提交 a48e789d 编写于 作者: D David S. Miller

Merge tag 'linux-can-next-for-5.20-20220703' of...

Merge tag 'linux-can-next-for-5.20-20220703' of git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can-next

Marc Kleine-Budde says:

====================
pull-request: can-next 2022-07-03

this is a pull request of 15 patches for net-next/master.

The first 2 patches are by Max Staudt and add the can327 serial CAN
driver along with a new line discipline ID.

The next patch is by me an fixes a typo in the ctucanfd driver.

The last 12 patches are by Dario Binacchi and integrate slcan CAN
serial driver better into the existing CAN driver API.
====================
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
can327: ELM327 driver for Linux SocketCAN
==========================================
Authors
--------
Max Staudt <max@enpas.org>
Motivation
-----------
This driver aims to lower the initial cost for hackers interested in
working with CAN buses.
CAN adapters are expensive, few, and far between.
ELM327 interfaces are cheap and plentiful.
Let's use ELM327s as CAN adapters.
Introduction
-------------
This driver is an effort to turn abundant ELM327 based OBD interfaces
into full fledged (as far as possible) CAN interfaces.
Since the ELM327 was never meant to be a stand alone CAN controller,
the driver has to switch between its modes as quickly as possible in
order to fake full-duplex operation.
As such, can327 is a best effort driver. However, this is more than
enough to implement simple request-response protocols (such as OBD II),
and to monitor broadcast messages on a bus (such as in a vehicle).
Most ELM327s come as nondescript serial devices, attached via USB or
Bluetooth. The driver cannot recognize them by itself, and as such it
is up to the user to attach it in form of a TTY line discipline
(similar to PPP, SLIP, slcan, ...).
This driver is meant for ELM327 versions 1.4b and up, see below for
known limitations in older controllers and clones.
Data sheet
-----------
The official data sheets can be found at ELM electronics' home page:
https://www.elmelectronics.com/
How to attach the line discipline
----------------------------------
Every ELM327 chip is factory programmed to operate at a serial setting
of 38400 baud/s, 8 data bits, no parity, 1 stopbit.
If you have kept this default configuration, the line discipline can
be attached on a command prompt as follows::
sudo ldattach \
--debug \
--speed 38400 \
--eightbits \
--noparity \
--onestopbit \
--iflag -ICRNL,INLCR,-IXOFF \
30 \
/dev/ttyUSB0
To change the ELM327's serial settings, please refer to its data
sheet. This needs to be done before attaching the line discipline.
Once the ldisc is attached, the CAN interface starts out unconfigured.
Set the speed before starting it::
# The interface needs to be down to change parameters
sudo ip link set can0 down
sudo ip link set can0 type can bitrate 500000
sudo ip link set can0 up
500000 bit/s is a common rate for OBD-II diagnostics.
If you're connecting straight to a car's OBD port, this is the speed
that most cars (but not all!) expect.
After this, you can set out as usual with candump, cansniffer, etc.
How to check the controller version
------------------------------------
Use a terminal program to attach to the controller.
After issuing the "``AT WS``" command, the controller will respond with
its version::
>AT WS
ELM327 v1.4b
>
Note that clones may claim to be any version they like.
It is not indicative of their actual feature set.
Communication example
----------------------
This is a short and incomplete introduction on how to talk to an ELM327.
It is here to guide understanding of the controller's and the driver's
limitation (listed below) as well as manual testing.
The ELM327 has two modes:
- Command mode
- Reception mode
In command mode, it expects one command per line, terminated by CR.
By default, the prompt is a "``>``", after which a command can be
entered::
>ATE1
OK
>
The init script in the driver switches off several configuration options
that are only meaningful in the original OBD scenario the chip is meant
for, and are actually a hindrance for can327.
When a command is not recognized, such as by an older version of the
ELM327, a question mark is printed as a response instead of OK::
>ATUNKNOWN
?
>
At present, can327 does not evaluate this response. See the section
below on known limitations for details.
When a CAN frame is to be sent, the target address is configured, after
which the frame is sent as a command that consists of the data's hex
dump::
>ATSH123
OK
>DEADBEEF12345678
OK
>
The above interaction sends the SFF frame "``DE AD BE EF 12 34 56 78``"
with (11 bit) CAN ID ``0x123``.
For this to function, the controller must be configured for SFF sending
mode (using "``AT PB``", see code or datasheet).
