker before quotachecks
  xfs: xfs_trans_read_buf() should return an error on failure
  xfs: introduce inode cluster buffer trylocks for xfs_iflush
  vmap: flush vmap aliases when mapping fails
  xfs: preallocation transactions do not need to be synchronous

Fix up trivial conflicts in fs/xfs/linux-2.6/xfs_buf.c due to plug removal.
......@@ -93,75 +93,6 @@ xfs_buf_vmap_len(
return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
}
/*
* Page Region interfaces.
*
* For pages in filesystems where the blocksize is smaller than the
* pagesize, we use the page->private field (long) to hold a bitmap
* of uptodate regions within the page.
*
* Each such region is "bytes per page / bits per long" bytes long.
*
* NBPPR == number-of-bytes-per-page-region
* BTOPR == bytes-to-page-region (rounded up)
* BTOPRT == bytes-to-page-region-truncated (rounded down)
*/
#if (BITS_PER_LONG == 32)
#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
#elif (BITS_PER_LONG == 64)
#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
#else
#error BITS_PER_LONG must be 32 or 64
#endif
#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
STATIC unsigned long
page_region_mask(
size_t offset,
size_t length)
{
unsigned long mask;
int first, final;
first = BTOPR(offset);
final = BTOPRT(offset + length - 1);
first = min(first, final);
mask = ~0UL;
mask <<= BITS_PER_LONG - (final - first);
mask >>= BITS_PER_LONG - (final);
ASSERT(offset + length <= PAGE_CACHE_SIZE);
ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
return mask;
}
STATIC void
set_page_region(
struct page *page,
size_t offset,
size_t length)
{
set_page_private(page,
page_private(page) | page_region_mask(offset, length));
if (page_private(page) == ~0UL)
SetPageUptodate(page);
}
STATIC int
test_page_region(
struct page *page,
size_t offset,
size_t length)
{
unsigned long mask = page_region_mask(offset, length);
return (mask && (page_private(page) & mask) == mask);
}
/*
* xfs_buf_lru_add - add a buffer to the LRU.
*
......@@ -332,7 +263,7 @@ xfs_buf_free(
ASSERT(list_empty(&bp->b_lru));
if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
if (bp->b_flags & _XBF_PAGES) {
uint i;
if (xfs_buf_is_vmapped(bp))
......@@ -342,25 +273,22 @@ xfs_buf_free(
for (i = 0; i < bp->b_page_count; i++) {
struct page *page = bp->b_pages[i];
if (bp->b_flags & _XBF_PAGE_CACHE)
ASSERT(!PagePrivate(page));
page_cache_release(page);
__free_page(page);
}
}
} else if (bp->b_flags & _XBF_KMEM)
kmem_free(bp->b_addr);
_xfs_buf_free_pages(bp);
xfs_buf_deallocate(bp);
}
/*
* Finds all pages for buffer in question and builds it's page list.
* Allocates all the pages for buffer in question and builds it's page list.
*/
STATIC int
_xfs_buf_lookup_pages(
xfs_buf_allocate_memory(
xfs_buf_t *bp,
uint flags)
{
struct address_space *mapping = bp->b_target->bt_mapping;
size_t blocksize = bp->b_target->bt_bsize;
size_t size = bp->b_count_desired;
size_t nbytes, offset;
gfp_t gfp_mask = xb_to_gfp(flags);
......@@ -369,29 +297,55 @@ _xfs_buf_lookup_pages(
xfs_off_t end;
int error;
/*
* for buffers that are contained within a single page, just allocate
* the memory from the heap - there's no need for the complexity of
* page arrays to keep allocation down to order 0.
