提交 aaec1a0f 编写于 作者: W William Breathitt Gray 提交者: Jonathan Cameron

counter: Internalize sysfs interface code

This is a reimplementation of the Generic Counter driver interface.
There are no modifications to the Counter subsystem userspace interface,
so existing userspace applications should continue to run seamlessly.

The purpose of this patch is to internalize the sysfs interface code
among the various counter drivers into a shared module. Counter drivers
pass and take data natively (i.e. u8, u64, etc.) and the shared counter
module handles the translation between the sysfs interface and the
device drivers. This guarantees a standard userspace interface for all
counter drivers, and helps generalize the Generic Counter driver ABI in
order to support the Generic Counter chrdev interface (introduced in a
subsequent patch) without significant changes to the existing counter
drivers.

Note, Counter device registration is the same as before: drivers
populate a struct counter_device with components and callbacks, then
pass the structure to the devm_counter_register function. However,
what's different now is how the Counter subsystem code handles this
registration internally.

Whereas before callbacks would interact directly with sysfs data, this
interaction is now abstracted and instead callbacks interact with native
C data types. The counter_comp structure forms the basis for Counter
extensions.

The counter-sysfs.c file contains the code to parse through the
counter_device structure and register the requested components and
extensions. Attributes are created and populated based on type, with
respective translation functions to handle the mapping between sysfs and
the counter driver callbacks.

The translation performed for each attribute is straightforward: the
attribute type and data is parsed from the counter_attribute structure,
the respective counter driver read/write callback is called, and sysfs
I/O is handled before or after the driver read/write function is called.

Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Cc: Patrick Havelange <patrick.havelange@essensium.com>
Cc: Kamel Bouhara <kamel.bouhara@bootlin.com>
Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Cc: Alexandre Torgue <alexandre.torgue@st.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: NSyed Nayyar Waris <syednwaris@gmail.com>
Reviewed-by: NDavid Lechner <david@lechnology.com>
Tested-by: NDavid Lechner <david@lechnology.com>
Signed-off-by: NWilliam Breathitt Gray <vilhelm.gray@gmail.com>
Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32
Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.comSigned-off-by: NJonathan Cameron <Jonathan.Cameron@huawei.com>
上级 ea434ff8
......@@ -4804,7 +4804,6 @@ F: Documentation/ABI/testing/sysfs-bus-counter
F: Documentation/driver-api/generic-counter.rst
F: drivers/counter/
F: include/linux/counter.h
F: include/linux/counter_enum.h
CP2615 I2C DRIVER
M: Bence Csókás <bence98@sch.bme.hu>
......
此差异已折叠。
......@@ -4,6 +4,7 @@
#
obj-$(CONFIG_COUNTER) += counter.o
counter-y := counter-core.o counter-sysfs.o
obj-$(CONFIG_104_QUAD_8) += 104-quad-8.o
obj-$(CONFIG_INTERRUPT_CNT) += interrupt-cnt.o
......
// SPDX-License-Identifier: GPL-2.0
/*
* Generic Counter interface
* Copyright (C) 2020 William Breathitt Gray
*/
#include <linux/counter.h>
#include <linux/device.h>
#include <linux/export.h>
#include <linux/gfp.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/module.h>
#include "counter-sysfs.h"
/* Provides a unique ID for each counter device */
static DEFINE_IDA(counter_ida);
static void counter_device_release(struct device *dev)
{
ida_free(&counter_ida, dev->id);
}
static struct device_type counter_device_type = {
.name = "counter_device",
.release = counter_device_release,
};
static struct bus_type counter_bus_type = {
.name = "counter",
.dev_name = "counter",
};
/**
* counter_register - register Counter to the system
* @counter: pointer to Counter to register
*
* This function registers a Counter to the system. A sysfs "counter" directory
* will be created and populated with sysfs attributes correlating with the
* Counter Signals, Synapses, and Counts respectively.
*/
int counter_register(struct counter_device *const counter)
{
struct device *const dev = &counter->dev;
int id;
int err;
/* Acquire unique ID */
id = ida_alloc(&counter_ida, GFP_KERNEL);
if (id < 0)
return id;
/* Configure device structure for Counter */
dev->id = id;
dev->type = &counter_device_type;
dev->bus = &counter_bus_type;
if (counter->parent) {
dev->parent = counter->parent;
dev->of_node = counter->parent->of_node;
}
device_initialize(dev);
dev_set_drvdata(dev, counter);
/* Add Counter sysfs attributes */
err = counter_sysfs_add(counter);
if (err < 0)
goto err_free_id;
/* Add device to system */
err = device_add(dev);
if (err < 0)
goto err_free_id;
return 0;
err_free_id:
put_device(dev);
return err;
}
EXPORT_SYMBOL_GPL(counter_register);
/**
* counter_unregister - unregister Counter from the system
* @counter: pointer to Counter to unregister
*
* The Counter is unregistered from the system.
*/
void counter_unregister(struct counter_device *const counter)
{
if (!counter)
return;
device_unregister(&counter->dev);
}
EXPORT_SYMBOL_GPL(counter_unregister);
static void devm_counter_release(void *counter)
{
counter_unregister(counter);
}
/**
* devm_counter_register - Resource-managed counter_register
* @dev: device to allocate counter_device for
* @counter: pointer to Counter to register
*
* Managed counter_register. The Counter registered with this function is
* automatically unregistered on driver detach. This function calls
* counter_register internally. Refer to that function for more information.
*
* RETURNS:
* 0 on success, negative error number on failure.
*/
int devm_counter_register(struct device *dev,
struct counter_device *const counter)
{
int err;
err = counter_register(counter);
if (err < 0)
return err;
return devm_add_action_or_reset(dev, devm_counter_release, counter);
}
EXPORT_SYMBOL_GPL(devm_counter_register);
static int __init counter_init(void)
{
return bus_register(&counter_bus_type);
}
static void __exit counter_exit(void)
{
bus_unregister(&counter_bus_type);
}
subsys_initcall(counter_init);
module_exit(counter_exit);
MODULE_AUTHOR("William Breathitt Gray <vilhelm.gray@gmail.com>");
MODULE_DESCRIPTION("Generic Counter interface");
MODULE_LICENSE("GPL v2");
此差异已折叠。
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Counter sysfs interface
* Copyright (C) 2020 William Breathitt Gray
*/
#ifndef _COUNTER_SYSFS_H_
#define _COUNTER_SYSFS_H_
#include <linux/counter.h>
int counter_sysfs_add(struct counter_device *const counter);
#endif /* _COUNTER_SYSFS_H_ */
此差异已折叠。
......@@ -14,6 +14,7 @@
#include <linux/mutex.h>
#include <linux/counter.h>
#include <linux/bitfield.h>
#include <linux/types.h>
#define FTM_FIELD_UPDATE(ftm, offset, mask, val) \
({ \
......@@ -115,8 +116,7 @@ static void ftm_quaddec_disable(void *ftm)
}
static int ftm_quaddec_get_prescaler(struct counter_device *counter,
struct counter_count *count,
size_t *cnt_mode)
struct counter_count *count, u32 *cnt_mode)
{
struct ftm_quaddec *ftm = counter->priv;
uint32_t scflags;
......@@ -129,8 +129,7 @@ static int ftm_quaddec_get_prescaler(struct counter_device *counter,
}
static int ftm_quaddec_set_prescaler(struct counter_device *counter,
struct counter_count *count,
size_t cnt_mode)
struct counter_count *count, u32 cnt_mode)
{
struct ftm_quaddec *ftm = counter->priv;
......@@ -151,33 +150,17 @@ static const char * const ftm_quaddec_prescaler[] = {
"1", "2", "4", "8", "16", "32", "64", "128"
};
static struct counter_count_enum_ext ftm_quaddec_prescaler_enum = {
.items = ftm_quaddec_prescaler,
.num_items = ARRAY_SIZE(ftm_quaddec_prescaler),
.get = ftm_quaddec_get_prescaler,
.set = ftm_quaddec_set_prescaler
