提交 a8ea8bdd 编写于 作者: T Tianjia Zhang 提交者: Herbert Xu

lib/mpi: Extend the MPI library

Expand the mpi library based on libgcrypt, and the ECC algorithm of
mpi based on libgcrypt requires these functions.
Some other algorithms will be developed based on mpi ecc, such as SM2.
Signed-off-by: NTianjia Zhang <tianjia.zhang@linux.alibaba.com>
Tested-by: NXufeng Zhang <yunbo.xufeng@linux.alibaba.com>
Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
上级 f4928287
......@@ -40,21 +40,79 @@ struct gcry_mpi {
typedef struct gcry_mpi *MPI;
#define mpi_get_nlimbs(a) ((a)->nlimbs)
#define mpi_has_sign(a) ((a)->sign)
/*-- mpiutil.c --*/
MPI mpi_alloc(unsigned nlimbs);
void mpi_clear(MPI a);
void mpi_free(MPI a);
int mpi_resize(MPI a, unsigned nlimbs);
static inline MPI mpi_new(unsigned int nbits)
{
return mpi_alloc((nbits + BITS_PER_MPI_LIMB - 1) / BITS_PER_MPI_LIMB);
}
MPI mpi_copy(MPI a);
MPI mpi_alloc_like(MPI a);
void mpi_snatch(MPI w, MPI u);
MPI mpi_set(MPI w, MPI u);
MPI mpi_set_ui(MPI w, unsigned long u);
MPI mpi_alloc_set_ui(unsigned long u);
void mpi_swap_cond(MPI a, MPI b, unsigned long swap);
/* Constants used to return constant MPIs. See mpi_init if you
* want to add more constants.
*/
#define MPI_NUMBER_OF_CONSTANTS 6
enum gcry_mpi_constants {
MPI_C_ZERO,
MPI_C_ONE,
MPI_C_TWO,
MPI_C_THREE,
MPI_C_FOUR,
MPI_C_EIGHT
};
MPI mpi_const(enum gcry_mpi_constants no);
/*-- mpicoder.c --*/
/* Different formats of external big integer representation. */
enum gcry_mpi_format {
GCRYMPI_FMT_NONE = 0,
GCRYMPI_FMT_STD = 1, /* Twos complement stored without length. */
GCRYMPI_FMT_PGP = 2, /* As used by OpenPGP (unsigned only). */
GCRYMPI_FMT_SSH = 3, /* As used by SSH (like STD but with length). */
GCRYMPI_FMT_HEX = 4, /* Hex format. */
GCRYMPI_FMT_USG = 5, /* Like STD but unsigned. */
GCRYMPI_FMT_OPAQUE = 8 /* Opaque format (some functions only). */
};
MPI mpi_read_raw_data(const void *xbuffer, size_t nbytes);
MPI mpi_read_from_buffer(const void *buffer, unsigned *ret_nread);
int mpi_fromstr(MPI val, const char *str);
MPI mpi_scanval(const char *string);
MPI mpi_read_raw_from_sgl(struct scatterlist *sgl, unsigned int len);
void *mpi_get_buffer(MPI a, unsigned *nbytes, int *sign);
int mpi_read_buffer(MPI a, uint8_t *buf, unsigned buf_len, unsigned *nbytes,
int *sign);
int mpi_write_to_sgl(MPI a, struct scatterlist *sg, unsigned nbytes,
int *sign);
int mpi_print(enum gcry_mpi_format format, unsigned char *buffer,
size_t buflen, size_t *nwritten, MPI a);
/*-- mpi-mod.c --*/
void mpi_mod(MPI rem, MPI dividend, MPI divisor);
/* Context used with Barrett reduction. */
struct barrett_ctx_s;
typedef struct barrett_ctx_s *mpi_barrett_t;
mpi_barrett_t mpi_barrett_init(MPI m, int copy);
void mpi_barrett_free(mpi_barrett_t ctx);
void mpi_mod_barrett(MPI r, MPI x, mpi_barrett_t ctx);
void mpi_mul_barrett(MPI w, MPI u, MPI v, mpi_barrett_t ctx);
/*-- mpi-pow.c --*/
int mpi_powm(MPI res, MPI base, MPI exp, MPI mod);
......@@ -62,6 +120,7 @@ int mpi_powm(MPI res, MPI base, MPI exp, MPI mod);
/*-- mpi-cmp.c --*/
int mpi_cmp_ui(MPI u, ulong v);
int mpi_cmp(MPI u, MPI v);
int mpi_cmpabs(MPI u, MPI v);
/*-- mpi-sub-ui.c --*/
int mpi_sub_ui(MPI w, MPI u, unsigned long vval);
......@@ -69,6 +128,34 @@ int mpi_sub_ui(MPI w, MPI u, unsigned long vval);
/*-- mpi-bit.c --*/
void mpi_normalize(MPI a);
unsigned mpi_get_nbits(MPI a);
int mpi_test_bit(MPI a, unsigned int n);
void mpi_set_bit(MPI a, unsigned int n);
void mpi_set_highbit(MPI a, unsigned int n);
void mpi_clear_highbit(MPI a, unsigned int n);
void mpi_clear_bit(MPI a, unsigned int n);
void mpi_rshift_limbs(MPI a, unsigned int count);
void mpi_rshift(MPI x, MPI a, unsigned int n);
void mpi_lshift_limbs(MPI a, unsigned int count);
void mpi_lshift(MPI x, MPI a, unsigned int n);
/*-- mpi-add.c --*/
void mpi_add_ui(MPI w, MPI u, unsigned long v);
void mpi_add(MPI w, MPI u, MPI v);
void mpi_sub(MPI w, MPI u, MPI v);
void mpi_addm(MPI w, MPI u, MPI v, MPI m);
void mpi_subm(MPI w, MPI u, MPI v, MPI m);
/*-- mpi-mul.c --*/
void mpi_mul(MPI w, MPI u, MPI v);
void mpi_mulm(MPI w, MPI u, MPI v, MPI m);
/*-- mpi-div.c --*/
void mpi_tdiv_r(MPI rem, MPI num, MPI den);
void mpi_fdiv_r(MPI rem, MPI dividend, MPI divisor);
void mpi_fdiv_q(MPI quot, MPI dividend, MPI divisor);
/*-- mpi-inv.c --*/
int mpi_invm(MPI x, MPI a, MPI n);
/* inline functions */
......
......@@ -14,9 +14,14 @@ mpi-y = \
generic_mpih-sub1.o \
generic_mpih-add1.o \
mpicoder.o \
mpi-add.o \
mpi-bit.o \
mpi-cmp.o \
mpi-sub-ui.o \
mpi-div.o \
mpi-inv.o \
mpi-mod.o \
mpi-mul.o \
mpih-cmp.o \
mpih-div.o \
mpih-mul.o \
......
/* mpi-add.c - MPI functions
* Copyright (C) 1994, 1996, 1998, 2001, 2002,
* 2003 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Note: This code is heavily based on the GNU MP Library.
* Actually it's the same code with only minor changes in the
* way the data is stored; this is to support the abstraction
* of an optional secure memory allocation which may be used
* to avoid revealing of sensitive data due to paging etc.
*/
#include "mpi-internal.h"
/****************
* Add the unsigned integer V to the mpi-integer U and store the
* result in W. U and V may be the same.
*/
void mpi_add_ui(MPI w, MPI u, unsigned long v)
{
mpi_ptr_t wp, up;
mpi_size_t usize, wsize;
int usign, wsign;
usize = u->nlimbs;
usign = u->sign;
wsign = 0;
/* If not space for W (and possible carry), increase space. */
wsize = usize + 1;
if (w->alloced < wsize)
mpi_resize(w, wsize);
/* These must be after realloc (U may be the same as W). */
up = u->d;
wp = w->d;
if (!usize) { /* simple */
wp[0] = v;
wsize = v ? 1:0;
} else if (!usign) { /* mpi is not negative */
mpi_limb_t cy;
cy = mpihelp_add_1(wp, up, usize, v);
wp[usize] = cy;
wsize = usize + cy;
} else {
/* The signs are different. Need exact comparison to determine
* which operand to subtract from which.