Once a frame has been sent and wait-for-reply mode is on (``ATR1``,
configured on ``listen-only=off``), or when the reply timeout expires
and the driver sets the controller into monitoring mode (``ATMA``),
the ELM327 will send one line for each received CAN frame, consisting
of CAN ID, DLC, and data::
123 8 DEADBEEF12345678
For EFF (29 bit) CAN frames, the address format is slightly different,
which can327 uses to tell the two apart::
12 34 56 78 8 DEADBEEF12345678
The ELM327 will receive both SFF and EFF frames - the current CAN
config (``ATPB``) does not matter.
If the ELM327's internal UART sending buffer runs full, it will abort
the monitoring mode, print "BUFFER FULL" and drop back into command
mode. Note that in this case, unlike with other error messages, the
error message may appear on the same line as the last (usually
incomplete) data frame::
12 34 56 78 8 DEADBEEF123 BUFFER FULL
Known limitations of the controller
------------------------------------
- Clone devices ("v1.5" and others)
Sending RTR frames is not supported and will be dropped silently.
Receiving RTR with DLC 8 will appear to be a regular frame with
the last received frame's DLC and payload.
"``AT CSM``" (CAN Silent Monitoring, i.e. don't send CAN ACKs) is
not supported, and is hard coded to ON. Thus, frames are not ACKed
while listening: "``AT MA``" (Monitor All) will always be "silent".
However, immediately after sending a frame, the ELM327 will be in
"receive reply" mode, in which it *does* ACK any received frames.
Once the bus goes silent, or an error occurs (such as BUFFER FULL),
or the receive reply timeout runs out, the ELM327 will end reply
reception mode on its own and can327 will fall back to "``AT MA``"
in order to keep monitoring the bus.
Other limitations may apply, depending on the clone and the quality
of its firmware.
- All versions
No full duplex operation is supported. The driver will switch
between input/output mode as quickly as possible.
The length of outgoing RTR frames cannot be set. In fact, some
clones (tested with one identifying as "``v1.5``") are unable to
send RTR frames at all.
We don't have a way to get real-time notifications on CAN errors.
While there is a command (``AT CS``) to retrieve some basic stats,
we don't poll it as it would force us to interrupt reception mode.
- Versions prior to 1.4b
These versions do not send CAN ACKs when in monitoring mode (AT MA).
However, they do send ACKs while waiting for a reply immediately
after sending a frame. The driver maximizes this time to make the
controller as useful as possible.
Starting with version 1.4b, the ELM327 supports the "``AT CSM``"
command, and the "listen-only" CAN option will take effect.
- Versions prior to 1.4
These chips do not support the "``AT PB``" command, and thus cannot
change bitrate or SFF/EFF mode on-the-fly. This will have to be
programmed by the user before attaching the line discipline. See the
data sheet for details.
- Versions prior to 1.3
These chips cannot be used at all with can327. They do not support
the "``AT D1``" command, which is necessary to avoid parsing conflicts
on incoming data, as well as distinction of RTR frame lengths.
Specifically, this allows for easy distinction of SFF and EFF
frames, and to check whether frames are complete. While it is possible
to deduce the type and length from the length of the line the ELM327
sends us, this method fails when the ELM327's UART output buffer
overruns. It may abort sending in the middle of the line, which will
then be mistaken for something else.
Known limitations of the driver
--------------------------------
- No 8/7 timing.
ELM327 can only set CAN bitrates that are of the form 500000/n, where
n is an integer divisor.
However there is an exception: With a separate flag, it may set the
speed to be 8/7 of the speed indicated by the divisor.
This mode is not currently implemented.
- No evaluation of command responses.
The ELM327 will reply with OK when a command is understood, and with ?
when it is not. The driver does not currently check this, and simply
assumes that the chip understands every command.
The driver is built such that functionality degrades gracefully
nevertheless. See the section on known limitations of the controller.
- No use of hardware CAN ID filtering
An ELM327's UART sending buffer will easily overflow on heavy CAN bus
load, resulting in the "``BUFFER FULL``" message. Using the hardware
filters available through "``AT CF xxx``" and "``AT CM xxx``" would be
helpful here, however SocketCAN does not currently provide a facility
to make use of such hardware features.
Rationale behind the chosen configuration
------------------------------------------
``AT E1``
Echo on
We need this to be able to get a prompt reliably.
``AT S1``
Spaces on
We need this to distinguish 11/29 bit CAN addresses received.