};
enum ftm_quaddec_synapse_action {
FTM_QUADDEC_SYNAPSE_ACTION_BOTH_EDGES,
};
static const enum counter_synapse_action ftm_quaddec_synapse_actions[] = {
[FTM_QUADDEC_SYNAPSE_ACTION_BOTH_EDGES] =
COUNTER_SYNAPSE_ACTION_BOTH_EDGES
};
enum ftm_quaddec_count_function {
FTM_QUADDEC_COUNT_ENCODER_MODE_1,
};
static const enum counter_function ftm_quaddec_count_functions[] = {
[FTM_QUADDEC_COUNT_ENCODER_MODE_1] = COUNTER_FUNCTION_QUADRATURE_X4
COUNTER_FUNCTION_QUADRATURE_X4
};
static int ftm_quaddec_count_read(struct counter_device *counter,
struct counter_count *count,
unsigned long *val)
u64 *val)
{
struct ftm_quaddec *const ftm = counter->priv;
uint32_t cntval;
......@@ -191,7 +174,7 @@ static int ftm_quaddec_count_read(struct counter_device *counter,
static int ftm_quaddec_count_write(struct counter_device *counter,
struct counter_count *count,
const unsigned long val)
const u64 val)
{
struct ftm_quaddec *const ftm = counter->priv;
......@@ -205,21 +188,21 @@ static int ftm_quaddec_count_write(struct counter_device *counter,
return 0;
}
static int ftm_quaddec_count_function_get(struct counter_device *counter,
struct counter_count *count,
size_t *function)
static int ftm_quaddec_count_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
*function = FTM_QUADDEC_COUNT_ENCODER_MODE_1;
*function = COUNTER_FUNCTION_QUADRATURE_X4;
return 0;
}
static int ftm_quaddec_action_get(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
size_t *action)
static int ftm_quaddec_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
*action = FTM_QUADDEC_SYNAPSE_ACTION_BOTH_EDGES;
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
}
......@@ -227,8 +210,8 @@ static int ftm_quaddec_action_get(struct counter_device *counter,
static const struct counter_ops ftm_quaddec_cnt_ops = {
.count_read = ftm_quaddec_count_read,
.count_write = ftm_quaddec_count_write,
.function_get = ftm_quaddec_count_function_get,
.action_get = ftm_quaddec_action_get,
.function_read = ftm_quaddec_count_function_read,
.action_read = ftm_quaddec_action_read,
};
static struct counter_signal ftm_quaddec_signals[] = {
......@@ -255,9 +238,12 @@ static struct counter_synapse ftm_quaddec_count_synapses[] = {
}
};
static const struct counter_count_ext ftm_quaddec_count_ext[] = {
COUNTER_COUNT_ENUM("prescaler", &ftm_quaddec_prescaler_enum),
COUNTER_COUNT_ENUM_AVAILABLE("prescaler", &ftm_quaddec_prescaler_enum),
static DEFINE_COUNTER_ENUM(ftm_quaddec_prescaler_enum, ftm_quaddec_prescaler);
static struct counter_comp ftm_quaddec_count_ext[] = {
COUNTER_COMP_COUNT_ENUM("prescaler", ftm_quaddec_get_prescaler,
ftm_quaddec_set_prescaler,
ftm_quaddec_prescaler_enum),
};
static struct counter_count ftm_quaddec_counts = {
......
......@@ -62,13 +62,6 @@
#define INTEL_QEP_CLK_PERIOD_NS 10
#define INTEL_QEP_COUNTER_EXT_RW(_name) \
{ \
.name = #_name, \
.read = _name##_read, \
.write = _name##_write, \
}
struct intel_qep {
struct counter_device counter;
struct mutex lock;
......@@ -114,8 +107,7 @@ static void intel_qep_init(struct intel_qep *qep)
}
static int intel_qep_count_read(struct counter_device *counter,
struct counter_count *count,
unsigned long *val)
struct counter_count *count, u64 *val)
{
struct intel_qep *const qep = counter->priv;
......@@ -130,11 +122,11 @@ static const enum counter_function intel_qep_count_functions[] = {
COUNTER_FUNCTION_QUADRATURE_X4,
};
static int intel_qep_function_get(struct counter_device *counter,
struct counter_count *count,
size_t *function)
static int intel_qep_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
*function = 0;
*function = COUNTER_FUNCTION_QUADRATURE_X4;
return 0;
}
......@@ -143,19 +135,19 @@ static const enum counter_synapse_action intel_qep_synapse_actions[] = {
COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
};
static int intel_qep_action_get(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
size_t *action)
static int intel_qep_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
*action = 0;
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
}
static const struct counter_ops intel_qep_counter_ops = {
.count_read = intel_qep_count_read,
.function_get = intel_qep_function_get,
.action_get = intel_qep_action_get,
.function_read = intel_qep_function_read,
.action_read = intel_qep_action_read,
};
#define INTEL_QEP_SIGNAL(_id, _name) { \
......@@ -181,31 +173,27 @@ static struct counter_synapse intel_qep_count_synapses[] = {
INTEL_QEP_SYNAPSE(2),
};
static ssize_t ceiling_read(struct counter_device *counter,
struct counter_count *count,
void *priv, char *buf)
static int intel_qep_ceiling_read(struct counter_device *counter,
struct counter_count *count, u64 *ceiling)
{
struct intel_qep *qep = counter->priv;
u32 reg;
pm_runtime_get_sync(qep->dev);
reg = intel_qep_readl(qep, INTEL_QEPMAX);
*ceiling = intel_qep_readl(qep, INTEL_QEPMAX);
pm_runtime_put(qep->dev);
return sysfs_emit(buf, "%u\n", reg);
return 0;
}
static ssize_t ceiling_write(struct counter_device *counter,
struct counter_count *count,
void *priv, const char *buf, size_t len)
static int intel_qep_ceiling_write(struct counter_device *counter,
struct counter_count *count, u64 max)
{
struct intel_qep *qep = counter->priv;
u32 max;
int ret;
int ret = 0;
ret = kstrtou32(buf, 0, &max);
if (ret < 0)
return ret;
/* Intel QEP ceiling configuration only supports 32-bit values */
if (max != (u32)max)
return -ERANGE;
mutex_lock(&qep->lock);
if (qep->enabled) {
......@@ -216,34 +204,28 @@ static ssize_t ceiling_write(struct counter_device *counter,
pm_runtime_get_sync(qep->dev);
intel_qep_writel(qep, INTEL_QEPMAX, max);
pm_runtime_put(qep->dev);
ret = len;
out:
mutex_unlock(&qep->lock);
return ret;
}
static ssize_t enable_read(struct counter_device *counter,
struct counter_count *count,
void *priv, char *buf)
static int intel_qep_enable_read(struct counter_device *counter,
struct counter_count *count, u8 *enable)
{
struct intel_qep *qep = counter->priv;
return sysfs_emit(buf, "%u\n", qep->enabled);
*enable = qep->enabled;
return 0;
}
static ssize_t enable_write(struct counter_device *counter,
struct counter_count *count,
void *priv, const char *buf, size_t len)
static int intel_qep_enable_write(struct counter_device *counter,
struct counter_count *count, u8 val)
{
struct intel_qep *qep = counter->priv;
u32 reg;
bool val, changed;
int ret;
ret = kstrtobool(buf, &val);
if (ret)
return ret;
bool changed;
mutex_lock(&qep->lock);
changed = val ^ qep->enabled;
......@@ -267,12 +249,12 @@ static ssize_t enable_write(struct counter_device *counter,
out:
mutex_unlock(&qep->lock);
return len;
return 0;
}
static ssize_t spike_filter_ns_read(struct counter_device *counter,
struct counter_count *count,
void *priv, char *buf)
static int intel_qep_spike_filter_ns_read(struct counter_device *counter,
struct counter_count *count,
u64 *length)
{
struct intel_qep *qep = counter->priv;
u32 reg;
......@@ -281,33 +263,31 @@ static ssize_t spike_filter_ns_read(struct counter_device *counter,
reg = intel_qep_readl(qep, INTEL_QEPCON);
if (!(reg & INTEL_QEPCON_FLT_EN)) {
pm_runtime_put(qep->dev);
return sysfs_emit(buf, "0\n");
return 0;
}
reg = INTEL_QEPFLT_MAX_COUNT(intel_qep_readl(qep, INTEL_QEPFLT));
pm_runtime_put(qep->dev);
return sysfs_emit(buf, "%u\n", (reg + 2) * INTEL_QEP_CLK_PERIOD_NS);
*length = (reg + 2) * INTEL_QEP_CLK_PERIOD_NS;
return 0;
}
static ssize_t spike_filter_ns_write(struct counter_device *counter,
struct counter_count *count,
void *priv, const char *buf, size_t len)
static int intel_qep_spike_filter_ns_write(struct counter_device *counter,
struct counter_count *count,
u64 length)
{
struct intel_qep *qep = counter->priv;
u32 reg, length;
u32 reg;
bool enable;
int ret;
ret = kstrtou32(buf, 0, &length);
if (ret < 0)
return ret;
int ret = 0;
/*
* Spike filter length is (MAX_COUNT + 2) clock periods.