*/
if (bp->b_buffer_length < PAGE_SIZE) {
bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
if (!bp->b_addr) {
/* low memory - use alloc_page loop instead */
goto use_alloc_page;
}
if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
PAGE_MASK) !=
((unsigned long)bp->b_addr & PAGE_MASK)) {
/* b_addr spans two pages - use alloc_page instead */
kmem_free(bp->b_addr);
bp->b_addr = NULL;
goto use_alloc_page;
}
bp->b_offset = offset_in_page(bp->b_addr);
bp->b_pages = bp->b_page_array;
bp->b_pages[0] = virt_to_page(bp->b_addr);
bp->b_page_count = 1;
bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
return 0;
}
use_alloc_page:
end = bp->b_file_offset + bp->b_buffer_length;
page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
error = _xfs_buf_get_pages(bp, page_count, flags);
if (unlikely(error))
return error;
bp->b_flags |= _XBF_PAGE_CACHE;
offset = bp->b_offset;
first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
first = bp->b_file_offset >> PAGE_SHIFT;
bp->b_flags |= _XBF_PAGES;
for (i = 0; i < bp->b_page_count; i++) {
struct page *page;
uint retries = 0;
retry:
page = find_or_create_page(mapping, first + i, gfp_mask);
retry:
page = alloc_page(gfp_mask);
if (unlikely(page == NULL)) {
if (flags & XBF_READ_AHEAD) {
bp->b_page_count = i;
for (i = 0; i < bp->b_page_count; i++)
unlock_page(bp->b_pages[i]);
return -ENOMEM;
error = ENOMEM;
goto out_free_pages;
}
/*
......@@ -412,33 +366,16 @@ _xfs_buf_lookup_pages(
XFS_STATS_INC(xb_page_found);
nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
nbytes = min_t(size_t, size, PAGE_SIZE - offset);
size -= nbytes;
ASSERT(!PagePrivate(page));
if (!PageUptodate(page)) {
page_count--;
if (blocksize >= PAGE_CACHE_SIZE) {
if (flags & XBF_READ)
bp->b_flags |= _XBF_PAGE_LOCKED;
} else if (!PagePrivate(page)) {
if (test_page_region(page, offset, nbytes))
page_count++;
}
}
bp->b_pages[i] = page;
offset = 0;
}
return 0;
if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
for (i = 0; i < bp->b_page_count; i++)
unlock_page(bp->b_pages[i]);
}
if (page_count == bp->b_page_count)
bp->b_flags |= XBF_DONE;
out_free_pages:
for (i = 0; i < bp->b_page_count; i++)
__free_page(bp->b_pages[i]);
return error;
}
......@@ -450,14 +387,23 @@ _xfs_buf_map_pages(
xfs_buf_t *bp,
uint flags)
{
/* A single page buffer is always mappable */
ASSERT(bp->b_flags & _XBF_PAGES);
if (bp->b_page_count == 1) {
/* A single page buffer is always mappable */
bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
bp->b_flags |= XBF_MAPPED;
} else if (flags & XBF_MAPPED) {
bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
-1, PAGE_KERNEL);
if (unlikely(bp->b_addr == NULL))
int retried = 0;
do {
bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
-1, PAGE_KERNEL);
if (bp->b_addr)
break;
vm_unmap_aliases();
} while (retried++ <= 1);
if (!bp->b_addr)
return -ENOMEM;
bp->b_addr += bp->b_offset;
bp->b_flags |= XBF_MAPPED;
......@@ -568,9 +514,14 @@ _xfs_buf_find(
}
}
/*
* if the buffer is stale, clear all the external state associated with
* it. We need to keep flags such as how we allocated the buffer memory
* intact here.