*/
if (usize == 1 && up[0] < v) {
wp[0] = v - up[0];
wsize = 1;
} else {
mpihelp_sub_1(wp, up, usize, v);
/* Size can decrease with at most one limb. */
wsize = usize - (wp[usize-1] == 0);
wsign = 1;
}
}
w->nlimbs = wsize;
w->sign = wsign;
}
void mpi_add(MPI w, MPI u, MPI v)
{
mpi_ptr_t wp, up, vp;
mpi_size_t usize, vsize, wsize;
int usign, vsign, wsign;
if (u->nlimbs < v->nlimbs) { /* Swap U and V. */
usize = v->nlimbs;
usign = v->sign;
vsize = u->nlimbs;
vsign = u->sign;
wsize = usize + 1;
RESIZE_IF_NEEDED(w, wsize);
/* These must be after realloc (u or v may be the same as w). */
up = v->d;
vp = u->d;
} else {
usize = u->nlimbs;
usign = u->sign;
vsize = v->nlimbs;
vsign = v->sign;
wsize = usize + 1;
RESIZE_IF_NEEDED(w, wsize);
/* These must be after realloc (u or v may be the same as w). */
up = u->d;
vp = v->d;
}
wp = w->d;
wsign = 0;
if (!vsize) { /* simple */
MPN_COPY(wp, up, usize);
wsize = usize;
wsign = usign;
} else if (usign != vsign) { /* different sign */
/* This test is right since USIZE >= VSIZE */
if (usize != vsize) {
mpihelp_sub(wp, up, usize, vp, vsize);
wsize = usize;
MPN_NORMALIZE(wp, wsize);
wsign = usign;
} else if (mpihelp_cmp(up, vp, usize) < 0) {
mpihelp_sub_n(wp, vp, up, usize);
wsize = usize;
MPN_NORMALIZE(wp, wsize);
if (!usign)
wsign = 1;
} else {
mpihelp_sub_n(wp, up, vp, usize);
wsize = usize;
MPN_NORMALIZE(wp, wsize);
if (usign)
wsign = 1;
}
} else { /* U and V have same sign. Add them. */
mpi_limb_t cy = mpihelp_add(wp, up, usize, vp, vsize);
wp[usize] = cy;
wsize = usize + cy;
if (usign)
wsign = 1;
}
w->nlimbs = wsize;
w->sign = wsign;
}
EXPORT_SYMBOL_GPL(mpi_add);
void mpi_sub(MPI w, MPI u, MPI v)
{
MPI vv = mpi_copy(v);
vv->sign = !vv->sign;
mpi_add(w, u, vv);
mpi_free(vv);
}
void mpi_addm(MPI w, MPI u, MPI v, MPI m)
{
mpi_add(w, u, v);
mpi_mod(w, w, m);
}
EXPORT_SYMBOL_GPL(mpi_addm);
void mpi_subm(MPI w, MPI u, MPI v, MPI m)
{
mpi_sub(w, u, v);
mpi_mod(w, w, m);
}
EXPORT_SYMBOL_GPL(mpi_subm);
......@@ -32,6 +32,7 @@ void mpi_normalize(MPI a)
for (; a->nlimbs && !a->d[a->nlimbs - 1]; a->nlimbs--)
;
}
EXPORT_SYMBOL_GPL(mpi_normalize);
/****************
* Return the number of bits in A.
......@@ -54,3 +55,253 @@ unsigned mpi_get_nbits(MPI a)
return n;
}
EXPORT_SYMBOL_GPL(mpi_get_nbits);
/****************
* Test whether bit N is set.
*/
int mpi_test_bit(MPI a, unsigned int n)
{
unsigned int limbno, bitno;
mpi_limb_t limb;
limbno = n / BITS_PER_MPI_LIMB;
bitno = n % BITS_PER_MPI_LIMB;
if (limbno >= a->nlimbs)
return 0; /* too far left: this is a 0 */
limb = a->d[limbno];
return (limb & (A_LIMB_1 << bitno)) ? 1 : 0;
}
EXPORT_SYMBOL_GPL(mpi_test_bit);
/****************
* Set bit N of A.
*/
void mpi_set_bit(MPI a, unsigned int n)
{
unsigned int i, limbno, bitno;
limbno = n / BITS_PER_MPI_LIMB;
bitno = n % BITS_PER_MPI_LIMB;
if (limbno >= a->nlimbs) {
for (i = a->nlimbs; i < a->alloced; i++)
a->d[i] = 0;
mpi_resize(a, limbno+1);
a->nlimbs = limbno+1;
}
a->d[limbno] |= (A_LIMB_1<<bitno);
}
/****************
* Set bit N of A. and clear all bits above
*/
void mpi_set_highbit(MPI a, unsigned int n)
{
unsigned int i, limbno, bitno;
limbno = n / BITS_PER_MPI_LIMB;
bitno = n % BITS_PER_MPI_LIMB;
if (limbno >= a->nlimbs) {
for (i = a->nlimbs; i < a->alloced; i++)
a->d[i] = 0;
mpi_resize(a, limbno+1);
a->nlimbs = limbno+1;
}
a->d[limbno] |= (A_LIMB_1<<bitno);
for (bitno++; bitno < BITS_PER_MPI_LIMB; bitno++)
a->d[limbno] &= ~(A_LIMB_1 << bitno);
a->nlimbs = limbno+1;
}
EXPORT_SYMBOL_GPL(mpi_set_highbit);
/****************
* clear bit N of A and all bits above
*/
void mpi_clear_highbit(MPI a, unsigned int n)
{
unsigned int limbno, bitno;
limbno = n / BITS_PER_MPI_LIMB;
bitno = n % BITS_PER_MPI_LIMB;
if (limbno >= a->nlimbs)
return; /* not allocated, therefore no need to clear bits :-) */
for ( ; bitno < BITS_PER_MPI_LIMB; bitno++)
a->d[limbno] &= ~(A_LIMB_1 << bitno);
a->nlimbs = limbno+1;
}
/****************
* Clear bit N of A.
*/
void mpi_clear_bit(MPI a, unsigned int n)
{
unsigned int limbno, bitno;
limbno = n / BITS_PER_MPI_LIMB;
bitno = n % BITS_PER_MPI_LIMB;
if (limbno >= a->nlimbs)
return; /* Don't need to clear this bit, it's far too left. */
a->d[limbno] &= ~(A_LIMB_1 << bitno);
}
EXPORT_SYMBOL_GPL(mpi_clear_bit);
/****************
* Shift A by COUNT limbs to the right
* This is used only within the MPI library
*/
void mpi_rshift_limbs(MPI a, unsigned int count)
{
mpi_ptr_t ap = a->d;
mpi_size_t n = a->nlimbs;
unsigned int i;
if (count >= n) {
a->nlimbs = 0;
return;
}
for (i = 0; i < n - count; i++)
ap[i] = ap[i+count];
ap[i] = 0;
a->nlimbs -= count;
}
/*
* Shift A by N bits to the right.
*/
void mpi_rshift(MPI x, MPI a, unsigned int n)
{
mpi_size_t xsize;
unsigned int i;
unsigned int nlimbs = (n/BITS_PER_MPI_LIMB);
unsigned int nbits = (n%BITS_PER_MPI_LIMB);
if (x == a) {
/* In-place operation. */
if (nlimbs >= x->nlimbs) {
x->nlimbs = 0;
return;
}
if (nlimbs) {
for (i = 0; i < x->nlimbs - nlimbs; i++)
x->d[i] = x->d[i+nlimbs];
x->d[i] = 0;
x->nlimbs -= nlimbs;
}
if (x->nlimbs && nbits)
mpihelp_rshift(x->d, x->d, x->nlimbs, nbits);
} else if (nlimbs) {
/* Copy and shift by more or equal bits than in a limb. */
xsize = a->nlimbs;
x->sign = a->sign;
RESIZE_IF_NEEDED(x, xsize);
x->nlimbs = xsize;
for (i = 0; i < a->nlimbs; i++)
x->d[i] = a->d[i];
x->nlimbs = i;
if (nlimbs >= x->nlimbs) {
x->nlimbs = 0;
return;
}
if (nlimbs) {
for (i = 0; i < x->nlimbs - nlimbs; i++)
x->d[i] = x->d[i+nlimbs];
x->d[i] = 0;
x->nlimbs -= nlimbs;
}
if (x->nlimbs && nbits)
mpihelp_rshift(x->d, x->d, x->nlimbs, nbits);
} else {
/* Copy and shift by less than bits in a limb. */
xsize = a->nlimbs;
x->sign = a->sign;
RESIZE_IF_NEEDED(x, xsize);
x->nlimbs = xsize;
if (xsize) {
if (nbits)
mpihelp_rshift(x->d, a->d, x->nlimbs, nbits);
else {
/* The rshift helper function is not specified for
* NBITS==0, thus we do a plain copy here.