* Disable filter when userspace writes 0, enable for valid
* nanoseconds values and error out otherwise.
*/
length /= INTEL_QEP_CLK_PERIOD_NS;
do_div(length, INTEL_QEP_CLK_PERIOD_NS);
if (length == 0) {
enable = false;
length = 0;
......@@ -336,16 +316,15 @@ static ssize_t spike_filter_ns_write(struct counter_device *counter,
intel_qep_writel(qep, INTEL_QEPFLT, length);
intel_qep_writel(qep, INTEL_QEPCON, reg);
pm_runtime_put(qep->dev);
ret = len;
out:
mutex_unlock(&qep->lock);
return ret;
}
static ssize_t preset_enable_read(struct counter_device *counter,
struct counter_count *count,
void *priv, char *buf)
static int intel_qep_preset_enable_read(struct counter_device *counter,
struct counter_count *count,
u8 *preset_enable)
{
struct intel_qep *qep = counter->priv;
u32 reg;
......@@ -353,21 +332,18 @@ static ssize_t preset_enable_read(struct counter_device *counter,
pm_runtime_get_sync(qep->dev);
reg = intel_qep_readl(qep, INTEL_QEPCON);
pm_runtime_put(qep->dev);
return sysfs_emit(buf, "%u\n", !(reg & INTEL_QEPCON_COUNT_RST_MODE));
*preset_enable = !(reg & INTEL_QEPCON_COUNT_RST_MODE);
return 0;
}
static ssize_t preset_enable_write(struct counter_device *counter,
struct counter_count *count,
void *priv, const char *buf, size_t len)
static int intel_qep_preset_enable_write(struct counter_device *counter,
struct counter_count *count, u8 val)
{
struct intel_qep *qep = counter->priv;
u32 reg;
bool val;
int ret;
ret = kstrtobool(buf, &val);
if (ret)
return ret;
int ret = 0;
mutex_lock(&qep->lock);
if (qep->enabled) {
......@@ -384,7 +360,6 @@ static ssize_t preset_enable_write(struct counter_device *counter,
intel_qep_writel(qep, INTEL_QEPCON, reg);
pm_runtime_put(qep->dev);
ret = len;
out:
mutex_unlock(&qep->lock);
......@@ -392,11 +367,14 @@ static ssize_t preset_enable_write(struct counter_device *counter,
return ret;
}
static const struct counter_count_ext intel_qep_count_ext[] = {
INTEL_QEP_COUNTER_EXT_RW(ceiling),
INTEL_QEP_COUNTER_EXT_RW(enable),
INTEL_QEP_COUNTER_EXT_RW(spike_filter_ns),
INTEL_QEP_COUNTER_EXT_RW(preset_enable)
static struct counter_comp intel_qep_count_ext[] = {
COUNTER_COMP_ENABLE(intel_qep_enable_read, intel_qep_enable_write),
COUNTER_COMP_CEILING(intel_qep_ceiling_read, intel_qep_ceiling_write),
COUNTER_COMP_PRESET_ENABLE(intel_qep_preset_enable_read,
intel_qep_preset_enable_write),
COUNTER_COMP_COUNT_U64("spike_filter_ns",
intel_qep_spike_filter_ns_read,
intel_qep_spike_filter_ns_write),
};
static struct counter_count intel_qep_counter_count[] = {
......
......@@ -10,6 +10,7 @@
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/types.h>
#define INTERRUPT_CNT_NAME "interrupt-cnt"
......@@ -33,30 +34,23 @@ static irqreturn_t interrupt_cnt_isr(int irq, void *dev_id)
return IRQ_HANDLED;
}
static ssize_t interrupt_cnt_enable_read(struct counter_device *counter,
struct counter_count *count,
void *private, char *buf)
static int interrupt_cnt_enable_read(struct counter_device *counter,
struct counter_count *count, u8 *enable)
{
struct interrupt_cnt_priv *priv = counter->priv;
return sysfs_emit(buf, "%d\n", priv->enabled);
*enable = priv->enabled;
return 0;
}
static ssize_t interrupt_cnt_enable_write(struct counter_device *counter,
struct counter_count *count,
void *private, const char *buf,
size_t len)
static int interrupt_cnt_enable_write(struct counter_device *counter,
struct counter_count *count, u8 enable)
{
struct interrupt_cnt_priv *priv = counter->priv;
bool enable;
ssize_t ret;
ret = kstrtobool(buf, &enable);
if (ret)
return ret;
if (priv->enabled == enable)
return len;
return 0;
if (enable) {
priv->enabled = true;
......@@ -66,33 +60,30 @@ static ssize_t interrupt_cnt_enable_write(struct counter_device *counter,
priv->enabled = false;
}
return len;
return 0;
}
static const struct counter_count_ext interrupt_cnt_ext[] = {
{
.name = "enable",
.read = interrupt_cnt_enable_read,
.write = interrupt_cnt_enable_write,
},
static struct counter_comp interrupt_cnt_ext[] = {
COUNTER_COMP_ENABLE(interrupt_cnt_enable_read,
interrupt_cnt_enable_write),
};
static const enum counter_synapse_action interrupt_cnt_synapse_actions[] = {
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
};
static int interrupt_cnt_action_get(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
size_t *action)
static int interrupt_cnt_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
*action = 0;
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
return 0;
}
static int interrupt_cnt_read(struct counter_device *counter,
struct counter_count *count, unsigned long *val)
struct counter_count *count, u64 *val)
{
struct interrupt_cnt_priv *priv = counter->priv;
......@@ -102,8 +93,7 @@ static int interrupt_cnt_read(struct counter_device *counter,
}
static int interrupt_cnt_write(struct counter_device *counter,
struct counter_count *count,
const unsigned long val)
struct counter_count *count, const u64 val)
{
struct interrupt_cnt_priv *priv = counter->priv;
......@@ -119,11 +109,11 @@ static const enum counter_function interrupt_cnt_functions[] = {
COUNTER_FUNCTION_INCREASE,
};
static int interrupt_cnt_function_get(struct counter_device *counter,
struct counter_count *count,
size_t *function)
static int interrupt_cnt_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
*function = 0;
*function = COUNTER_FUNCTION_INCREASE;
return 0;
}
......@@ -148,10 +138,10 @@ static int interrupt_cnt_signal_read(struct counter_device *counter,
}
static const struct counter_ops interrupt_cnt_ops = {
.action_get = interrupt_cnt_action_get,
.action_read = interrupt_cnt_action_read,
.count_read = interrupt_cnt_read,
.count_write = interrupt_cnt_write,
.function_get = interrupt_cnt_function_get,
.function_read = interrupt_cnt_function_read,
.signal_read = interrupt_cnt_signal_read,
};
......