*/
if (bp->b_flags & XBF_STALE) {
ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
bp->b_flags &= XBF_MAPPED;
bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
}
trace_xfs_buf_find(bp, flags, _RET_IP_);
......@@ -591,7 +542,7 @@ xfs_buf_get(
xfs_buf_flags_t flags)
{
xfs_buf_t *bp, *new_bp;
int error = 0, i;
int error = 0;
new_bp = xfs_buf_allocate(flags);
if (unlikely(!new_bp))
......@@ -599,7 +550,7 @@ xfs_buf_get(
bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
if (bp == new_bp) {
error = _xfs_buf_lookup_pages(bp, flags);
error = xfs_buf_allocate_memory(bp, flags);
if (error)
goto no_buffer;
} else {
......@@ -608,9 +559,6 @@ xfs_buf_get(
return NULL;
}
for (i = 0; i < bp->b_page_count; i++)
mark_page_accessed(bp->b_pages[i]);
if (!(bp->b_flags & XBF_MAPPED)) {
error = _xfs_buf_map_pages(bp, flags);
if (unlikely(error)) {
......@@ -711,8 +659,7 @@ xfs_buf_readahead(
{
struct backing_dev_info *bdi;
bdi = target->bt_mapping->backing_dev_info;
if (bdi_read_congested(bdi))
if (bdi_read_congested(target->bt_bdi))
return;
xfs_buf_read(target, ioff, isize,
......@@ -790,10 +737,10 @@ xfs_buf_associate_memory(
size_t buflen;
int page_count;
pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
pageaddr = (unsigned long)mem & PAGE_MASK;
offset = (unsigned long)mem - pageaddr;
buflen = PAGE_CACHE_ALIGN(len + offset);
page_count = buflen >> PAGE_CACHE_SHIFT;
buflen = PAGE_ALIGN(len + offset);
page_count = buflen >> PAGE_SHIFT;
/* Free any previous set of page pointers */
if (bp->b_pages)
......@@ -810,13 +757,12 @@ xfs_buf_associate_memory(
for (i = 0; i < bp->b_page_count; i++) {
bp->b_pages[i] = mem_to_page((void *)pageaddr);
pageaddr += PAGE_CACHE_SIZE;
pageaddr += PAGE_SIZE;
}
bp->b_count_desired = len;
bp->b_buffer_length = buflen;
bp->b_flags |= XBF_MAPPED;
bp->b_flags &= ~_XBF_PAGE_LOCKED;
return 0;
}
......@@ -923,20 +869,7 @@ xfs_buf_rele(
/*
* Mutual exclusion on buffers. Locking model:
*
* Buffers associated with inodes for which buffer locking
* is not enabled are not protected by semaphores, and are
* assumed to be exclusively owned by the caller. There is a
* spinlock in the buffer, used by the caller when concurrent
* access is possible.
*/
/*
* Locks a buffer object, if it is not already locked. Note that this in
* no way locks the underlying pages, so it is only useful for
* synchronizing concurrent use of buffer objects, not for synchronizing
* independent access to the underlying pages.
* Lock a buffer object, if it is not already locked.
*
* If we come across a stale, pinned, locked buffer, we know that we are
* being asked to lock a buffer that has been reallocated. Because it is
......@@ -970,10 +903,7 @@ xfs_buf_lock_value(
}
/*
* Locks a buffer object.
* Note that this in no way locks the underlying pages, so it is only
* useful for synchronizing concurrent use of buffer objects, not for
* synchronizing independent access to the underlying pages.
* Lock a buffer object.
*
* If we come across a stale, pinned, locked buffer, we know that we
* are being asked to lock a buffer that has been reallocated. Because
......@@ -1246,10 +1176,8 @@ _xfs_buf_ioend(
xfs_buf_t *bp,
int schedule)
{
if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
bp->b_flags &= ~_XBF_PAGE_LOCKED;
if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
xfs_buf_ioend(bp, schedule);
}
}
STATIC void
......@@ -1258,35 +1186,12 @@ xfs_buf_bio_end_io(
int error)
{
xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
unsigned int blocksize = bp->b_target->bt_bsize;
struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
xfs_buf_ioerror(bp, -error);
if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
do {
struct page *page = bvec->bv_page;
ASSERT(!PagePrivate(page));
if (unlikely(bp->b_error)) {
if (bp->b_flags & XBF_READ)
ClearPageUptodate(page);
} else if (blocksize >= PAGE_CACHE_SIZE) {
SetPageUptodate(page);
} else if (!PagePrivate(page) &&
(bp->b_flags & _XBF_PAGE_CACHE)) {
set_page_region(page, bvec->bv_offset, bvec->bv_len);
}
if (--bvec >= bio->bi_io_vec)
prefetchw(&bvec->bv_page->flags);
if (bp->b_flags & _XBF_PAGE_LOCKED)
unlock_page(page);
} while (bvec >= bio->bi_io_vec);
_xfs_buf_ioend(bp, 1);
bio_put(bio);
}
......@@ -1300,7 +1205,6 @@ _xfs_buf_ioapply(
int offset = bp->b_offset;
int size = bp->b_count_desired;
sector_t sector = bp->b_bn;
unsigned int blocksize = bp->b_target->bt_bsize;
total_nr_pages = bp->b_page_count;
map_i = 0;
......@@ -1321,29 +1225,6 @@ _xfs_buf_ioapply(
(bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
}
/* Special code path for reading a sub page size buffer in --
* we populate up the whole page, and hence the other metadata
* in the same page. This optimization is only valid when the
* filesystem block size is not smaller than the page size.