*/
for (i = 0; i < x->nlimbs; i++)
x->d[i] = a->d[i];
}
}
}
MPN_NORMALIZE(x->d, x->nlimbs);
}
/****************
* Shift A by COUNT limbs to the left
* This is used only within the MPI library
*/
void mpi_lshift_limbs(MPI a, unsigned int count)
{
mpi_ptr_t ap;
int n = a->nlimbs;
int i;
if (!count || !n)
return;
RESIZE_IF_NEEDED(a, n+count);
ap = a->d;
for (i = n-1; i >= 0; i--)
ap[i+count] = ap[i];
for (i = 0; i < count; i++)
ap[i] = 0;
a->nlimbs += count;
}
/*
* Shift A by N bits to the left.
*/
void mpi_lshift(MPI x, MPI a, unsigned int n)
{
unsigned int nlimbs = (n/BITS_PER_MPI_LIMB);
unsigned int nbits = (n%BITS_PER_MPI_LIMB);
if (x == a && !n)
return; /* In-place shift with an amount of zero. */
if (x != a) {
/* Copy A to X. */
unsigned int alimbs = a->nlimbs;
int asign = a->sign;
mpi_ptr_t xp, ap;
RESIZE_IF_NEEDED(x, alimbs+nlimbs+1);
xp = x->d;
ap = a->d;
MPN_COPY(xp, ap, alimbs);
x->nlimbs = alimbs;
x->flags = a->flags;
x->sign = asign;
}
if (nlimbs && !nbits) {
/* Shift a full number of limbs. */
mpi_lshift_limbs(x, nlimbs);
} else if (n) {
/* We use a very dump approach: Shift left by the number of
* limbs plus one and than fix it up by an rshift.
*/
mpi_lshift_limbs(x, nlimbs+1);
mpi_rshift(x, x, BITS_PER_MPI_LIMB - nbits);
}
MPN_NORMALIZE(x->d, x->nlimbs);
}
......@@ -41,28 +41,54 @@ int mpi_cmp_ui(MPI u, unsigned long v)
}
EXPORT_SYMBOL_GPL(mpi_cmp_ui);
int mpi_cmp(MPI u, MPI v)
static int do_mpi_cmp(MPI u, MPI v, int absmode)
{
mpi_size_t usize, vsize;
mpi_size_t usize;
mpi_size_t vsize;
int usign;
int vsign;
int cmp;
mpi_normalize(u);
mpi_normalize(v);
usize = u->nlimbs;
vsize = v->nlimbs;
if (!u->sign && v->sign)
usign = absmode ? 0 : u->sign;
vsign = absmode ? 0 : v->sign;
/* Compare sign bits. */
if (!usign && vsign)
return 1;
if (u->sign && !v->sign)
if (usign && !vsign)
return -1;
if (usize != vsize && !u->sign && !v->sign)
/* U and V are either both positive or both negative. */
if (usize != vsize && !usign && !vsign)
return usize - vsize;
if (usize != vsize && u->sign && v->sign)
return vsize - usize;
if (usize != vsize && usign && vsign)
return vsize + usize;
if (!usize)
return 0;
cmp = mpihelp_cmp(u->d, v->d, usize);
if (u->sign)
return -cmp;
return cmp;
if (!cmp)
return 0;
if ((cmp < 0?1:0) == (usign?1:0))
return 1;
return -1;
}
int mpi_cmp(MPI u, MPI v)
{
return do_mpi_cmp(u, v, 0);
}
EXPORT_SYMBOL_GPL(mpi_cmp);
int mpi_cmpabs(MPI u, MPI v)
{
return do_mpi_cmp(u, v, 1);
}
EXPORT_SYMBOL_GPL(mpi_cmpabs);
/* mpi-div.c - MPI functions
* Copyright (C) 1994, 1996, 1998, 2001, 2002,
* 2003 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Note: This code is heavily based on the GNU MP Library.
* Actually it's the same code with only minor changes in the
* way the data is stored; this is to support the abstraction
* of an optional secure memory allocation which may be used
* to avoid revealing of sensitive data due to paging etc.
*/
#include "mpi-internal.h"
#include "longlong.h"
void mpi_tdiv_qr(MPI quot, MPI rem, MPI num, MPI den);
void mpi_fdiv_qr(MPI quot, MPI rem, MPI dividend, MPI divisor);
void mpi_fdiv_r(MPI rem, MPI dividend, MPI divisor)
{
int divisor_sign = divisor->sign;
MPI temp_divisor = NULL;
/* We need the original value of the divisor after the remainder has been
* preliminary calculated. We have to copy it to temporary space if it's
* the same variable as REM.
*/
if (rem == divisor) {
temp_divisor = mpi_copy(divisor);
divisor = temp_divisor;
}
mpi_tdiv_r(rem, dividend, divisor);
if (((divisor_sign?1:0) ^ (dividend->sign?1:0)) && rem->nlimbs)
mpi_add(rem, rem, divisor);
if (temp_divisor)
mpi_free(temp_divisor);
}
void mpi_fdiv_q(MPI quot, MPI dividend, MPI divisor)
{
MPI tmp = mpi_alloc(mpi_get_nlimbs(quot));
mpi_fdiv_qr(quot, tmp, dividend, divisor);
mpi_free(tmp);
}
void mpi_fdiv_qr(MPI quot, MPI rem, MPI dividend, MPI divisor)
{
int divisor_sign = divisor->sign;
MPI temp_divisor = NULL;
if (quot == divisor || rem == divisor) {
temp_divisor = mpi_copy(divisor);
divisor = temp_divisor;
}
mpi_tdiv_qr(quot, rem, dividend, divisor);
if ((divisor_sign ^ dividend->sign) && rem->nlimbs) {
mpi_sub_ui(quot, quot, 1);
mpi_add(rem, rem, divisor);
}
if (temp_divisor)
mpi_free(temp_divisor);
}
/* If den == quot, den needs temporary storage.
* If den == rem, den needs temporary storage.
* If num == quot, num needs temporary storage.
* If den has temporary storage, it can be normalized while being copied,
* i.e no extra storage should be allocated.
*/
void mpi_tdiv_r(MPI rem, MPI num, MPI den)
{
mpi_tdiv_qr(NULL, rem, num, den);
}
void mpi_tdiv_qr(MPI quot, MPI rem, MPI num, MPI den)
{
mpi_ptr_t np, dp;
mpi_ptr_t qp, rp;
mpi_size_t nsize = num->nlimbs;
mpi_size_t dsize = den->nlimbs;
mpi_size_t qsize, rsize;
mpi_size_t sign_remainder = num->sign;
mpi_size_t sign_quotient = num->sign ^ den->sign;
unsigned int normalization_steps;
mpi_limb_t q_limb;
mpi_ptr_t marker[5];
unsigned int marker_nlimbs[5];
int markidx = 0;
/* Ensure space is enough for quotient and remainder.
* We need space for an extra limb in the remainder, because it's
* up-shifted (normalized) below.
*/
rsize = nsize + 1;
mpi_resize(rem, rsize);
qsize = rsize - dsize; /* qsize cannot be bigger than this. */
if (qsize <= 0) {
if (num != rem) {
rem->nlimbs = num->nlimbs;
rem->sign = num->sign;
MPN_COPY(rem->d, num->d, nsize);
}
if (quot) {
/* This needs to follow the assignment to rem, in case the
* numerator and quotient are the same.
*/
quot->nlimbs = 0;
quot->sign = 0;
}
return;
}
if (quot)
mpi_resize(quot, qsize);
/* Read pointers here, when reallocation is finished. */
np = num->d;
dp = den->d;
rp = rem->d;
/* Optimize division by a single-limb divisor. */
if (dsize == 1) {
mpi_limb_t rlimb;
if (quot) {
qp = quot->d;
rlimb = mpihelp_divmod_1(qp, np, nsize, dp[0]);
qsize -= qp[qsize - 1] == 0;
quot->nlimbs = qsize;
quot->sign = sign_quotient;
} else
rlimb = mpihelp_mod_1(np, nsize, dp[0]);
rp[0] = rlimb;
rsize = rlimb != 0?1:0;
rem->nlimbs = rsize;
rem->sign = sign_remainder;
return;
}
if (quot) {
qp = quot->d;
/* Make sure QP and NP point to different objects. Otherwise the
* numerator would be gradually overwritten by the quotient limbs.