......@@ -32,28 +32,16 @@ struct mchp_tc_data {
bool trig_inverted;
};
enum mchp_tc_count_function {
MCHP_TC_FUNCTION_INCREASE,
MCHP_TC_FUNCTION_QUADRATURE,
};
static const enum counter_function mchp_tc_count_functions[] = {
[MCHP_TC_FUNCTION_INCREASE] = COUNTER_FUNCTION_INCREASE,
[MCHP_TC_FUNCTION_QUADRATURE] = COUNTER_FUNCTION_QUADRATURE_X4,
};
enum mchp_tc_synapse_action {
MCHP_TC_SYNAPSE_ACTION_NONE = 0,
MCHP_TC_SYNAPSE_ACTION_RISING_EDGE,
MCHP_TC_SYNAPSE_ACTION_FALLING_EDGE,
MCHP_TC_SYNAPSE_ACTION_BOTH_EDGE
COUNTER_FUNCTION_INCREASE,
COUNTER_FUNCTION_QUADRATURE_X4,
};
static const enum counter_synapse_action mchp_tc_synapse_actions[] = {
[MCHP_TC_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
[MCHP_TC_SYNAPSE_ACTION_RISING_EDGE] = COUNTER_SYNAPSE_ACTION_RISING_EDGE,
[MCHP_TC_SYNAPSE_ACTION_FALLING_EDGE] = COUNTER_SYNAPSE_ACTION_FALLING_EDGE,
[MCHP_TC_SYNAPSE_ACTION_BOTH_EDGE] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
COUNTER_SYNAPSE_ACTION_NONE,
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
COUNTER_SYNAPSE_ACTION_FALLING_EDGE,
COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
};
static struct counter_signal mchp_tc_count_signals[] = {
......@@ -80,23 +68,23 @@ static struct counter_synapse mchp_tc_count_synapses[] = {
}
};
static int mchp_tc_count_function_get(struct counter_device *counter,
struct counter_count *count,
size_t *function)
static int mchp_tc_count_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
struct mchp_tc_data *const priv = counter->priv;
if (priv->qdec_mode)
*function = MCHP_TC_FUNCTION_QUADRATURE;
*function = COUNTER_FUNCTION_QUADRATURE_X4;
else
*function = MCHP_TC_FUNCTION_INCREASE;
*function = COUNTER_FUNCTION_INCREASE;
return 0;
}
static int mchp_tc_count_function_set(struct counter_device *counter,
struct counter_count *count,
size_t function)
static int mchp_tc_count_function_write(struct counter_device *counter,
struct counter_count *count,
enum counter_function function)
{
struct mchp_tc_data *const priv = counter->priv;
u32 bmr, cmr;
......@@ -108,7 +96,7 @@ static int mchp_tc_count_function_set(struct counter_device *counter,
cmr &= ~ATMEL_TC_WAVE;
switch (function) {
case MCHP_TC_FUNCTION_INCREASE:
case COUNTER_FUNCTION_INCREASE:
priv->qdec_mode = 0;
/* Set highest rate based on whether soc has gclk or not */
bmr &= ~(ATMEL_TC_QDEN | ATMEL_TC_POSEN);
......@@ -120,7 +108,7 @@ static int mchp_tc_count_function_set(struct counter_device *counter,
cmr |= ATMEL_TC_CMR_MASK;
cmr &= ~(ATMEL_TC_ABETRG | ATMEL_TC_XC0);
break;
case MCHP_TC_FUNCTION_QUADRATURE:
case COUNTER_FUNCTION_QUADRATURE_X4:
if (!priv->tc_cfg->has_qdec)
return -EINVAL;
/* In QDEC mode settings both channels 0 and 1 are required */
......@@ -176,10 +164,10 @@ static int mchp_tc_count_signal_read(struct counter_device *counter,
return 0;
}
static int mchp_tc_count_action_get(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
size_t *action)
static int mchp_tc_count_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
struct mchp_tc_data *const priv = counter->priv;
u32 cmr;
......@@ -188,26 +176,26 @@ static int mchp_tc_count_action_get(struct counter_device *counter,
switch (cmr & ATMEL_TC_ETRGEDG) {
default:
*action = MCHP_TC_SYNAPSE_ACTION_NONE;
*action = COUNTER_SYNAPSE_ACTION_NONE;
break;
case ATMEL_TC_ETRGEDG_RISING:
*action = MCHP_TC_SYNAPSE_ACTION_RISING_EDGE;
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
break;
case ATMEL_TC_ETRGEDG_FALLING:
*action = MCHP_TC_SYNAPSE_ACTION_FALLING_EDGE;
*action = COUNTER_SYNAPSE_ACTION_FALLING_EDGE;
break;
case ATMEL_TC_ETRGEDG_BOTH:
*action = MCHP_TC_SYNAPSE_ACTION_BOTH_EDGE;
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
break;
}
return 0;
}
static int mchp_tc_count_action_set(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
size_t action)
static int mchp_tc_count_action_write(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action action)
{
struct mchp_tc_data *const priv = counter->priv;
u32 edge = ATMEL_TC_ETRGEDG_NONE;
......@@ -217,16 +205,16 @@ static int mchp_tc_count_action_set(struct counter_device *counter,
return -EINVAL;
switch (action) {
case MCHP_TC_SYNAPSE_ACTION_NONE:
case COUNTER_SYNAPSE_ACTION_NONE:
edge = ATMEL_TC_ETRGEDG_NONE;
break;
case MCHP_TC_SYNAPSE_ACTION_RISING_EDGE:
case COUNTER_SYNAPSE_ACTION_RISING_EDGE:
edge = ATMEL_TC_ETRGEDG_RISING;
break;
case MCHP_TC_SYNAPSE_ACTION_FALLING_EDGE:
case COUNTER_SYNAPSE_ACTION_FALLING_EDGE:
edge = ATMEL_TC_ETRGEDG_FALLING;
break;
case MCHP_TC_SYNAPSE_ACTION_BOTH_EDGE:
case COUNTER_SYNAPSE_ACTION_BOTH_EDGES:
edge = ATMEL_TC_ETRGEDG_BOTH;
break;
default:
......@@ -240,8 +228,7 @@ static int mchp_tc_count_action_set(struct counter_device *counter,
}
static int mchp_tc_count_read(struct counter_device *counter,
struct counter_count *count,
unsigned long *val)
struct counter_count *count, u64 *val)
{
struct mchp_tc_data *const priv = counter->priv;
u32 cnt;
......@@ -264,12 +251,12 @@ static struct counter_count mchp_tc_counts[] = {
};
static const struct counter_ops mchp_tc_ops = {
.signal_read = mchp_tc_count_signal_read,
.count_read = mchp_tc_count_read,
.function_get = mchp_tc_count_function_get,
.function_set = mchp_tc_count_function_set,
.action_get = mchp_tc_count_action_get,
.action_set = mchp_tc_count_action_set
.signal_read = mchp_tc_count_signal_read,
.count_read = mchp_tc_count_read,
.function_read = mchp_tc_count_function_read,
.function_write = mchp_tc_count_function_write,
.action_read = mchp_tc_count_action_read,
.action_write = mchp_tc_count_action_write
};
static const struct atmel_tcb_config tcb_rm9200_config = {
......
......@@ -17,6 +17,7 @@
#include <linux/module.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/types.h>
struct stm32_lptim_cnt {
struct counter_device counter;
......@@ -107,11 +108,7 @@ static int stm32_lptim_setup(struct stm32_lptim_cnt *priv, int enable)
return regmap_update_bits(priv->regmap, STM32_LPTIM_CFGR, mask, val);
}
/**
* enum stm32_lptim_cnt_function - enumerates LPTimer counter & encoder modes
* @STM32_LPTIM_COUNTER_INCREASE: up count on IN1 rising, falling or both edges
* @STM32_LPTIM_ENCODER_BOTH_EDGE: count on both edges (IN1 & IN2 quadrature)
*
/*
* In non-quadrature mode, device counts up on active edge.