*/
if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
(XBF_READ|_XBF_PAGE_LOCKED)) &&
(blocksize >= PAGE_CACHE_SIZE)) {
bio = bio_alloc(GFP_NOIO, 1);
bio->bi_bdev = bp->b_target->bt_bdev;
bio->bi_sector = sector - (offset >> BBSHIFT);
bio->bi_end_io = xfs_buf_bio_end_io;
bio->bi_private = bp;
bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
size = 0;
atomic_inc(&bp->b_io_remaining);
goto submit_io;
}
next_chunk:
atomic_inc(&bp->b_io_remaining);
......@@ -1357,8 +1238,9 @@ _xfs_buf_ioapply(
bio->bi_end_io = xfs_buf_bio_end_io;
bio->bi_private = bp;
for (; size && nr_pages; nr_pages--, map_i++) {
int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
int rbytes, nbytes = PAGE_SIZE - offset;
if (nbytes > size)
nbytes = size;
......@@ -1373,7 +1255,6 @@ _xfs_buf_ioapply(
total_nr_pages--;
}
submit_io:
if (likely(bio->bi_size)) {
if (xfs_buf_is_vmapped(bp)) {
flush_kernel_vmap_range(bp->b_addr,
......@@ -1383,18 +1264,7 @@ _xfs_buf_ioapply(
if (size)
goto next_chunk;
} else {
/*
* if we get here, no pages were added to the bio. However,
* we can't just error out here - if the pages are locked then
* we have to unlock them otherwise we can hang on a later
* access to the page.
*/
xfs_buf_ioerror(bp, EIO);
if (bp->b_flags & _XBF_PAGE_LOCKED) {
int i;
for (i = 0; i < bp->b_page_count; i++)
unlock_page(bp->b_pages[i]);
}
bio_put(bio);
}
}
......@@ -1458,8 +1328,8 @@ xfs_buf_offset(
return XFS_BUF_PTR(bp) + offset;
offset += bp->b_offset;
page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
page = bp->b_pages[offset >> PAGE_SHIFT];
return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
}
/*
......@@ -1481,9 +1351,9 @@ xfs_buf_iomove(
page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
cpoff = xfs_buf_poff(boff + bp->b_offset);
csize = min_t(size_t,
PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
PAGE_SIZE-cpoff, bp->b_count_desired-boff);
ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
ASSERT(((csize + cpoff) <= PAGE_SIZE));
switch (mode) {
case XBRW_ZERO:
......@@ -1596,7 +1466,6 @@ xfs_free_buftarg(
xfs_flush_buftarg(btp, 1);
if (mp->m_flags & XFS_MOUNT_BARRIER)
xfs_blkdev_issue_flush(btp);
iput(btp->bt_mapping->host);
kthread_stop(btp->bt_task);
kmem_free(btp);
......@@ -1620,15 +1489,6 @@ xfs_setsize_buftarg_flags(
return EINVAL;
}
if (verbose &&
(PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
printk(KERN_WARNING
"XFS: %u byte sectors in use on device %s. "
"This is suboptimal; %u or greater is ideal.\n",
sectorsize, XFS_BUFTARG_NAME(btp),
(unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
}
return 0;
}
......@@ -1643,7 +1503,7 @@ xfs_setsize_buftarg_early(
struct block_device *bdev)
{
return xfs_setsize_buftarg_flags(btp,
PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
PAGE_SIZE, bdev_logical_block_size(bdev), 0);
}
int
......@@ -1655,40 +1515,6 @@ xfs_setsize_buftarg(
return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
}
STATIC int
xfs_mapping_buftarg(
xfs_buftarg_t *btp,
struct block_device *bdev)
{
struct backing_dev_info *bdi;
struct inode *inode;
struct address_space *mapping;
static const struct address_space_operations mapping_aops = {
.migratepage = fail_migrate_page,
};
inode = new_inode(bdev->bd_inode->i_sb);
if (!inode) {
printk(KERN_WARNING