*/
if (qp == np) { /* Copy NP object to temporary space. */
marker_nlimbs[markidx] = nsize;
np = marker[markidx++] = mpi_alloc_limb_space(nsize);
MPN_COPY(np, qp, nsize);
}
} else /* Put quotient at top of remainder. */
qp = rp + dsize;
normalization_steps = count_leading_zeros(dp[dsize - 1]);
/* Normalize the denominator, i.e. make its most significant bit set by
* shifting it NORMALIZATION_STEPS bits to the left. Also shift the
* numerator the same number of steps (to keep the quotient the same!).
*/
if (normalization_steps) {
mpi_ptr_t tp;
mpi_limb_t nlimb;
/* Shift up the denominator setting the most significant bit of
* the most significant word. Use temporary storage not to clobber
* the original contents of the denominator.
*/
marker_nlimbs[markidx] = dsize;
tp = marker[markidx++] = mpi_alloc_limb_space(dsize);
mpihelp_lshift(tp, dp, dsize, normalization_steps);
dp = tp;
/* Shift up the numerator, possibly introducing a new most
* significant word. Move the shifted numerator in the remainder
* meanwhile.
*/
nlimb = mpihelp_lshift(rp, np, nsize, normalization_steps);
if (nlimb) {
rp[nsize] = nlimb;
rsize = nsize + 1;
} else
rsize = nsize;
} else {
/* The denominator is already normalized, as required. Copy it to
* temporary space if it overlaps with the quotient or remainder.
*/
if (dp == rp || (quot && (dp == qp))) {
mpi_ptr_t tp;
marker_nlimbs[markidx] = dsize;
tp = marker[markidx++] = mpi_alloc_limb_space(dsize);
MPN_COPY(tp, dp, dsize);
dp = tp;
}
/* Move the numerator to the remainder. */
if (rp != np)
MPN_COPY(rp, np, nsize);
rsize = nsize;
}
q_limb = mpihelp_divrem(qp, 0, rp, rsize, dp, dsize);
if (quot) {
qsize = rsize - dsize;
if (q_limb) {
qp[qsize] = q_limb;
qsize += 1;
}
quot->nlimbs = qsize;
quot->sign = sign_quotient;
}
rsize = dsize;
MPN_NORMALIZE(rp, rsize);
if (normalization_steps && rsize) {
mpihelp_rshift(rp, rp, rsize, normalization_steps);
rsize -= rp[rsize - 1] == 0?1:0;
}
rem->nlimbs = rsize;
rem->sign = sign_remainder;
while (markidx) {
markidx--;
mpi_free_limb_space(marker[markidx]);
}
}
......@@ -52,6 +52,12 @@
typedef mpi_limb_t *mpi_ptr_t; /* pointer to a limb */
typedef int mpi_size_t; /* (must be a signed type) */
#define RESIZE_IF_NEEDED(a, b) \
do { \
if ((a)->alloced < (b)) \
mpi_resize((a), (b)); \
} while (0)
/* Copy N limbs from S to D. */
#define MPN_COPY(d, s, n) \
do { \
......@@ -60,6 +66,14 @@ typedef int mpi_size_t; /* (must be a signed type) */
(d)[_i] = (s)[_i]; \
} while (0)
#define MPN_COPY_INCR(d, s, n) \
do { \
mpi_size_t _i; \
for (_i = 0; _i < (n); _i++) \
(d)[_i] = (s)[_i]; \
} while (0)
#define MPN_COPY_DECR(d, s, n) \
do { \
mpi_size_t _i; \
......@@ -92,6 +106,38 @@ typedef int mpi_size_t; /* (must be a signed type) */
mul_n(prodp, up, vp, size, tspace); \
} while (0);
/* Divide the two-limb number in (NH,,NL) by D, with DI being the largest
* limb not larger than (2**(2*BITS_PER_MP_LIMB))/D - (2**BITS_PER_MP_LIMB).
* If this would yield overflow, DI should be the largest possible number
* (i.e., only ones). For correct operation, the most significant bit of D
* has to be set. Put the quotient in Q and the remainder in R.
*/
#define UDIV_QRNND_PREINV(q, r, nh, nl, d, di) \
do { \
mpi_limb_t _ql; \
mpi_limb_t _q, _r; \
mpi_limb_t _xh, _xl; \
umul_ppmm(_q, _ql, (nh), (di)); \
_q += (nh); /* DI is 2**BITS_PER_MPI_LIMB too small */ \
umul_ppmm(_xh, _xl, _q, (d)); \
sub_ddmmss(_xh, _r, (nh), (nl), _xh, _xl); \
if (_xh) { \
sub_ddmmss(_xh, _r, _xh, _r, 0, (d)); \
_q++; \
if (_xh) { \
sub_ddmmss(_xh, _r, _xh, _r, 0, (d)); \
_q++; \
} \
} \
if (_r >= (d)) { \
_r -= (d); \
_q++; \
} \
(r) = _r; \
(q) = _q; \
} while (0)
/*-- mpiutil.c --*/
mpi_ptr_t mpi_alloc_limb_space(unsigned nlimbs);
void mpi_free_limb_space(mpi_ptr_t a);
......@@ -135,6 +181,8 @@ int mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size);
void mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size,
mpi_ptr_t tspace);
void mpihelp_mul_n(mpi_ptr_t prodp,
mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size);
int mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,
mpi_ptr_t up, mpi_size_t usize,
......@@ -146,9 +194,14 @@ mpi_limb_t mpihelp_mul_1(mpi_ptr_t res_ptr, mpi_ptr_t s1_ptr,
mpi_size_t s1_size, mpi_limb_t s2_limb);
/*-- mpih-div.c --*/
mpi_limb_t mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
mpi_limb_t divisor_limb);
mpi_limb_t mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,
mpi_ptr_t np, mpi_size_t nsize,
mpi_ptr_t dp, mpi_size_t dsize);
mpi_limb_t mpihelp_divmod_1(mpi_ptr_t quot_ptr,
mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
mpi_limb_t divisor_limb);
/*-- generic_mpih-[lr]shift.c --*/
mpi_limb_t mpihelp_lshift(mpi_ptr_t wp, mpi_ptr_t up, mpi_size_t usize,
......