* In quadrature mode, encoder counting scenarios are as follows:
* +---------+----------+--------------------+--------------------+
......@@ -129,33 +126,20 @@ static int stm32_lptim_setup(struct stm32_lptim_cnt *priv, int enable)
* | edges | Low -> | Up | Down | Down | Up |
* +---------+----------+----------+---------+----------+---------+
*/
enum stm32_lptim_cnt_function {
STM32_LPTIM_COUNTER_INCREASE,
STM32_LPTIM_ENCODER_BOTH_EDGE,
};
static const enum counter_function stm32_lptim_cnt_functions[] = {
[STM32_LPTIM_COUNTER_INCREASE] = COUNTER_FUNCTION_INCREASE,
[STM32_LPTIM_ENCODER_BOTH_EDGE] = COUNTER_FUNCTION_QUADRATURE_X4,
};
enum stm32_lptim_synapse_action {
STM32_LPTIM_SYNAPSE_ACTION_RISING_EDGE = STM32_LPTIM_CKPOL_RISING_EDGE,
STM32_LPTIM_SYNAPSE_ACTION_FALLING_EDGE = STM32_LPTIM_CKPOL_FALLING_EDGE,
STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES = STM32_LPTIM_CKPOL_BOTH_EDGES,
STM32_LPTIM_SYNAPSE_ACTION_NONE,
COUNTER_FUNCTION_INCREASE,
COUNTER_FUNCTION_QUADRATURE_X4,
};
static const enum counter_synapse_action stm32_lptim_cnt_synapse_actions[] = {
/* Index must match with stm32_lptim_cnt_polarity[] (priv->polarity) */
[STM32_LPTIM_SYNAPSE_ACTION_RISING_EDGE] = COUNTER_SYNAPSE_ACTION_RISING_EDGE,
[STM32_LPTIM_SYNAPSE_ACTION_FALLING_EDGE] = COUNTER_SYNAPSE_ACTION_FALLING_EDGE,
[STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
[STM32_LPTIM_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
COUNTER_SYNAPSE_ACTION_FALLING_EDGE,
COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
COUNTER_SYNAPSE_ACTION_NONE,
};
static int stm32_lptim_cnt_read(struct counter_device *counter,
struct counter_count *count, unsigned long *val)
struct counter_count *count, u64 *val)
{
struct stm32_lptim_cnt *const priv = counter->priv;
u32 cnt;
......@@ -170,28 +154,28 @@ static int stm32_lptim_cnt_read(struct counter_device *counter,
return 0;
}
static int stm32_lptim_cnt_function_get(struct counter_device *counter,
struct counter_count *count,
size_t *function)
static int stm32_lptim_cnt_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
struct stm32_lptim_cnt *const priv = counter->priv;
if (!priv->quadrature_mode) {
*function = STM32_LPTIM_COUNTER_INCREASE;
*function = COUNTER_FUNCTION_INCREASE;
return 0;
}
if (priv->polarity == STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES) {
*function = STM32_LPTIM_ENCODER_BOTH_EDGE;
if (priv->polarity == STM32_LPTIM_CKPOL_BOTH_EDGES) {
*function = COUNTER_FUNCTION_QUADRATURE_X4;
return 0;
}
return -EINVAL;
}
static int stm32_lptim_cnt_function_set(struct counter_device *counter,
struct counter_count *count,
size_t function)
static int stm32_lptim_cnt_function_write(struct counter_device *counter,
struct counter_count *count,
enum counter_function function)
{
struct stm32_lptim_cnt *const priv = counter->priv;
......@@ -199,12 +183,12 @@ static int stm32_lptim_cnt_function_set(struct counter_device *counter,
return -EBUSY;
switch (function) {
case STM32_LPTIM_COUNTER_INCREASE:
case COUNTER_FUNCTION_INCREASE:
priv->quadrature_mode = 0;
return 0;
case STM32_LPTIM_ENCODER_BOTH_EDGE:
case COUNTER_FUNCTION_QUADRATURE_X4:
priv->quadrature_mode = 1;
priv->polarity = STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES;
priv->polarity = STM32_LPTIM_CKPOL_BOTH_EDGES;
return 0;
default:
/* should never reach this path */
......@@ -212,9 +196,9 @@ static int stm32_lptim_cnt_function_set(struct counter_device *counter,
}
}
static ssize_t stm32_lptim_cnt_enable_read(struct counter_device *counter,
struct counter_count *count,
void *private, char *buf)
static int stm32_lptim_cnt_enable_read(struct counter_device *counter,
struct counter_count *count,
u8 *enable)
{
struct stm32_lptim_cnt *const priv = counter->priv;
int ret;
......@@ -223,22 +207,18 @@ static ssize_t stm32_lptim_cnt_enable_read(struct counter_device *counter,
if (ret < 0)
return ret;
return scnprintf(buf, PAGE_SIZE, "%u\n", ret);
*enable = ret;
return 0;
}
static ssize_t stm32_lptim_cnt_enable_write(struct counter_device *counter,
struct counter_count *count,
void *private,
const char *buf, size_t len)
static int stm32_lptim_cnt_enable_write(struct counter_device *counter,
struct counter_count *count,
u8 enable)
{
struct stm32_lptim_cnt *const priv = counter->priv;
bool enable;
int ret;
ret = kstrtobool(buf, &enable);
if (ret)
return ret;
/* Check nobody uses the timer, or already disabled/enabled */
ret = stm32_lptim_is_enabled(priv);
if ((ret < 0) || (!ret && !enable))
......@@ -254,78 +234,81 @@ static ssize_t stm32_lptim_cnt_enable_write(struct counter_device *counter,
if (ret)
return ret;
return len;
return 0;
}
static ssize_t stm32_lptim_cnt_ceiling_read(struct counter_device *counter,
struct counter_count *count,
void *private, char *buf)
static int stm32_lptim_cnt_ceiling_read(struct counter_device *counter,
struct counter_count *count,
u64 *ceiling)
{
struct stm32_lptim_cnt *const priv = counter->priv;
return snprintf(buf, PAGE_SIZE, "%u\n", priv->ceiling);
*ceiling = priv->ceiling;
return 0;
}
static ssize_t stm32_lptim_cnt_ceiling_write(struct counter_device *counter,
struct counter_count *count,
void *private,
const char *buf, size_t len)
static int stm32_lptim_cnt_ceiling_write(struct counter_device *counter,
struct counter_count *count,
u64 ceiling)
{
struct stm32_lptim_cnt *const priv = counter->priv;
unsigned int ceiling;
int ret;
if (stm32_lptim_is_enabled(priv))
return -EBUSY;
ret = kstrtouint(buf, 0, &ceiling);
if (ret)
return ret;
if (ceiling > STM32_LPTIM_MAX_ARR)
return -ERANGE;
priv->ceiling = ceiling;
return len;
return 0;
}
static const struct counter_count_ext stm32_lptim_cnt_ext[] = {
{
.name = "enable",
.read = stm32_lptim_cnt_enable_read,
.write = stm32_lptim_cnt_enable_write
},
{
.name = "ceiling",
.read = stm32_lptim_cnt_ceiling_read,
.write = stm32_lptim_cnt_ceiling_write
},
static struct counter_comp stm32_lptim_cnt_ext[] = {
COUNTER_COMP_ENABLE(stm32_lptim_cnt_enable_read,
stm32_lptim_cnt_enable_write),
COUNTER_COMP_CEILING(stm32_lptim_cnt_ceiling_read,
stm32_lptim_cnt_ceiling_write),
};
static int stm32_lptim_cnt_action_get(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
size_t *action)
static int stm32_lptim_cnt_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
struct stm32_lptim_cnt *const priv = counter->priv;
size_t function;
enum counter_function function;
int err;
err = stm32_lptim_cnt_function_get(counter, count, &function);
err = stm32_lptim_cnt_function_read(counter, count, &function);
if (err)
return err;
switch (function) {
case STM32_LPTIM_COUNTER_INCREASE:
case COUNTER_FUNCTION_INCREASE:
/* LP Timer acts as up-counter on input 1 */
if (synapse->signal->id == count->synapses[0].signal->id)
*action = priv->polarity;
else
*action = STM32_LPTIM_SYNAPSE_ACTION_NONE;
return 0;
case STM32_LPTIM_ENCODER_BOTH_EDGE:
*action = priv->polarity;
if (synapse->signal->id != count->synapses[0].signal->id) {
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
}
switch (priv->polarity) {
case STM32_LPTIM_CKPOL_RISING_EDGE:
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
return 0;
case STM32_LPTIM_CKPOL_FALLING_EDGE:
*action = COUNTER_SYNAPSE_ACTION_FALLING_EDGE;
return 0;
case STM32_LPTIM_CKPOL_BOTH_EDGES:
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
default:
/* should never reach this path */
return -EINVAL;
}
case COUNTER_FUNCTION_QUADRATURE_X4:
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
default:
/* should never reach this path */
