提交 a8da474e 编写于 作者: D Daniel Axtens 提交者: Michael Ellerman

selftests/powerpc: Add script to test HMI functionality

HMIs (Hypervisor Management|Maintenance Interrupts) are a class of interrupt
on POWER systems.

HMI support has traditionally been exceptionally difficult to test, however
Skiboot ships a tool that, with the correct magic numbers, will inject them.

This, therefore, is a first pass at a script to inject HMIs and monitor
Linux's response. It injects an HMI on each core on every chip in turn
It then watches dmesg to see if it's acknowledged by Linux.

On a Tuletta, I observed that we see 8 (or sometimes 9 or more) events per
injection, regardless of SMT setting, so we wait for 8 before progressing.

It sits in a new scripts/ directory in selftests/powerpc, because it's not
designed to be run as part of the regular make selftests process. In
particular, it is quite possibly going to end up garding lots of your CPUs,
so it should only be run if you know how to undo that.

CC: Mahesh J Salgaonkar <mahesh.salgaonkar@in.ibm.com>
Signed-off-by: NDaniel Axtens <dja@axtens.net>
Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
上级 51c21e72
#!/bin/sh
#
# Copyright 2015, Daniel Axtens, IBM Corporation
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; version 2 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# do we have ./getscom, ./putscom?
if [ -x ./getscom ] && [ -x ./putscom ]; then
GETSCOM=./getscom
PUTSCOM=./putscom
elif which getscom > /dev/null; then
GETSCOM=$(which getscom)
PUTSCOM=$(which putscom)
else
cat <<EOF
Can't find getscom/putscom in . or \$PATH.
See https://github.com/open-power/skiboot.
The tool is in external/xscom-utils
EOF
exit 1
fi
# We will get 8 HMI events per injection
# todo: deal with things being offline
expected_hmis=8
COUNT_HMIS() {
dmesg | grep -c 'Harmless Hypervisor Maintenance interrupt'
}
# massively expand snooze delay, allowing injection on all cores
ppc64_cpu --smt-snooze-delay=1000000000
# when we exit, restore it
trap "ppc64_cpu --smt-snooze-delay=100" 0 1
# for each chip+core combination
# todo - less fragile parsing
egrep -o 'OCC: Chip [0-9a-f]+ Core [0-9a-f]' < /sys/firmware/opal/msglog |
while read chipcore; do
chip=$(echo "$chipcore"|awk '{print $3}')
core=$(echo "$chipcore"|awk '{print $5}')
fir="0x1${core}013100"
# verify that Core FIR is zero as expected
if [ "$($GETSCOM -c 0x${chip} $fir)" != 0 ]; then
echo "FIR was not zero before injection for chip $chip, core $core. Aborting!"
echo "Result of $GETSCOM -c 0x${chip} $fir:"
$GETSCOM -c 0x${chip} $fir
echo "If you get a -5 error, the core may be in idle state. Try stress-ng."
echo "Otherwise, try $PUTSCOM -c 0x${chip} $fir 0"
exit 1
fi
# keep track of the number of HMIs handled
old_hmis=$(COUNT_HMIS)
# do injection, adding a marker to dmesg for clarity
echo "Injecting HMI on core $core, chip $chip" | tee /dev/kmsg
# inject a RegFile recoverable error
if ! $PUTSCOM -c 0x${chip} $fir 2000000000000000 > /dev/null; then
echo "Error injecting. Aborting!"
exit 1
fi
# now we want to wait for all the HMIs to be processed
# we expect one per thread on the core
i=0;
new_hmis=$(COUNT_HMIS)
while [ $new_hmis -lt $((old_hmis + expected_hmis)) ] && [ $i -lt 12 ]; do
echo "Seen $((new_hmis - old_hmis)) HMI(s) out of $expected_hmis expected, sleeping"
sleep 5;
i=$((i + 1))
new_hmis=$(COUNT_HMIS)
done
if [ $i = 12 ]; then
echo "Haven't seen expected $expected_hmis recoveries after 1 min. Aborting."
exit 1
fi
echo "Processed $expected_hmis events; presumed success. Check dmesg."
echo ""
done
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册