"XFS: Cannot allocate mapping inode for device %s\n",
XFS_BUFTARG_NAME(btp));
return ENOMEM;
}
inode->i_ino = get_next_ino();
inode->i_mode = S_IFBLK;
inode->i_bdev = bdev;
inode->i_rdev = bdev->bd_dev;
bdi = blk_get_backing_dev_info(bdev);
if (!bdi)
bdi = &default_backing_dev_info;
mapping = &inode->i_data;
mapping->a_ops = &mapping_aops;
mapping->backing_dev_info = bdi;
mapping_set_gfp_mask(mapping, GFP_NOFS);
btp->bt_mapping = mapping;
return 0;
}
STATIC int
xfs_alloc_delwrite_queue(
xfs_buftarg_t *btp,
......@@ -1717,12 +1543,14 @@ xfs_alloc_buftarg(
btp->bt_mount = mp;
btp->bt_dev = bdev->bd_dev;
btp->bt_bdev = bdev;
btp->bt_bdi = blk_get_backing_dev_info(bdev);
if (!btp->bt_bdi)
goto error;
INIT_LIST_HEAD(&btp->bt_lru);
spin_lock_init(&btp->bt_lru_lock);
if (xfs_setsize_buftarg_early(btp, bdev))
goto error;
if (xfs_mapping_buftarg(btp, bdev))
goto error;
if (xfs_alloc_delwrite_queue(btp, fsname))
goto error;
btp->bt_shrinker.shrink = xfs_buftarg_shrink;
......
......@@ -61,30 +61,11 @@ typedef enum {
#define XBF_DONT_BLOCK (1 << 16)/* do not block in current thread */
/* flags used only internally */
#define _XBF_PAGE_CACHE (1 << 17)/* backed by pagecache */
#define _XBF_PAGES (1 << 18)/* backed by refcounted pages */
#define _XBF_RUN_QUEUES (1 << 19)/* run block device task queue */
#define _XBF_KMEM (1 << 20)/* backed by heap memory */
#define _XBF_DELWRI_Q (1 << 21)/* buffer on delwri queue */
/*
* Special flag for supporting metadata blocks smaller than a FSB.
*
* In this case we can have multiple xfs_buf_t on a single page and
* need to lock out concurrent xfs_buf_t readers as they only
* serialise access to the buffer.
*
* If the FSB size >= PAGE_CACHE_SIZE case, we have no serialisation
* between reads of the page. Hence we can have one thread read the
* page and modify it, but then race with another thread that thinks
* the page is not up-to-date and hence reads it again.
*
* The result is that the first modifcation to the page is lost.
* This sort of AGF/AGI reading race can happen when unlinking inodes
* that require truncation and results in the AGI unlinked list
* modifications being lost.
*/
#define _XBF_PAGE_LOCKED (1 << 22)
typedef unsigned int xfs_buf_flags_t;
#define XFS_BUF_FLAGS \
......@@ -100,12 +81,10 @@ typedef unsigned int xfs_buf_flags_t;
{ XBF_LOCK, "LOCK" }, /* should never be set */\
{ XBF_TRYLOCK, "TRYLOCK" }, /* ditto */\
{ XBF_DONT_BLOCK, "DONT_BLOCK" }, /* ditto */\
{ _XBF_PAGE_CACHE, "PAGE_CACHE" }, \
{ _XBF_PAGES, "PAGES" }, \
{ _XBF_RUN_QUEUES, "RUN_QUEUES" }, \
{ _XBF_DELWRI_Q, "DELWRI_Q" }, \
{ _XBF_PAGE_LOCKED, "PAGE_LOCKED" }
{ _XBF_KMEM, "KMEM" }, \
{ _XBF_DELWRI_Q, "DELWRI_Q" }
typedef enum {
XBT_FORCE_SLEEP = 0,
......@@ -120,7 +99,7 @@ typedef struct xfs_bufhash {
typedef struct xfs_buftarg {
dev_t bt_dev;
struct block_device *bt_bdev;
struct address_space *bt_mapping;
struct backing_dev_info *bt_bdi;
struct xfs_mount *bt_mount;
unsigned int bt_bsize;
unsigned int bt_sshift;
......@@ -139,17 +118,6 @@ typedef struct xfs_buftarg {
unsigned int bt_lru_nr;
} xfs_buftarg_t;
/*
* xfs_buf_t: Buffer structure for pagecache-based buffers
*
* This buffer structure is used by the pagecache buffer management routines
* to refer to an assembly of pages forming a logical buffer.