......@@ -333,43 +316,48 @@ static int stm32_lptim_cnt_action_get(struct counter_device *counter,
}
}
static int stm32_lptim_cnt_action_set(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
size_t action)
static int stm32_lptim_cnt_action_write(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action action)
{
struct stm32_lptim_cnt *const priv = counter->priv;
size_t function;
enum counter_function function;
int err;
if (stm32_lptim_is_enabled(priv))
return -EBUSY;
err = stm32_lptim_cnt_function_get(counter, count, &function);
err = stm32_lptim_cnt_function_read(counter, count, &function);
if (err)
return err;
/* only set polarity when in counter mode (on input 1) */
if (function == STM32_LPTIM_COUNTER_INCREASE
&& synapse->signal->id == count->synapses[0].signal->id) {
switch (action) {
case STM32_LPTIM_SYNAPSE_ACTION_RISING_EDGE:
case STM32_LPTIM_SYNAPSE_ACTION_FALLING_EDGE:
case STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES:
priv->polarity = action;
return 0;
}
}
if (function != COUNTER_FUNCTION_INCREASE
|| synapse->signal->id != count->synapses[0].signal->id)
return -EINVAL;
return -EINVAL;
switch (action) {
case COUNTER_SYNAPSE_ACTION_RISING_EDGE:
priv->polarity = STM32_LPTIM_CKPOL_RISING_EDGE;
return 0;
case COUNTER_SYNAPSE_ACTION_FALLING_EDGE:
priv->polarity = STM32_LPTIM_CKPOL_FALLING_EDGE;
return 0;
case COUNTER_SYNAPSE_ACTION_BOTH_EDGES:
priv->polarity = STM32_LPTIM_CKPOL_BOTH_EDGES;
return 0;
default:
return -EINVAL;
}
}
static const struct counter_ops stm32_lptim_cnt_ops = {
.count_read = stm32_lptim_cnt_read,
.function_get = stm32_lptim_cnt_function_get,
.function_set = stm32_lptim_cnt_function_set,
.action_get = stm32_lptim_cnt_action_get,
.action_set = stm32_lptim_cnt_action_set,
.function_read = stm32_lptim_cnt_function_read,
.function_write = stm32_lptim_cnt_function_write,
.action_read = stm32_lptim_cnt_action_read,
.action_write = stm32_lptim_cnt_action_write,
};
static struct counter_signal stm32_lptim_cnt_signals[] = {
......
......@@ -13,6 +13,7 @@
#include <linux/module.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/types.h>
#define TIM_CCMR_CCXS (BIT(8) | BIT(0))
#define TIM_CCMR_MASK (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
......@@ -36,29 +37,15 @@ struct stm32_timer_cnt {
struct stm32_timer_regs bak;
};
/**
* enum stm32_count_function - enumerates stm32 timer counter encoder modes
* @STM32_COUNT_SLAVE_MODE_DISABLED: counts on internal clock when CEN=1
* @STM32_COUNT_ENCODER_MODE_1: counts TI1FP1 edges, depending on TI2FP2 level
* @STM32_COUNT_ENCODER_MODE_2: counts TI2FP2 edges, depending on TI1FP1 level
* @STM32_COUNT_ENCODER_MODE_3: counts on both TI1FP1 and TI2FP2 edges
*/
enum stm32_count_function {
STM32_COUNT_SLAVE_MODE_DISABLED,
STM32_COUNT_ENCODER_MODE_1,
STM32_COUNT_ENCODER_MODE_2,
STM32_COUNT_ENCODER_MODE_3,
};
static const enum counter_function stm32_count_functions[] = {
[STM32_COUNT_SLAVE_MODE_DISABLED] = COUNTER_FUNCTION_INCREASE,
[STM32_COUNT_ENCODER_MODE_1] = COUNTER_FUNCTION_QUADRATURE_X2_A,
[STM32_COUNT_ENCODER_MODE_2] = COUNTER_FUNCTION_QUADRATURE_X2_B,
[STM32_COUNT_ENCODER_MODE_3] = COUNTER_FUNCTION_QUADRATURE_X4,
COUNTER_FUNCTION_INCREASE,
COUNTER_FUNCTION_QUADRATURE_X2_A,
COUNTER_FUNCTION_QUADRATURE_X2_B,
COUNTER_FUNCTION_QUADRATURE_X4,
};
static int stm32_count_read(struct counter_device *counter,
struct counter_count *count, unsigned long *val)
struct counter_count *count, u64 *val)
{
struct stm32_timer_cnt *const priv = counter->priv;
u32 cnt;
......@@ -70,8 +57,7 @@ static int stm32_count_read(struct counter_device *counter,
}
static int stm32_count_write(struct counter_device *counter,
struct counter_count *count,
const unsigned long val)
struct counter_count *count, const u64 val)
{
struct stm32_timer_cnt *const priv = counter->priv;
u32 ceiling;
......@@ -83,9 +69,9 @@ static int stm32_count_write(struct counter_device *counter,
return regmap_write(priv->regmap, TIM_CNT, val);
}
static int stm32_count_function_get(struct counter_device *counter,
struct counter_count *count,
size_t *function)
static int stm32_count_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
struct stm32_timer_cnt *const priv = counter->priv;
u32 smcr;
......@@ -94,40 +80,40 @@ static int stm32_count_function_get(struct counter_device *counter,
switch (smcr & TIM_SMCR_SMS) {
case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
*function = STM32_COUNT_SLAVE_MODE_DISABLED;
*function = COUNTER_FUNCTION_INCREASE;
return 0;
case TIM_SMCR_SMS_ENCODER_MODE_1:
*function = STM32_COUNT_ENCODER_MODE_1;
*function = COUNTER_FUNCTION_QUADRATURE_X2_A;
return 0;
case TIM_SMCR_SMS_ENCODER_MODE_2:
*function = STM32_COUNT_ENCODER_MODE_2;
*function = COUNTER_FUNCTION_QUADRATURE_X2_B;
return 0;
case TIM_SMCR_SMS_ENCODER_MODE_3:
*function = STM32_COUNT_ENCODER_MODE_3;
*function = COUNTER_FUNCTION_QUADRATURE_X4;
return 0;
default:
return -EINVAL;
}
}
static int stm32_count_function_set(struct counter_device *counter,
struct counter_count *count,
size_t function)
static int stm32_count_function_write(struct counter_device *counter,
struct counter_count *count,
enum counter_function function)
{
struct stm32_timer_cnt *const priv = counter->priv;
u32 cr1, sms;
switch (function) {
case STM32_COUNT_SLAVE_MODE_DISABLED:
case COUNTER_FUNCTION_INCREASE:
sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
break;
case STM32_COUNT_ENCODER_MODE_1:
case COUNTER_FUNCTION_QUADRATURE_X2_A:
sms = TIM_SMCR_SMS_ENCODER_MODE_1;
break;
case STM32_COUNT_ENCODER_MODE_2:
case COUNTER_FUNCTION_QUADRATURE_X2_B:
sms = TIM_SMCR_SMS_ENCODER_MODE_2;
break;
case STM32_COUNT_ENCODER_MODE_3:
case COUNTER_FUNCTION_QUADRATURE_X4:
sms = TIM_SMCR_SMS_ENCODER_MODE_3;
break;
default:
......@@ -150,44 +136,37 @@ static int stm32_count_function_set(struct counter_device *counter,
return 0;
}
static ssize_t stm32_count_direction_read(struct counter_device *counter,
static int stm32_count_direction_read(struct counter_device *counter,
struct counter_count *count,
void *private, char *buf)
enum counter_count_direction *direction)
{
struct stm32_timer_cnt *const priv = counter->priv;
const char *direction;
u32 cr1;
regmap_read(priv->regmap, TIM_CR1, &cr1);
direction = (cr1 & TIM_CR1_DIR) ? "backward" : "forward";
*direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
COUNTER_COUNT_DIRECTION_FORWARD;
return scnprintf(buf, PAGE_SIZE, "%s\n", direction);
return 0;
}
static ssize_t stm32_count_ceiling_read(struct counter_device *counter,
struct counter_count *count,
void *private, char *buf)
static int stm32_count_ceiling_read(struct counter_device *counter,
struct counter_count *count, u64 *ceiling)
{
struct stm32_timer_cnt *const priv = counter->priv;
u32 arr;
regmap_read(priv->regmap, TIM_ARR, &arr);
return snprintf(buf, PAGE_SIZE, "%u\n", arr);
*ceiling = arr;
return 0;
}
static ssize_t stm32_count_ceiling_write(struct counter_device *counter,
struct counter_count *count,
void *private,
const char *buf, size_t len)
static int stm32_count_ceiling_write(struct counter_device *counter,
struct counter_count *count, u64 ceiling)
{
struct stm32_timer_cnt *const priv = counter->priv;
unsigned int ceiling;
int ret;
ret = kstrtouint(buf, 0, &ceiling);
if (ret)
return ret;
if (ceiling > priv->max_arr)
return -ERANGE;
......@@ -196,34 +175,27 @@ static ssize_t stm32_count_ceiling_write(struct counter_device *counter,
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
regmap_write(priv->regmap, TIM_ARR, ceiling);
return len;