/* mpi-inv.c - MPI functions
* Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "mpi-internal.h"
/****************
* Calculate the multiplicative inverse X of A mod N
* That is: Find the solution x for
* 1 = (a*x) mod n
*/
int mpi_invm(MPI x, MPI a, MPI n)
{
/* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X)
* modified according to Michael Penk's solution for Exercise 35
* with further enhancement
*/
MPI u, v, u1, u2 = NULL, u3, v1, v2 = NULL, v3, t1, t2 = NULL, t3;
unsigned int k;
int sign;
int odd;
if (!mpi_cmp_ui(a, 0))
return 0; /* Inverse does not exists. */
if (!mpi_cmp_ui(n, 1))
return 0; /* Inverse does not exists. */
u = mpi_copy(a);
v = mpi_copy(n);
for (k = 0; !mpi_test_bit(u, 0) && !mpi_test_bit(v, 0); k++) {
mpi_rshift(u, u, 1);
mpi_rshift(v, v, 1);
}
odd = mpi_test_bit(v, 0);
u1 = mpi_alloc_set_ui(1);
if (!odd)
u2 = mpi_alloc_set_ui(0);
u3 = mpi_copy(u);
v1 = mpi_copy(v);
if (!odd) {
v2 = mpi_alloc(mpi_get_nlimbs(u));
mpi_sub(v2, u1, u); /* U is used as const 1 */
}
v3 = mpi_copy(v);
if (mpi_test_bit(u, 0)) { /* u is odd */
t1 = mpi_alloc_set_ui(0);
if (!odd) {
t2 = mpi_alloc_set_ui(1);
t2->sign = 1;
}
t3 = mpi_copy(v);
t3->sign = !t3->sign;
goto Y4;
} else {
t1 = mpi_alloc_set_ui(1);
if (!odd)
t2 = mpi_alloc_set_ui(0);
t3 = mpi_copy(u);
}
do {
do {
if (!odd) {
if (mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0)) {
/* one is odd */
mpi_add(t1, t1, v);
mpi_sub(t2, t2, u);
}
mpi_rshift(t1, t1, 1);
mpi_rshift(t2, t2, 1);
mpi_rshift(t3, t3, 1);
} else {
if (mpi_test_bit(t1, 0))
mpi_add(t1, t1, v);
mpi_rshift(t1, t1, 1);
mpi_rshift(t3, t3, 1);
}
Y4:
;
} while (!mpi_test_bit(t3, 0)); /* while t3 is even */
if (!t3->sign) {
mpi_set(u1, t1);
if (!odd)
mpi_set(u2, t2);
mpi_set(u3, t3);
} else {
mpi_sub(v1, v, t1);
sign = u->sign; u->sign = !u->sign;
if (!odd)
mpi_sub(v2, u, t2);
u->sign = sign;
sign = t3->sign; t3->sign = !t3->sign;
mpi_set(v3, t3);
t3->sign = sign;
}
mpi_sub(t1, u1, v1);
if (!odd)
mpi_sub(t2, u2, v2);
mpi_sub(t3, u3, v3);
if (t1->sign) {
mpi_add(t1, t1, v);
if (!odd)
mpi_sub(t2, t2, u);
}
} while (mpi_cmp_ui(t3, 0)); /* while t3 != 0 */
/* mpi_lshift( u3, k ); */
mpi_set(x, u1);
mpi_free(u1);
mpi_free(v1);
mpi_free(t1);
if (!odd) {
mpi_free(u2);
mpi_free(v2);
mpi_free(t2);
}
mpi_free(u3);
mpi_free(v3);
mpi_free(t3);
mpi_free(u);
mpi_free(v);
return 1;
}
EXPORT_SYMBOL_GPL(mpi_invm);
/* mpi-mod.c - Modular reduction
* Copyright (C) 1998, 1999, 2001, 2002, 2003,
* 2007 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*/
#include "mpi-internal.h"
#include "longlong.h"
/* Context used with Barrett reduction. */
struct barrett_ctx_s {
MPI m; /* The modulus - may not be modified. */
int m_copied; /* If true, M needs to be released. */
int k;
MPI y;
MPI r1; /* Helper MPI. */
MPI r2; /* Helper MPI. */
MPI r3; /* Helper MPI allocated on demand. */
};
void mpi_mod(MPI rem, MPI dividend, MPI divisor)
{
mpi_fdiv_r(rem, dividend, divisor);
}
/* This function returns a new context for Barrett based operations on
* the modulus M. This context needs to be released using
* _gcry_mpi_barrett_free. If COPY is true M will be transferred to
* the context and the user may change M. If COPY is false, M may not
* be changed until gcry_mpi_barrett_free has been called.
*/
mpi_barrett_t mpi_barrett_init(MPI m, int copy)
{
mpi_barrett_t ctx;
MPI tmp;
mpi_normalize(m);
ctx = kcalloc(1, sizeof(*ctx), GFP_KERNEL);
if (copy) {
ctx->m = mpi_copy(m);
ctx->m_copied = 1;
} else
ctx->m = m;
ctx->k = mpi_get_nlimbs(m);
tmp = mpi_alloc(ctx->k + 1);
/* Barrett precalculation: y = floor(b^(2k) / m). */
mpi_set_ui(tmp, 1);
mpi_lshift_limbs(tmp, 2 * ctx->k);
mpi_fdiv_q(tmp, tmp, m);
ctx->y = tmp;
ctx->r1 = mpi_alloc(2 * ctx->k + 1);
ctx->r2 = mpi_alloc(2 * ctx->k + 1);
return ctx;
}
void mpi_barrett_free(mpi_barrett_t ctx)
{
if (ctx) {
mpi_free(ctx->y);
mpi_free(ctx->r1);
mpi_free(ctx->r2);
if (ctx->r3)
mpi_free(ctx->r3);
if (ctx->m_copied)
mpi_free(ctx->m);
kfree(ctx);
}
}
/* R = X mod M
*
* Using Barrett reduction. Before using this function
* _gcry_mpi_barrett_init must have been called to do the
* precalculations. CTX is the context created by this precalculation
* and also conveys M. If the Barret reduction could no be done a
* straightforward reduction method is used.
*
* We assume that these conditions are met:
* Input: x =(x_2k-1 ...x_0)_b
* m =(m_k-1 ....m_0)_b with m_k-1 != 0
* Output: r = x mod m
*/
void mpi_mod_barrett(MPI r, MPI x, mpi_barrett_t ctx)
{
MPI m = ctx->m;
int k = ctx->k;
MPI y = ctx->y;
MPI r1 = ctx->r1;
MPI r2 = ctx->r2;
int sign;
mpi_normalize(x);
if (mpi_get_nlimbs(x) > 2*k) {
mpi_mod(r, x, m);
return;
}
sign = x->sign;
x->sign = 0;
/* 1. q1 = floor( x / b^k-1)
* q2 = q1 * y
* q3 = floor( q2 / b^k+1 )
* Actually, we don't need qx, we can work direct on r2
*/
mpi_set(r2, x);
mpi_rshift_limbs(r2, k-1);
mpi_mul(r2, r2, y);
mpi_rshift_limbs(r2, k+1);
/* 2. r1 = x mod b^k+1
* r2 = q3 * m mod b^k+1
* r = r1 - r2
* 3. if r < 0 then r = r + b^k+1
*/
mpi_set(r1, x);
if (r1->nlimbs > k+1) /* Quick modulo operation. */
r1->nlimbs = k+1;
mpi_mul(r2, r2, m);
if (r2->nlimbs > k+1) /* Quick modulo operation. */
r2->nlimbs = k+1;
mpi_sub(r, r1, r2);
if (mpi_has_sign(r)) {
if (!ctx->r3) {
ctx->r3 = mpi_alloc(k + 2);
mpi_set_ui(ctx->r3, 1);
mpi_lshift_limbs(ctx->r3, k + 1);
}
mpi_add(r, r, ctx->r3);
}
/* 4. while r >= m do r = r - m */
while (mpi_cmp(r, m) >= 0)
mpi_sub(r, r, m);
x->sign = sign;
}
void mpi_mul_barrett(MPI w, MPI u, MPI v, mpi_barrett_t ctx)
{
mpi_mul(w, u, v);
mpi_mod_barrett(w, w, ctx);
}
/* mpi-mul.c - MPI functions
* Copyright (C) 1994, 1996, 1998, 2001, 2002,
* 2003 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Note: This code is heavily based on the GNU MP Library.
* Actually it's the same code with only minor changes in the
* way the data is stored; this is to support the abstraction
* of an optional secure memory allocation which may be used
* to avoid revealing of sensitive data due to paging etc.
*/
#include "mpi-internal.h"
void mpi_mul(MPI w, MPI u, MPI v)
{
mpi_size_t usize, vsize, wsize;
mpi_ptr_t up, vp, wp;
mpi_limb_t cy;
int usign, vsign, sign_product;
int assign_wp = 0;
mpi_ptr_t tmp_limb = NULL;
unsigned int tmp_limb_nlimbs = 0;
if (u->nlimbs < v->nlimbs) {
/* Swap U and V. */
usize = v->nlimbs;
usign = v->sign;
up = v->d;
vsize = u->nlimbs;
vsign = u->sign;
vp = u->d;
} else {
usize = u->nlimbs;
usign = u->sign;
up = u->d;
vsize = v->nlimbs;
vsign = v->sign;
vp = v->d;
}
sign_product = usign ^ vsign;
wp = w->d;
/* Ensure W has space enough to store the result. */
wsize = usize + vsize;
if (w->alloced < wsize) {
if (wp == up || wp == vp) {
wp = mpi_alloc_limb_space(wsize);
assign_wp = 1;
} else {
mpi_resize(w, wsize);
wp = w->d;
}
} else { /* Make U and V not overlap with W. */
if (wp == up) {
/* W and U are identical. Allocate temporary space for U. */
tmp_limb_nlimbs = usize;
up = tmp_limb = mpi_alloc_limb_space(usize);
/* Is V identical too? Keep it identical with U. */
if (wp == vp)
vp = up;
/* Copy to the temporary space. */
MPN_COPY(up, wp, usize);
} else if (wp == vp) {
/* W and V are identical. Allocate temporary space for V. */
tmp_limb_nlimbs = vsize;
vp = tmp_limb = mpi_alloc_limb_space(vsize);
/* Copy to the temporary space. */
MPN_COPY(vp, wp, vsize);
}
}
if (!vsize)
wsize = 0;
else {
mpihelp_mul(wp, up, usize, vp, vsize, &cy);
wsize -= cy ? 0:1;
}
if (assign_wp)
mpi_assign_limb_space(w, wp, wsize);
w->nlimbs = wsize;
w->sign = sign_product;
if (tmp_limb)
mpi_free_limb_space(tmp_limb);
}
void mpi_mulm(MPI w, MPI u, MPI v, MPI m)
{
mpi_mul(w, u, v);
mpi_tdiv_r(w, w, m);
}
EXPORT_SYMBOL_GPL(mpi_mulm);
......@@ -25,6 +25,7 @@
#include <linux/string.h>
#include "mpi-internal.h"
#define MAX_EXTERN_SCAN_BYTES (16*1024*1024)
#define MAX_EXTERN_MPI_BITS 16384
/**
......@@ -109,6 +110,112 @@ MPI mpi_read_from_buffer(const void *xbuffer, unsigned *ret_nread)
}
EXPORT_SYMBOL_GPL(mpi_read_from_buffer);
/****************
* Fill the mpi VAL from the hex string in STR.