*
* The buffer structure is used on a temporary basis only, and discarded when
* released. The real data storage is recorded in the pagecache. Buffers are
* hashed to the block device on which the file system resides.
*/
struct xfs_buf;
typedef void (*xfs_buf_iodone_t)(struct xfs_buf *);
......
......@@ -896,6 +896,7 @@ xfs_file_fallocate(
xfs_flock64_t bf;
xfs_inode_t *ip = XFS_I(inode);
int cmd = XFS_IOC_RESVSP;
int attr_flags = XFS_ATTR_NOLOCK;
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
return -EOPNOTSUPP;
......@@ -918,7 +919,10 @@ xfs_file_fallocate(
goto out_unlock;
}
error = -xfs_change_file_space(ip, cmd, &bf, 0, XFS_ATTR_NOLOCK);
if (file->f_flags & O_DSYNC)
attr_flags |= XFS_ATTR_SYNC;
error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
if (error)
goto out_unlock;
......
......@@ -624,6 +624,10 @@ xfs_ioc_space(
if (filp->f_flags & (O_NDELAY|O_NONBLOCK))
attr_flags |= XFS_ATTR_NONBLOCK;
if (filp->f_flags & O_DSYNC)
attr_flags |= XFS_ATTR_SYNC;
if (ioflags & IO_INVIS)
attr_flags |= XFS_ATTR_DMI;
......
......@@ -1078,7 +1078,7 @@ xfs_fs_write_inode(
error = 0;
goto out_unlock;
}
error = xfs_iflush(ip, 0);
error = xfs_iflush(ip, SYNC_TRYLOCK);
}
out_unlock:
......@@ -1539,10 +1539,14 @@ xfs_fs_fill_super(
if (error)
goto out_free_sb;
error = xfs_mountfs(mp);
if (error)
goto out_filestream_unmount;
/*
* we must configure the block size in the superblock before we run the
* full mount process as the mount process can lookup and cache inodes.
* For the same reason we must also initialise the syncd and register
* the inode cache shrinker so that inodes can be reclaimed during
* operations like a quotacheck that iterate all inodes in the
* filesystem.
*/
sb->s_magic = XFS_SB_MAGIC;
sb->s_blocksize = mp->m_sb.sb_blocksize;
sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
......@@ -1550,6 +1554,16 @@ xfs_fs_fill_super(
sb->s_time_gran = 1;
set_posix_acl_flag(sb);
error = xfs_syncd_init(mp);
if (error)
goto out_filestream_unmount;
xfs_inode_shrinker_register(mp);
error = xfs_mountfs(mp);
if (error)
goto out_syncd_stop;
root = igrab(VFS_I(mp->m_rootip));
if (!root) {
error = ENOENT;
......@@ -1565,14 +1579,11 @@ xfs_fs_fill_super(
goto fail_vnrele;
}
error = xfs_syncd_init(mp);
if (error)
goto fail_vnrele;
xfs_inode_shrinker_register(mp);
return 0;
out_syncd_stop:
xfs_inode_shrinker_unregister(mp);
xfs_syncd_stop(mp);
out_filestream_unmount:
xfs_filestream_unmount(mp);
out_free_sb:
......@@ -1596,6 +1607,9 @@ xfs_fs_fill_super(
}
fail_unmount:
xfs_inode_shrinker_unregister(mp);
xfs_syncd_stop(mp);
/*
* Blow away any referenced inode in the filestreams cache.