return 0;
}
static ssize_t stm32_count_enable_read(struct counter_device *counter,
struct counter_count *count,
void *private, char *buf)
static int stm32_count_enable_read(struct counter_device *counter,
struct counter_count *count, u8 *enable)
{
struct stm32_timer_cnt *const priv = counter->priv;
u32 cr1;
regmap_read(priv->regmap, TIM_CR1, &cr1);
return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)(cr1 & TIM_CR1_CEN));
*enable = cr1 & TIM_CR1_CEN;
return 0;
}
static ssize_t stm32_count_enable_write(struct counter_device *counter,
struct counter_count *count,
void *private,
const char *buf, size_t len)
static int stm32_count_enable_write(struct counter_device *counter,
struct counter_count *count, u8 enable)
{
struct stm32_timer_cnt *const priv = counter->priv;
int err;
u32 cr1;
bool enable;
err = kstrtobool(buf, &enable);
if (err)
return err;
if (enable) {
regmap_read(priv->regmap, TIM_CR1, &cr1);
......@@ -242,70 +214,55 @@ static ssize_t stm32_count_enable_write(struct counter_device *counter,
/* Keep enabled state to properly handle low power states */
priv->enabled = enable;
return len;
return 0;
}
static const struct counter_count_ext stm32_count_ext[] = {
{
.name = "direction",
.read = stm32_count_direction_read,
},
{
.name = "enable",
.read = stm32_count_enable_read,
.write = stm32_count_enable_write
},
{
.name = "ceiling",
.read = stm32_count_ceiling_read,
.write = stm32_count_ceiling_write
},
};
enum stm32_synapse_action {
STM32_SYNAPSE_ACTION_NONE,
STM32_SYNAPSE_ACTION_BOTH_EDGES
static struct counter_comp stm32_count_ext[] = {
COUNTER_COMP_DIRECTION(stm32_count_direction_read),
COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
COUNTER_COMP_CEILING(stm32_count_ceiling_read,
stm32_count_ceiling_write),
};
static const enum counter_synapse_action stm32_synapse_actions[] = {
[STM32_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
[STM32_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES
COUNTER_SYNAPSE_ACTION_NONE,
COUNTER_SYNAPSE_ACTION_BOTH_EDGES
};
static int stm32_action_get(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
size_t *action)
static int stm32_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
size_t function;
enum counter_function function;
int err;
err = stm32_count_function_get(counter, count, &function);
err = stm32_count_function_read(counter, count, &function);
if (err)
return err;
switch (function) {
case STM32_COUNT_SLAVE_MODE_DISABLED:
case COUNTER_FUNCTION_INCREASE:
/* counts on internal clock when CEN=1 */
*action = STM32_SYNAPSE_ACTION_NONE;
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
case STM32_COUNT_ENCODER_MODE_1:
case COUNTER_FUNCTION_QUADRATURE_X2_A:
/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
if (synapse->signal->id == count->synapses[0].signal->id)
*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
else
*action = STM32_SYNAPSE_ACTION_NONE;
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
case STM32_COUNT_ENCODER_MODE_2:
case COUNTER_FUNCTION_QUADRATURE_X2_B:
/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
if (synapse->signal->id == count->synapses[1].signal->id)
*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
else
*action = STM32_SYNAPSE_ACTION_NONE;
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
case STM32_COUNT_ENCODER_MODE_3:
case COUNTER_FUNCTION_QUADRATURE_X4:
/* counts up/down on both TI1FP1 and TI2FP2 edges */
*action = STM32_SYNAPSE_ACTION_BOTH_EDGES;
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
default:
return -EINVAL;
......@@ -315,9 +272,9 @@ static int stm32_action_get(struct counter_device *counter,
static const struct counter_ops stm32_timer_cnt_ops = {
.count_read = stm32_count_read,
.count_write = stm32_count_write,
.function_get = stm32_count_function_get,
.function_set = stm32_count_function_set,
.action_get = stm32_action_get,
.function_read = stm32_count_function_read,
.function_write = stm32_count_function_write,
.action_read = stm32_action_read,
};
static struct counter_signal stm32_signals[] = {
......
......@@ -13,6 +13,7 @@
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/types.h>
/* 32-bit registers */
#define QPOSCNT 0x0
......@@ -73,19 +74,13 @@ enum {
};
/* Position Counter Input Modes */
enum {
enum ti_eqep_count_func {
TI_EQEP_COUNT_FUNC_QUAD_COUNT,
TI_EQEP_COUNT_FUNC_DIR_COUNT,
TI_EQEP_COUNT_FUNC_UP_COUNT,
TI_EQEP_COUNT_FUNC_DOWN_COUNT,
};
enum {
TI_EQEP_SYNAPSE_ACTION_BOTH_EDGES,
TI_EQEP_SYNAPSE_ACTION_RISING_EDGE,
TI_EQEP_SYNAPSE_ACTION_NONE,
};
struct ti_eqep_cnt {
struct counter_device counter;
struct regmap *regmap32;
......@@ -93,7 +88,7 @@ struct ti_eqep_cnt {
};
static int ti_eqep_count_read(struct counter_device *counter,
struct counter_count *count, unsigned long *val)
struct counter_count *count, u64 *val)
{
struct ti_eqep_cnt *priv = counter->priv;
u32 cnt;
......@@ -105,7 +100,7 @@ static int ti_eqep_count_read(struct counter_device *counter,
}
static int ti_eqep_count_write(struct counter_device *counter,
struct counter_count *count, unsigned long val)
struct counter_count *count, u64 val)
{
struct ti_eqep_cnt *priv = counter->priv;
u32 max;
......@@ -117,64 +112,100 @@ static int ti_eqep_count_write(struct counter_device *counter,
return regmap_write(priv->regmap32, QPOSCNT, val);
}
static int ti_eqep_function_get(struct counter_device *counter,
struct counter_count *count, size_t *function)
static int ti_eqep_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
struct ti_eqep_cnt *priv = counter->priv;
u32 qdecctl;
regmap_read(priv->regmap16, QDECCTL, &qdecctl);
*function = (qdecctl & QDECCTL_QSRC) >> QDECCTL_QSRC_SHIFT;
switch ((qdecctl & QDECCTL_QSRC) >> QDECCTL_QSRC_SHIFT) {
case TI_EQEP_COUNT_FUNC_QUAD_COUNT:
*function = COUNTER_FUNCTION_QUADRATURE_X4;
break;
case TI_EQEP_COUNT_FUNC_DIR_COUNT:
*function = COUNTER_FUNCTION_PULSE_DIRECTION;
break;
case TI_EQEP_COUNT_FUNC_UP_COUNT:
*function = COUNTER_FUNCTION_INCREASE;
break;
case TI_EQEP_COUNT_FUNC_DOWN_COUNT:
*function = COUNTER_FUNCTION_DECREASE;
break;
}
return 0;
}
static int ti_eqep_function_set(struct counter_device *counter,
struct counter_count *count, size_t function)
static int ti_eqep_function_write(struct counter_device *counter,
struct counter_count *count,
enum counter_function function)
{
struct ti_eqep_cnt *priv = counter->priv;
enum ti_eqep_count_func qsrc;
switch (function) {
case COUNTER_FUNCTION_QUADRATURE_X4:
qsrc = TI_EQEP_COUNT_FUNC_QUAD_COUNT;
break;
case COUNTER_FUNCTION_PULSE_DIRECTION:
qsrc = TI_EQEP_COUNT_FUNC_DIR_COUNT;
break;
case COUNTER_FUNCTION_INCREASE:
qsrc = TI_EQEP_COUNT_FUNC_UP_COUNT;
break;
case COUNTER_FUNCTION_DECREASE:
qsrc = TI_EQEP_COUNT_FUNC_DOWN_COUNT;
break;
default:
/* should never reach this path */
return -EINVAL;
}
return regmap_write_bits(priv->regmap16, QDECCTL, QDECCTL_QSRC,
function << QDECCTL_QSRC_SHIFT);
qsrc << QDECCTL_QSRC_SHIFT);
}
static int ti_eqep_action_get(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse, size_t *action)
static int ti_eqep_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
struct ti_eqep_cnt *priv = counter->priv;
size_t function;
enum counter_function function;
u32 qdecctl;
int err;
err = ti_eqep_function_get(counter, count, &function);
err = ti_eqep_function_read(counter, count, &function);
if (err)
return err;
switch (function) {
case TI_EQEP_COUNT_FUNC_QUAD_COUNT:
case COUNTER_FUNCTION_QUADRATURE_X4:
/* In quadrature mode, the rising and falling edge of both
* QEPA and QEPB trigger QCLK.