Note:
We can usually do this using the line length (odd/even),
but this fails if the line is not transmitted fully to
the host (BUFFER FULL).
``AT D1``
DLC on
We need this to tell the "length" of RTR frames.
A note on CAN bus termination
------------------------------
Your adapter may have resistors soldered in which are meant to terminate
the bus. This is correct when it is plugged into a OBD-II socket, but
not helpful when trying to tap into the middle of an existing CAN bus.
If communications don't work with the adapter connected, check for the
termination resistors on its PCB and try removing them.
......@@ -10,6 +10,7 @@ Contents:
.. toctree::
:maxdepth: 2
can327
ctu/ctucanfd-driver
freescale/flexcan
......
......@@ -7320,6 +7320,13 @@ L: netdev@vger.kernel.org
S: Maintained
F: drivers/net/ethernet/ibm/ehea/
ELM327 CAN NETWORK DRIVER
M: Max Staudt <max@enpas.org>
L: linux-can@vger.kernel.org
S: Maintained
F: Documentation/networking/device_drivers/can/can327.rst
F: drivers/net/can/can327.c
EM28XX VIDEO4LINUX DRIVER
M: Mauro Carvalho Chehab <mchehab@kernel.org>
L: linux-media@vger.kernel.org
......
......@@ -49,26 +49,6 @@ config CAN_VXCAN
This driver can also be built as a module. If so, the module
will be called vxcan.
config CAN_SLCAN
tristate "Serial / USB serial CAN Adaptors (slcan)"
depends on TTY
help
CAN driver for several 'low cost' CAN interfaces that are attached
via serial lines or via USB-to-serial adapters using the LAWICEL
ASCII protocol. The driver implements the tty linediscipline N_SLCAN.
As only the sending and receiving of CAN frames is implemented, this
driver should work with the (serial/USB) CAN hardware from:
www.canusb.com / www.can232.com / www.mictronics.de / www.canhack.de
Userspace tools to attach the SLCAN line discipline (slcan_attach,
slcand) can be found in the can-utils at the linux-can project, see
https://github.com/linux-can/can-utils for details.
The slcan driver supports up to 10 CAN netdevices by default which
can be changed by the 'maxdev=xx' module option. This driver can
also be built as a module. If so, the module will be called slcan.
config CAN_NETLINK
bool "CAN device drivers with Netlink support"
default y
......@@ -113,6 +93,24 @@ config CAN_AT91
This is a driver for the SoC CAN controller in Atmel's AT91SAM9263
and AT91SAM9X5 processors.
config CAN_CAN327
tristate "Serial / USB serial ELM327 based OBD-II Interfaces (can327)"
depends on TTY
select CAN_RX_OFFLOAD
help
CAN driver for several 'low cost' OBD-II interfaces based on the
ELM327 OBD-II interpreter chip.
This is a best effort driver - the ELM327 interface was never
designed to be used as a standalone CAN interface. However, it can
still be used for simple request-response protocols (such as OBD II),
and to monitor broadcast messages on a bus (such as in a vehicle).
Please refer to the documentation for information on how to use it:
Documentation/networking/device_drivers/can/can327.rst
If this driver is built as a module, it will be called can327.
config CAN_FLEXCAN
tristate "Support for Freescale FLEXCAN based chips"
depends on OF || COLDFIRE || COMPILE_TEST
......@@ -154,6 +152,26 @@ config CAN_KVASER_PCIEFD
Kvaser Mini PCI Express HS v2
Kvaser Mini PCI Express 2xHS v2
config CAN_SLCAN
tristate "Serial / USB serial CAN Adaptors (slcan)"
depends on TTY
help
CAN driver for several 'low cost' CAN interfaces that are attached
via serial lines or via USB-to-serial adapters using the LAWICEL
ASCII protocol. The driver implements the tty linediscipline N_SLCAN.
As only the sending and receiving of CAN frames is implemented, this
driver should work with the (serial/USB) CAN hardware from:
www.canusb.com / www.can232.com / www.mictronics.de / www.canhack.de
Userspace tools to attach the SLCAN line discipline (slcan_attach,
slcand) can be found in the can-utils at the linux-can project, see
https://github.com/linux-can/can-utils for details.
The slcan driver supports up to 10 CAN netdevices by default which
can be changed by the 'maxdev=xx' module option. This driver can
also be built as a module. If so, the module will be called slcan.
config CAN_SUN4I
tristate "Allwinner A10 CAN controller"
depends on MACH_SUN4I || MACH_SUN7I || COMPILE_TEST
......