* This can and will cause log traffic as inodes go inactive
......
......@@ -761,8 +761,10 @@ xfs_reclaim_inode(
struct xfs_perag *pag,
int sync_mode)
{
int error = 0;
int error;
restart:
error = 0;
xfs_ilock(ip, XFS_ILOCK_EXCL);
if (!xfs_iflock_nowait(ip)) {
if (!(sync_mode & SYNC_WAIT))
......@@ -788,9 +790,31 @@ xfs_reclaim_inode(
if (xfs_inode_clean(ip))
goto reclaim;
/* Now we have an inode that needs flushing */
error = xfs_iflush(ip, sync_mode);
/*
* Now we have an inode that needs flushing.
*
* We do a nonblocking flush here even if we are doing a SYNC_WAIT
* reclaim as we can deadlock with inode cluster removal.
* xfs_ifree_cluster() can lock the inode buffer before it locks the
* ip->i_lock, and we are doing the exact opposite here. As a result,
* doing a blocking xfs_itobp() to get the cluster buffer will result
* in an ABBA deadlock with xfs_ifree_cluster().
*
* As xfs_ifree_cluser() must gather all inodes that are active in the
* cache to mark them stale, if we hit this case we don't actually want
* to do IO here - we want the inode marked stale so we can simply
* reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
* just unlock the inode, back off and try again. Hopefully the next
* pass through will see the stale flag set on the inode.
*/
error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
if (sync_mode & SYNC_WAIT) {
if (error == EAGAIN) {
xfs_iunlock(ip, XFS_ILOCK_EXCL);
/* backoff longer than in xfs_ifree_cluster */
delay(2);
goto restart;
}
xfs_iflock(ip);
goto reclaim;
}
......
......@@ -2835,7 +2835,7 @@ xfs_iflush(
* Get the buffer containing the on-disk inode.
*/
error = xfs_itobp(mp, NULL, ip, &dip, &bp,
(flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
(flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
if (error || !bp) {
xfs_ifunlock(ip);
return error;
......
......@@ -760,11 +760,11 @@ xfs_inode_item_push(
* Push the inode to it's backing buffer. This will not remove the
* inode from the AIL - a further push will be required to trigger a
* buffer push. However, this allows all the dirty inodes to be pushed
* to the buffer before it is pushed to disk. THe buffer IO completion
* will pull th einode from the AIL, mark it clean and unlock the flush
* to the buffer before it is pushed to disk. The buffer IO completion
* will pull the inode from the AIL, mark it clean and unlock the flush
* lock.
*/
(void) xfs_iflush(ip, 0);
(void) xfs_iflush(ip, SYNC_TRYLOCK);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
}
......
......@@ -383,7 +383,8 @@ xfs_trans_read_buf(
bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
if (bp == NULL) {
*bpp = NULL;
return 0;
return (flags & XBF_TRYLOCK) ?
0 : XFS_ERROR(ENOMEM);
}
if (XFS_BUF_GETERROR(bp) != 0) {
XFS_BUF_SUPER_STALE(bp);
......
......@@ -2831,7 +2831,8 @@ xfs_change_file_space(
ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
xfs_trans_set_sync(tp);
if (attr_flags & XFS_ATTR_SYNC)
xfs_trans_set_sync(tp);
error = xfs_trans_commit(tp, 0);
......
......@@ -18,6 +18,7 @@ int xfs_setattr(struct xfs_inode *ip, struct iattr *vap, int flags);
#define XFS_ATTR_NONBLOCK 0x02 /* return EAGAIN if operation would block */
#define XFS_ATTR_NOLOCK 0x04 /* Don't grab any conflicting locks */
#define XFS_ATTR_NOACL 0x08 /* Don't call xfs_acl_chmod */
#define XFS_ATTR_SYNC 0x10 /* synchronous operation required */
int xfs_readlink(struct xfs_inode *ip, char *link);
int xfs_release(struct xfs_inode *ip);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册