*/
int mpi_fromstr(MPI val, const char *str)
{
int sign = 0;
int prepend_zero = 0;
int i, j, c, c1, c2;
unsigned int nbits, nbytes, nlimbs;
mpi_limb_t a;
if (*str == '-') {
sign = 1;
str++;
}
/* Skip optional hex prefix. */
if (*str == '0' && str[1] == 'x')
str += 2;
nbits = strlen(str);
if (nbits > MAX_EXTERN_SCAN_BYTES) {
mpi_clear(val);
return -EINVAL;
}
nbits *= 4;
if ((nbits % 8))
prepend_zero = 1;
nbytes = (nbits+7) / 8;
nlimbs = (nbytes+BYTES_PER_MPI_LIMB-1) / BYTES_PER_MPI_LIMB;
if (val->alloced < nlimbs)
mpi_resize(val, nlimbs);
i = BYTES_PER_MPI_LIMB - (nbytes % BYTES_PER_MPI_LIMB);
i %= BYTES_PER_MPI_LIMB;
j = val->nlimbs = nlimbs;
val->sign = sign;
for (; j > 0; j--) {
a = 0;
for (; i < BYTES_PER_MPI_LIMB; i++) {
if (prepend_zero) {
c1 = '0';
prepend_zero = 0;
} else
c1 = *str++;
if (!c1) {
mpi_clear(val);
return -EINVAL;
}
c2 = *str++;
if (!c2) {
mpi_clear(val);
return -EINVAL;
}
if (c1 >= '0' && c1 <= '9')
c = c1 - '0';
else if (c1 >= 'a' && c1 <= 'f')
c = c1 - 'a' + 10;
else if (c1 >= 'A' && c1 <= 'F')
c = c1 - 'A' + 10;
else {
mpi_clear(val);
return -EINVAL;
}
c <<= 4;
if (c2 >= '0' && c2 <= '9')
c |= c2 - '0';
else if (c2 >= 'a' && c2 <= 'f')
c |= c2 - 'a' + 10;
else if (c2 >= 'A' && c2 <= 'F')
c |= c2 - 'A' + 10;
else {
mpi_clear(val);
return -EINVAL;
}
a <<= 8;
a |= c;
}
i = 0;
val->d[j-1] = a;
}
return 0;
}
EXPORT_SYMBOL_GPL(mpi_fromstr);
MPI mpi_scanval(const char *string)
{
MPI a;
a = mpi_alloc(0);
if (!a)
return NULL;
if (mpi_fromstr(a, string)) {
mpi_free(a);
return NULL;
}
mpi_normalize(a);
return a;
}
EXPORT_SYMBOL_GPL(mpi_scanval);
static int count_lzeros(MPI a)
{
mpi_limb_t alimb;
......@@ -413,3 +520,232 @@ MPI mpi_read_raw_from_sgl(struct scatterlist *sgl, unsigned int nbytes)
return val;
}
EXPORT_SYMBOL_GPL(mpi_read_raw_from_sgl);
/* Perform a two's complement operation on buffer P of size N bytes. */
static void twocompl(unsigned char *p, unsigned int n)
{
int i;
for (i = n-1; i >= 0 && !p[i]; i--)
;
if (i >= 0) {
if ((p[i] & 0x01))
p[i] = (((p[i] ^ 0xfe) | 0x01) & 0xff);
else if ((p[i] & 0x02))
p[i] = (((p[i] ^ 0xfc) | 0x02) & 0xfe);
else if ((p[i] & 0x04))
p[i] = (((p[i] ^ 0xf8) | 0x04) & 0xfc);
else if ((p[i] & 0x08))
p[i] = (((p[i] ^ 0xf0) | 0x08) & 0xf8);
else if ((p[i] & 0x10))
p[i] = (((p[i] ^ 0xe0) | 0x10) & 0xf0);
else if ((p[i] & 0x20))
p[i] = (((p[i] ^ 0xc0) | 0x20) & 0xe0);
else if ((p[i] & 0x40))
p[i] = (((p[i] ^ 0x80) | 0x40) & 0xc0);
else
p[i] = 0x80;
for (i--; i >= 0; i--)
p[i] ^= 0xff;
}
}
int mpi_print(enum gcry_mpi_format format, unsigned char *buffer,
size_t buflen, size_t *nwritten, MPI a)
{
unsigned int nbits = mpi_get_nbits(a);
size_t len;
size_t dummy_nwritten;
int negative;
if (!nwritten)
nwritten = &dummy_nwritten;
/* Libgcrypt does no always care to set clear the sign if the value
* is 0. For printing this is a bit of a surprise, in particular
* because if some of the formats don't support negative numbers but
* should be able to print a zero. Thus we need this extra test
* for a negative number.
*/
if (a->sign && mpi_cmp_ui(a, 0))
negative = 1;
else
negative = 0;
len = buflen;
*nwritten = 0;
if (format == GCRYMPI_FMT_STD) {
unsigned char *tmp;
int extra = 0;
unsigned int n;
tmp = mpi_get_buffer(a, &n, NULL);
if (!tmp)
return -EINVAL;
if (negative) {
twocompl(tmp, n);
if (!(*tmp & 0x80)) {
/* Need to extend the sign. */
n++;
extra = 2;
}
} else if (n && (*tmp & 0x80)) {
/* Positive but the high bit of the returned buffer is set.
* Thus we need to print an extra leading 0x00 so that the
* output is interpreted as a positive number.
*/
n++;
extra = 1;
}
if (buffer && n > len) {
/* The provided buffer is too short. */
kfree(tmp);
return -E2BIG;
}
if (buffer) {
unsigned char *s = buffer;
if (extra == 1)
*s++ = 0;
else if (extra)
*s++ = 0xff;
memcpy(s, tmp, n-!!extra);
}
kfree(tmp);
*nwritten = n;
return 0;
} else if (format == GCRYMPI_FMT_USG) {
unsigned int n = (nbits + 7)/8;
/* Note: We ignore the sign for this format. */
/* FIXME: for performance reasons we should put this into
* mpi_aprint because we can then use the buffer directly.