......@@ -5,7 +5,7 @@
obj-$(CONFIG_CAN_VCAN) += vcan.o
obj-$(CONFIG_CAN_VXCAN) += vxcan.o
obj-$(CONFIG_CAN_SLCAN) += slcan.o
obj-$(CONFIG_CAN_SLCAN) += slcan/
obj-y += dev/
obj-y += rcar/
......@@ -14,6 +14,7 @@ obj-y += usb/
obj-y += softing/
obj-$(CONFIG_CAN_AT91) += at91_can.o
obj-$(CONFIG_CAN_CAN327) += can327.o
obj-$(CONFIG_CAN_CC770) += cc770/
obj-$(CONFIG_CAN_C_CAN) += c_can/
obj-$(CONFIG_CAN_CTUCANFD) += ctucanfd/
......
此差异已折叠。
......@@ -1087,7 +1087,7 @@ static void ctucan_tx_interrupt(struct net_device *ndev)
/**
* ctucan_interrupt() - CAN Isr
* @irq: irq number
* @dev_id: device id poniter
* @dev_id: device id pointer
*
* This is the CTU CAN FD ISR. It checks for the type of interrupt
* and invokes the corresponding ISR.
......
......@@ -511,7 +511,8 @@ static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
if (priv->do_get_state)
priv->do_get_state(dev, &state);
if ((priv->bittiming.bitrate &&
if ((priv->bittiming.bitrate != CAN_BITRATE_UNSET &&
priv->bittiming.bitrate != CAN_BITRATE_UNKNOWN &&
nla_put(skb, IFLA_CAN_BITTIMING,
sizeof(priv->bittiming), &priv->bittiming)) ||
......
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_CAN_SLCAN) += slcan.o
slcan-objs :=
slcan-objs += slcan-core.o
slcan-objs += slcan-ethtool.o
......@@ -54,8 +54,10 @@
#include <linux/kernel.h>
#include <linux/workqueue.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/skb.h>
#include <linux/can/can-ml.h>
#include "slcan.h"
MODULE_ALIAS_LDISC(N_SLCAN);
MODULE_DESCRIPTION("serial line CAN interface");
......@@ -76,8 +78,13 @@ MODULE_PARM_DESC(maxdev, "Maximum number of slcan interfaces");
#define SLC_CMD_LEN 1
#define SLC_SFF_ID_LEN 3
#define SLC_EFF_ID_LEN 8
#define SLC_STATE_LEN 1
#define SLC_STATE_BE_RXCNT_LEN 3
#define SLC_STATE_BE_TXCNT_LEN 3
#define SLC_STATE_FRAME_LEN (1 + SLC_CMD_LEN + SLC_STATE_BE_RXCNT_LEN + \
SLC_STATE_BE_TXCNT_LEN)
struct slcan {
struct can_priv can;
int magic;
/* Various fields. */
......@@ -96,10 +103,42 @@ struct slcan {
unsigned long flags; /* Flag values/ mode etc */
#define SLF_INUSE 0 /* Channel in use */
#define SLF_ERROR 1 /* Parity, etc. error */
#define SLF_XCMD 2 /* Command transmission */
unsigned long cmd_flags; /* Command flags */
#define CF_ERR_RST 0 /* Reset errors on open */
wait_queue_head_t xcmd_wait; /* Wait queue for commands */
/* transmission */
};
static struct net_device **slcan_devs;
static const u32 slcan_bitrate_const[] = {
10000, 20000, 50000, 100000, 125000,
250000, 500000, 800000, 1000000
};
bool slcan_err_rst_on_open(struct net_device *ndev)
{
struct slcan *sl = netdev_priv(ndev);
return !!test_bit(CF_ERR_RST, &sl->cmd_flags);
}
int slcan_enable_err_rst_on_open(struct net_device *ndev, bool on)
{
struct slcan *sl = netdev_priv(ndev);
if (netif_running(ndev))
return -EBUSY;
if (on)
set_bit(CF_ERR_RST, &sl->cmd_flags);
else
clear_bit(CF_ERR_RST, &sl->cmd_flags);
return 0;
}
/************************************************************************
* SLCAN ENCAPSULATION FORMAT *
************************************************************************/
......@@ -140,88 +179,289 @@ static struct net_device **slcan_devs;
************************************************************************/
/* Send one completely decapsulated can_frame to the network layer */
static void slc_bump(struct slcan *sl)
static void slc_bump_frame(struct slcan *sl)
{
struct sk_buff *skb;
struct can_frame cf;
struct can_frame *cf;
int i, tmp;
u32 tmpid;
char *cmd = sl->rbuff;
memset(&cf, 0, sizeof(cf));
skb = alloc_can_skb(sl->dev, &cf);
if (unlikely(!skb)) {
sl->dev->stats.rx_dropped++;
return;
}
switch (*cmd) {
case 'r':
cf.can_id = CAN_RTR_FLAG;