*/
*action = TI_EQEP_SYNAPSE_ACTION_BOTH_EDGES;
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
case TI_EQEP_COUNT_FUNC_DIR_COUNT:
case COUNTER_FUNCTION_PULSE_DIRECTION:
/* In direction-count mode only rising edge of QEPA is counted
* and QEPB gives direction.
*/
switch (synapse->signal->id) {
case TI_EQEP_SIGNAL_QEPA:
*action = TI_EQEP_SYNAPSE_ACTION_RISING_EDGE;
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
return 0;
case TI_EQEP_SIGNAL_QEPB:
*action = TI_EQEP_SYNAPSE_ACTION_NONE;
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
default:
/* should never reach this path */
return -EINVAL;
}
case TI_EQEP_COUNT_FUNC_UP_COUNT:
case TI_EQEP_COUNT_FUNC_DOWN_COUNT:
case COUNTER_FUNCTION_INCREASE:
case COUNTER_FUNCTION_DECREASE:
/* In up/down-count modes only QEPA is counted and QEPB is not
* used.
*/
......@@ -185,12 +216,12 @@ static int ti_eqep_action_get(struct counter_device *counter,
return err;
if (qdecctl & QDECCTL_XCR)
*action = TI_EQEP_SYNAPSE_ACTION_BOTH_EDGES;
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
else
*action = TI_EQEP_SYNAPSE_ACTION_RISING_EDGE;
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
return 0;
case TI_EQEP_SIGNAL_QEPB:
*action = TI_EQEP_SYNAPSE_ACTION_NONE;
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
default:
/* should never reach this path */
......@@ -205,82 +236,67 @@ static int ti_eqep_action_get(struct counter_device *counter,
static const struct counter_ops ti_eqep_counter_ops = {
.count_read = ti_eqep_count_read,
.count_write = ti_eqep_count_write,
.function_get = ti_eqep_function_get,
.function_set = ti_eqep_function_set,
.action_get = ti_eqep_action_get,
.function_read = ti_eqep_function_read,
.function_write = ti_eqep_function_write,
.action_read = ti_eqep_action_read,
};
static ssize_t ti_eqep_position_ceiling_read(struct counter_device *counter,
struct counter_count *count,
void *ext_priv, char *buf)
static int ti_eqep_position_ceiling_read(struct counter_device *counter,
struct counter_count *count,
u64 *ceiling)
{
struct ti_eqep_cnt *priv = counter->priv;
u32 qposmax;
regmap_read(priv->regmap32, QPOSMAX, &qposmax);
return sprintf(buf, "%u\n", qposmax);
*ceiling = qposmax;
return 0;
}
static ssize_t ti_eqep_position_ceiling_write(struct counter_device *counter,
struct counter_count *count,
void *ext_priv, const char *buf,
size_t len)
static int ti_eqep_position_ceiling_write(struct counter_device *counter,
struct counter_count *count,
u64 ceiling)
{
struct ti_eqep_cnt *priv = counter->priv;
int err;
u32 res;
err = kstrtouint(buf, 0, &res);
if (err < 0)
return err;
if (ceiling != (u32)ceiling)
return -ERANGE;
regmap_write(priv->regmap32, QPOSMAX, res);
regmap_write(priv->regmap32, QPOSMAX, ceiling);
return len;
return 0;
}
static ssize_t ti_eqep_position_enable_read(struct counter_device *counter,
struct counter_count *count,
void *ext_priv, char *buf)
static int ti_eqep_position_enable_read(struct counter_device *counter,
struct counter_count *count, u8 *enable)
{
struct ti_eqep_cnt *priv = counter->priv;
u32 qepctl;
regmap_read(priv->regmap16, QEPCTL, &qepctl);
return sprintf(buf, "%u\n", !!(qepctl & QEPCTL_PHEN));
*enable = !!(qepctl & QEPCTL_PHEN);
return 0;
}
static ssize_t ti_eqep_position_enable_write(struct counter_device *counter,
struct counter_count *count,
void *ext_priv, const char *buf,
size_t len)
static int ti_eqep_position_enable_write(struct counter_device *counter,
struct counter_count *count, u8 enable)
{
struct ti_eqep_cnt *priv = counter->priv;
int err;
bool res;
err = kstrtobool(buf, &res);
if (err < 0)
return err;
regmap_write_bits(priv->regmap16, QEPCTL, QEPCTL_PHEN, res ? -1 : 0);
regmap_write_bits(priv->regmap16, QEPCTL, QEPCTL_PHEN, enable ? -1 : 0);
return len;
return 0;
}
static struct counter_count_ext ti_eqep_position_ext[] = {
{
.name = "ceiling",
.read = ti_eqep_position_ceiling_read,
.write = ti_eqep_position_ceiling_write,
},
{
.name = "enable",
.read = ti_eqep_position_enable_read,
.write = ti_eqep_position_enable_write,
},
static struct counter_comp ti_eqep_position_ext[] = {
COUNTER_COMP_CEILING(ti_eqep_position_ceiling_read,
ti_eqep_position_ceiling_write),
COUNTER_COMP_ENABLE(ti_eqep_position_enable_read,
ti_eqep_position_enable_write),
};
static struct counter_signal ti_eqep_signals[] = {
......@@ -295,16 +311,16 @@ static struct counter_signal ti_eqep_signals[] = {
};
static const enum counter_function ti_eqep_position_functions[] = {
[TI_EQEP_COUNT_FUNC_QUAD_COUNT] = COUNTER_FUNCTION_QUADRATURE_X4,
[TI_EQEP_COUNT_FUNC_DIR_COUNT] = COUNTER_FUNCTION_PULSE_DIRECTION,
[TI_EQEP_COUNT_FUNC_UP_COUNT] = COUNTER_FUNCTION_INCREASE,
[TI_EQEP_COUNT_FUNC_DOWN_COUNT] = COUNTER_FUNCTION_DECREASE,
COUNTER_FUNCTION_QUADRATURE_X4,
COUNTER_FUNCTION_PULSE_DIRECTION,
COUNTER_FUNCTION_INCREASE,
COUNTER_FUNCTION_DECREASE,
};
static const enum counter_synapse_action ti_eqep_position_synapse_actions[] = {
[TI_EQEP_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
[TI_EQEP_SYNAPSE_ACTION_RISING_EDGE] = COUNTER_SYNAPSE_ACTION_RISING_EDGE,
[TI_EQEP_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
COUNTER_SYNAPSE_ACTION_NONE,
};
static struct counter_synapse ti_eqep_position_synapses[] = {
......
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册