*/
if (buffer && n > len)
return -E2BIG;
if (buffer) {
unsigned char *tmp;
tmp = mpi_get_buffer(a, &n, NULL);
if (!tmp)
return -EINVAL;
memcpy(buffer, tmp, n);
kfree(tmp);
}
*nwritten = n;
return 0;
} else if (format == GCRYMPI_FMT_PGP) {
unsigned int n = (nbits + 7)/8;
/* The PGP format can only handle unsigned integers. */
if (negative)
return -EINVAL;
if (buffer && n+2 > len)
return -E2BIG;
if (buffer) {
unsigned char *tmp;
unsigned char *s = buffer;
s[0] = nbits >> 8;
s[1] = nbits;
tmp = mpi_get_buffer(a, &n, NULL);
if (!tmp)
return -EINVAL;
memcpy(s+2, tmp, n);
kfree(tmp);
}
*nwritten = n+2;
return 0;
} else if (format == GCRYMPI_FMT_SSH) {
unsigned char *tmp;
int extra = 0;
unsigned int n;
tmp = mpi_get_buffer(a, &n, NULL);
if (!tmp)
return -EINVAL;
if (negative) {
twocompl(tmp, n);
if (!(*tmp & 0x80)) {
/* Need to extend the sign. */
n++;
extra = 2;
}
} else if (n && (*tmp & 0x80)) {
n++;
extra = 1;
}
if (buffer && n+4 > len) {
kfree(tmp);
return -E2BIG;
}
if (buffer) {
unsigned char *s = buffer;
*s++ = n >> 24;
*s++ = n >> 16;
*s++ = n >> 8;
*s++ = n;
if (extra == 1)
*s++ = 0;
else if (extra)
*s++ = 0xff;
memcpy(s, tmp, n-!!extra);
}
kfree(tmp);
*nwritten = 4+n;
return 0;
} else if (format == GCRYMPI_FMT_HEX) {
unsigned char *tmp;
int i;
int extra = 0;
unsigned int n = 0;
tmp = mpi_get_buffer(a, &n, NULL);
if (!tmp)
return -EINVAL;
if (!n || (*tmp & 0x80))
extra = 2;
if (buffer && 2*n + extra + negative + 1 > len) {
kfree(tmp);
return -E2BIG;
}
if (buffer) {
unsigned char *s = buffer;
if (negative)
*s++ = '-';
if (extra) {
*s++ = '0';
*s++ = '0';
}
for (i = 0; i < n; i++) {
unsigned int c = tmp[i];
*s++ = (c >> 4) < 10 ? '0'+(c>>4) : 'A'+(c>>4)-10;
c &= 15;
*s++ = c < 10 ? '0'+c : 'A'+c-10;
}
*s++ = 0;
*nwritten = s - buffer;
} else {
*nwritten = 2*n + extra + negative + 1;
}
kfree(tmp);
return 0;
} else
return -EINVAL;
}
EXPORT_SYMBOL_GPL(mpi_print);
......@@ -24,6 +24,150 @@
#define UDIV_TIME UMUL_TIME
#endif
mpi_limb_t
mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
mpi_limb_t divisor_limb)
{
mpi_size_t i;
mpi_limb_t n1, n0, r;
mpi_limb_t dummy;
/* Botch: Should this be handled at all? Rely on callers? */
if (!dividend_size)
return 0;
/* If multiplication is much faster than division, and the
* dividend is large, pre-invert the divisor, and use
* only multiplications in the inner loop.
*
* This test should be read:
* Does it ever help to use udiv_qrnnd_preinv?
* && Does what we save compensate for the inversion overhead?
*/
if (UDIV_TIME > (2 * UMUL_TIME + 6)
&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
int normalization_steps;
normalization_steps = count_leading_zeros(divisor_limb);
if (normalization_steps) {
mpi_limb_t divisor_limb_inverted;
divisor_limb <<= normalization_steps;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
* most significant bit (with weight 2**N) implicit.
*
* Special case for DIVISOR_LIMB == 100...000.
*/
if (!(divisor_limb << 1))
divisor_limb_inverted = ~(mpi_limb_t)0;
else
udiv_qrnnd(divisor_limb_inverted, dummy,
-divisor_limb, 0, divisor_limb);
n1 = dividend_ptr[dividend_size - 1];
r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
/* Possible optimization:
* if (r == 0
* && divisor_limb > ((n1 << normalization_steps)
* | (dividend_ptr[dividend_size - 2] >> ...)))
* ...one division less...
*/
for (i = dividend_size - 2; i >= 0; i--) {
n0 = dividend_ptr[i];
UDIV_QRNND_PREINV(dummy, r, r,
((n1 << normalization_steps)
| (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
divisor_limb, divisor_limb_inverted);
n1 = n0;
}
UDIV_QRNND_PREINV(dummy, r, r,
n1 << normalization_steps,
divisor_limb, divisor_limb_inverted);
return r >> normalization_steps;
} else {
mpi_limb_t divisor_limb_inverted;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
* most significant bit (with weight 2**N) implicit.
*
* Special case for DIVISOR_LIMB == 100...000.
*/
if (!(divisor_limb << 1))
divisor_limb_inverted = ~(mpi_limb_t)0;
else
udiv_qrnnd(divisor_limb_inverted, dummy,
-divisor_limb, 0, divisor_limb);
i = dividend_size - 1;
r = dividend_ptr[i];
if (r >= divisor_limb)
r = 0;
else
i--;
for ( ; i >= 0; i--) {
n0 = dividend_ptr[i];
UDIV_QRNND_PREINV(dummy, r, r,
n0, divisor_limb, divisor_limb_inverted);
}
return r;
}
} else {
if (UDIV_NEEDS_NORMALIZATION) {
int normalization_steps;
normalization_steps = count_leading_zeros(divisor_limb);
if (normalization_steps) {
divisor_limb <<= normalization_steps;
n1 = dividend_ptr[dividend_size - 1];
r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
/* Possible optimization:
* if (r == 0
* && divisor_limb > ((n1 << normalization_steps)
* | (dividend_ptr[dividend_size - 2] >> ...)))
* ...one division less...
*/
for (i = dividend_size - 2; i >= 0; i--) {
n0 = dividend_ptr[i];
udiv_qrnnd(dummy, r, r,
((n1 << normalization_steps)
| (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
divisor_limb);
n1 = n0;
}
udiv_qrnnd(dummy, r, r,
n1 << normalization_steps,
divisor_limb);
return r >> normalization_steps;
}
}
/* No normalization needed, either because udiv_qrnnd doesn't require
* it, or because DIVISOR_LIMB is already normalized.
*/
i = dividend_size - 1;
r = dividend_ptr[i];
if (r >= divisor_limb)
r = 0;
else
i--;
for (; i >= 0; i--) {
n0 = dividend_ptr[i];
udiv_qrnnd(dummy, r, r, n0, divisor_limb);
}
return r;
}
}
/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
* the NSIZE-DSIZE least significant quotient limbs at QP
* and the DSIZE long remainder at NP. If QEXTRA_LIMBS is
......@@ -221,3 +365,153 @@ mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,
return most_significant_q_limb;
}
/****************
* Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
* Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
* Return the single-limb remainder.
* There are no constraints on the value of the divisor.
*
* QUOT_PTR and DIVIDEND_PTR might point to the same limb.
*/
mpi_limb_t
mpihelp_divmod_1(mpi_ptr_t quot_ptr,
mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
mpi_limb_t divisor_limb)
{
mpi_size_t i;
mpi_limb_t n1, n0, r;
mpi_limb_t dummy;
if (!dividend_size)
return 0;
/* If multiplication is much faster than division, and the
* dividend is large, pre-invert the divisor, and use
* only multiplications in the inner loop.
*
* This test should be read:
* Does it ever help to use udiv_qrnnd_preinv?
* && Does what we save compensate for the inversion overhead?
*/
if (UDIV_TIME > (2 * UMUL_TIME + 6)
&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
int normalization_steps;
normalization_steps = count_leading_zeros(divisor_limb);
if (normalization_steps) {
mpi_limb_t divisor_limb_inverted;
divisor_limb <<= normalization_steps;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
* most significant bit (with weight 2**N) implicit.
*/
/* Special case for DIVISOR_LIMB == 100...000. */
if (!(divisor_limb << 1))
divisor_limb_inverted = ~(mpi_limb_t)0;
else
udiv_qrnnd(divisor_limb_inverted, dummy,
-divisor_limb, 0, divisor_limb);
n1 = dividend_ptr[dividend_size - 1];
r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
/* Possible optimization:
* if (r == 0
* && divisor_limb > ((n1 << normalization_steps)
* | (dividend_ptr[dividend_size - 2] >> ...)))
* ...one division less...
*/
for (i = dividend_size - 2; i >= 0; i--) {
n0 = dividend_ptr[i];
UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r,
((n1 << normalization_steps)
| (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
divisor_limb, divisor_limb_inverted);
n1 = n0;
}
UDIV_QRNND_PREINV(quot_ptr[0], r, r,
n1 << normalization_steps,
divisor_limb, divisor_limb_inverted);
return r >> normalization_steps;
} else {
mpi_limb_t divisor_limb_inverted;
/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
* result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
* most significant bit (with weight 2**N) implicit.