cf->can_id = CAN_RTR_FLAG;
fallthrough;
case 't':
/* store dlc ASCII value and terminate SFF CAN ID string */
cf.len = sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN];
cf->len = sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN];
sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN] = 0;
/* point to payload data behind the dlc */
cmd += SLC_CMD_LEN + SLC_SFF_ID_LEN + 1;
break;
case 'R':
cf.can_id = CAN_RTR_FLAG;
cf->can_id = CAN_RTR_FLAG;
fallthrough;
case 'T':
cf.can_id |= CAN_EFF_FLAG;
cf->can_id |= CAN_EFF_FLAG;
/* store dlc ASCII value and terminate EFF CAN ID string */
cf.len = sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN];
cf->len = sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN];
sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN] = 0;
/* point to payload data behind the dlc */
cmd += SLC_CMD_LEN + SLC_EFF_ID_LEN + 1;
break;
default:
return;
goto decode_failed;
}
if (kstrtou32(sl->rbuff + SLC_CMD_LEN, 16, &tmpid))
return;
goto decode_failed;
cf.can_id |= tmpid;
cf->can_id |= tmpid;
/* get len from sanitized ASCII value */
if (cf.len >= '0' && cf.len < '9')
cf.len -= '0';
if (cf->len >= '0' && cf->len < '9')
cf->len -= '0';
else
return;
goto decode_failed;
/* RTR frames may have a dlc > 0 but they never have any data bytes */
if (!(cf.can_id & CAN_RTR_FLAG)) {
for (i = 0; i < cf.len; i++) {
if (!(cf->can_id & CAN_RTR_FLAG)) {
for (i = 0; i < cf->len; i++) {
tmp = hex_to_bin(*cmd++);
if (tmp < 0)
return;
cf.data[i] = (tmp << 4);
goto decode_failed;
cf->data[i] = (tmp << 4);
tmp = hex_to_bin(*cmd++);
if (tmp < 0)
return;
cf.data[i] |= tmp;
goto decode_failed;
cf->data[i] |= tmp;
}
}
skb = dev_alloc_skb(sizeof(struct can_frame) +
sizeof(struct can_skb_priv));
if (!skb)
sl->dev->stats.rx_packets++;
if (!(cf->can_id & CAN_RTR_FLAG))
sl->dev->stats.rx_bytes += cf->len;
netif_rx(skb);
return;
decode_failed:
sl->dev->stats.rx_errors++;
dev_kfree_skb(skb);
}
/* A change state frame must contain state info and receive and transmit
* error counters.
*
* Examples:
*
* sb256256 : state bus-off: rx counter 256, tx counter 256
* sa057033 : state active, rx counter 57, tx counter 33
*/
static void slc_bump_state(struct slcan *sl)
{
struct net_device *dev = sl->dev;
struct sk_buff *skb;
struct can_frame *cf;
char *cmd = sl->rbuff;
u32 rxerr, txerr;
enum can_state state, rx_state, tx_state;
switch (cmd[1]) {
case 'a':
state = CAN_STATE_ERROR_ACTIVE;
break;
case 'w':
state = CAN_STATE_ERROR_WARNING;
break;
case 'p':
state = CAN_STATE_ERROR_PASSIVE;
break;
case 'b':
state = CAN_STATE_BUS_OFF;
break;
default:
return;
}
if (state == sl->can.state || sl->rcount < SLC_STATE_FRAME_LEN)
return;
skb->dev = sl->dev;
skb->protocol = htons(ETH_P_CAN);
skb->pkt_type = PACKET_BROADCAST;
skb->ip_summed = CHECKSUM_UNNECESSARY;
cmd += SLC_STATE_BE_RXCNT_LEN + SLC_CMD_LEN + 1;
cmd[SLC_STATE_BE_TXCNT_LEN] = 0;
if (kstrtou32(cmd, 10, &txerr))
return;
can_skb_reserve(skb);
can_skb_prv(skb)->ifindex = sl->dev->ifindex;
can_skb_prv(skb)->skbcnt = 0;
*cmd = 0;
cmd -= SLC_STATE_BE_RXCNT_LEN;
if (kstrtou32(cmd, 10, &rxerr))
return;
skb_put_data(skb, &cf, sizeof(struct can_frame));
skb = alloc_can_err_skb(dev, &cf);
if (skb) {
cf->data[6] = txerr;
cf->data[7] = rxerr;
} else {
cf = NULL;
}
sl->dev->stats.rx_packets++;
if (!(cf.can_id & CAN_RTR_FLAG))
sl->dev->stats.rx_bytes += cf.len;
tx_state = txerr >= rxerr ? state : 0;
rx_state = txerr <= rxerr ? state : 0;
can_change_state(dev, cf, tx_state, rx_state);
netif_rx(skb);
if (state == CAN_STATE_BUS_OFF)
can_bus_off(dev);
if (skb)
netif_rx(skb);
}
/* An error frame can contain more than one type of error.