*/
/* Special case for DIVISOR_LIMB == 100...000. */
if (!(divisor_limb << 1))
divisor_limb_inverted = ~(mpi_limb_t) 0;
else
udiv_qrnnd(divisor_limb_inverted, dummy,
-divisor_limb, 0, divisor_limb);
i = dividend_size - 1;
r = dividend_ptr[i];
if (r >= divisor_limb)
r = 0;
else
quot_ptr[i--] = 0;
for ( ; i >= 0; i--) {
n0 = dividend_ptr[i];
UDIV_QRNND_PREINV(quot_ptr[i], r, r,
n0, divisor_limb, divisor_limb_inverted);
}
return r;
}
} else {
if (UDIV_NEEDS_NORMALIZATION) {
int normalization_steps;
normalization_steps = count_leading_zeros(divisor_limb);
if (normalization_steps) {
divisor_limb <<= normalization_steps;
n1 = dividend_ptr[dividend_size - 1];
r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
/* Possible optimization:
* if (r == 0
* && divisor_limb > ((n1 << normalization_steps)
* | (dividend_ptr[dividend_size - 2] >> ...)))
* ...one division less...
*/
for (i = dividend_size - 2; i >= 0; i--) {
n0 = dividend_ptr[i];
udiv_qrnnd(quot_ptr[i + 1], r, r,
((n1 << normalization_steps)
| (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
divisor_limb);
n1 = n0;
}
udiv_qrnnd(quot_ptr[0], r, r,
n1 << normalization_steps,
divisor_limb);
return r >> normalization_steps;
}
}
/* No normalization needed, either because udiv_qrnnd doesn't require
* it, or because DIVISOR_LIMB is already normalized.
*/
i = dividend_size - 1;
r = dividend_ptr[i];
if (r >= divisor_limb)
r = 0;
else
quot_ptr[i--] = 0;
for (; i >= 0; i--) {
n0 = dividend_ptr[i];
udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb);
}
return r;
}
}
......@@ -317,6 +317,31 @@ mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
}
}
void mpihelp_mul_n(mpi_ptr_t prodp,
mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
{
if (up == vp) {
if (size < KARATSUBA_THRESHOLD)
mpih_sqr_n_basecase(prodp, up, size);
else {
mpi_ptr_t tspace;
tspace = mpi_alloc_limb_space(2 * size);
mpih_sqr_n(prodp, up, size, tspace);
mpi_free_limb_space(tspace);
}
} else {
if (size < KARATSUBA_THRESHOLD)
mul_n_basecase(prodp, up, vp, size);
else {
mpi_ptr_t tspace;
tspace = mpi_alloc_limb_space(2 * size);
mul_n(prodp, up, vp, size, tspace);
mpi_free_limb_space(tspace);
}
}
}
int
mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,
mpi_ptr_t up, mpi_size_t usize,
......
......@@ -20,6 +20,63 @@
#include "mpi-internal.h"
/* Constants allocated right away at startup. */
static MPI constants[MPI_NUMBER_OF_CONSTANTS];
/* Initialize the MPI subsystem. This is called early and allows to
* do some initialization without taking care of threading issues.
*/
static int __init mpi_init(void)
{
int idx;
unsigned long value;
for (idx = 0; idx < MPI_NUMBER_OF_CONSTANTS; idx++) {
switch (idx) {
case MPI_C_ZERO:
value = 0;
break;
case MPI_C_ONE:
value = 1;
break;
case MPI_C_TWO:
value = 2;
break;
case MPI_C_THREE:
value = 3;
break;
case MPI_C_FOUR:
value = 4;
break;
case MPI_C_EIGHT:
value = 8;
break;
default:
pr_err("MPI: invalid mpi_const selector %d\n", idx);
return -EFAULT;
}
constants[idx] = mpi_alloc_set_ui(value);
constants[idx]->flags = (16|32);
}
return 0;
}
postcore_initcall(mpi_init);
/* Return a constant MPI descripbed by NO which is one of the
* MPI_C_xxx macros. There is no need to copy this returned value; it
* may be used directly.
*/
MPI mpi_const(enum gcry_mpi_constants no)
{
if ((int)no < 0 || no > MPI_NUMBER_OF_CONSTANTS)
pr_err("MPI: invalid mpi_const selector %d\n", no);
if (!constants[no])
pr_err("MPI: MPI subsystem not initialized\n");
return constants[no];
}
EXPORT_SYMBOL_GPL(mpi_const);
/****************
* Note: It was a bad idea to use the number of limbs to allocate
* because on a alpha the limbs are large but we normally need
......@@ -106,6 +163,15 @@ int mpi_resize(MPI a, unsigned nlimbs)
return 0;
}
void mpi_clear(MPI a)
{
if (!a)
return;
a->nlimbs = 0;
a->flags = 0;
}
EXPORT_SYMBOL_GPL(mpi_clear);
void mpi_free(MPI a)
{
if (!a)
......@@ -122,5 +188,143 @@ void mpi_free(MPI a)
}
EXPORT_SYMBOL_GPL(mpi_free);
/****************
* Note: This copy function should not interpret the MPI
* but copy it transparently.
*/
MPI mpi_copy(MPI a)
{
int i;
MPI b;
if (a) {
b = mpi_alloc(a->nlimbs);
b->nlimbs = a->nlimbs;
b->sign = a->sign;
b->flags = a->flags;
b->flags &= ~(16|32); /* Reset the immutable and constant flags. */
for (i = 0; i < b->nlimbs; i++)
b->d[i] = a->d[i];
} else
b = NULL;
return b;
}
/****************
* This function allocates an MPI which is optimized to hold
* a value as large as the one given in the argument and allocates it
* with the same flags as A.
*/
MPI mpi_alloc_like(MPI a)
{
MPI b;
if (a) {
b = mpi_alloc(a->nlimbs);
b->nlimbs = 0;
b->sign = 0;
b->flags = a->flags;
} else
b = NULL;
return b;
}
/* Set U into W and release U. If W is NULL only U will be released. */
void mpi_snatch(MPI w, MPI u)
{
if (w) {
mpi_assign_limb_space(w, u->d, u->alloced);
w->nlimbs = u->nlimbs;
w->sign = u->sign;
w->flags = u->flags;
u->alloced = 0;
u->nlimbs = 0;
u->d = NULL;
}
mpi_free(u);
}
MPI mpi_set(MPI w, MPI u)
{
mpi_ptr_t wp, up;
mpi_size_t usize = u->nlimbs;
int usign = u->sign;
if (!w)
w = mpi_alloc(mpi_get_nlimbs(u));
RESIZE_IF_NEEDED(w, usize);
wp = w->d;
up = u->d;
MPN_COPY(wp, up, usize);
w->nlimbs = usize;
w->flags = u->flags;
w->flags &= ~(16|32); /* Reset the immutable and constant flags. */
w->sign = usign;
return w;
}
EXPORT_SYMBOL_GPL(mpi_set);
MPI mpi_set_ui(MPI w, unsigned long u)
{
if (!w)
w = mpi_alloc(1);
/* FIXME: If U is 0 we have no need to resize and thus possible
* allocating the the limbs.
*/
RESIZE_IF_NEEDED(w, 1);
w->d[0] = u;
w->nlimbs = u ? 1 : 0;
w->sign = 0;
w->flags = 0;
return w;
}
EXPORT_SYMBOL_GPL(mpi_set_ui);
MPI mpi_alloc_set_ui(unsigned long u)
{
MPI w = mpi_alloc(1);
w->d[0] = u;
w->nlimbs = u ? 1 : 0;
w->sign = 0;
return w;
}
/****************
* Swap the value of A and B, when SWAP is 1.
* Leave the value when SWAP is 0.
* This implementation should be constant-time regardless of SWAP.
*/
void mpi_swap_cond(MPI a, MPI b, unsigned long swap)
{
mpi_size_t i;
mpi_size_t nlimbs;
mpi_limb_t mask = ((mpi_limb_t)0) - swap;
mpi_limb_t x;
if (a->alloced > b->alloced)
nlimbs = b->alloced;
else
nlimbs = a->alloced;
if (a->nlimbs > nlimbs || b->nlimbs > nlimbs)
return;
for (i = 0; i < nlimbs; i++) {
x = mask & (a->d[i] ^ b->d[i]);
a->d[i] = a->d[i] ^ x;
b->d[i] = b->d[i] ^ x;
}
x = mask & (a->nlimbs ^ b->nlimbs);
a->nlimbs = a->nlimbs ^ x;
b->nlimbs = b->nlimbs ^ x;
x = mask & (a->sign ^ b->sign);
a->sign = a->sign ^ x;
b->sign = b->sign ^ x;
}
MODULE_DESCRIPTION("Multiprecision maths library");
MODULE_LICENSE("GPL");
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册