*
* Examples:
*
* e1a : len 1, errors: ACK error
* e3bcO: len 3, errors: Bit0 error, CRC error, Tx overrun error
*/
static void slc_bump_err(struct slcan *sl)
{
struct net_device *dev = sl->dev;
struct sk_buff *skb;
struct can_frame *cf;
char *cmd = sl->rbuff;
bool rx_errors = false, tx_errors = false, rx_over_errors = false;
int i, len;
/* get len from sanitized ASCII value */
len = cmd[1];
if (len >= '0' && len < '9')
len -= '0';
else
return;
if ((len + SLC_CMD_LEN + 1) > sl->rcount)
return;
skb = alloc_can_err_skb(dev, &cf);
if (skb)
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
cmd += SLC_CMD_LEN + 1;
for (i = 0; i < len; i++, cmd++) {
switch (*cmd) {
case 'a':
netdev_dbg(dev, "ACK error\n");
tx_errors = true;
if (skb) {
cf->can_id |= CAN_ERR_ACK;
cf->data[3] = CAN_ERR_PROT_LOC_ACK;
}
break;
case 'b':
netdev_dbg(dev, "Bit0 error\n");
tx_errors = true;
if (skb)
cf->data[2] |= CAN_ERR_PROT_BIT0;
break;
case 'B':
netdev_dbg(dev, "Bit1 error\n");
tx_errors = true;
if (skb)
cf->data[2] |= CAN_ERR_PROT_BIT1;
break;
case 'c':
netdev_dbg(dev, "CRC error\n");
rx_errors = true;
if (skb) {
cf->data[2] |= CAN_ERR_PROT_BIT;
cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
}
break;
case 'f':
netdev_dbg(dev, "Form Error\n");
rx_errors = true;
if (skb)
cf->data[2] |= CAN_ERR_PROT_FORM;
break;
case 'o':
netdev_dbg(dev, "Rx overrun error\n");
rx_over_errors = true;
rx_errors = true;
if (skb) {
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
}
break;
case 'O':
netdev_dbg(dev, "Tx overrun error\n");
tx_errors = true;
if (skb) {
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = CAN_ERR_CRTL_TX_OVERFLOW;
}
break;
case 's':
netdev_dbg(dev, "Stuff error\n");
rx_errors = true;
if (skb)
cf->data[2] |= CAN_ERR_PROT_STUFF;
break;
default:
if (skb)
dev_kfree_skb(skb);
return;
}
}
if (rx_errors)
dev->stats.rx_errors++;
if (rx_over_errors)
dev->stats.rx_over_errors++;
if (tx_errors)
dev->stats.tx_errors++;
if (skb)
netif_rx(skb);
}
static void slc_bump(struct slcan *sl)
{
switch (sl->rbuff[0]) {
case 'r':
fallthrough;
case 't':
fallthrough;
case 'R':
fallthrough;
case 'T':
return slc_bump_frame(sl);
case 'e':
return slc_bump_err(sl);
case 's':
return slc_bump_state(sl);
default:
return;
}
}
/* parse tty input stream */
......@@ -318,12 +558,22 @@ static void slcan_transmit(struct work_struct *work)
spin_lock_bh(&sl->lock);
/* First make sure we're connected. */
if (!sl->tty || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev)) {
if (!sl->tty || sl->magic != SLCAN_MAGIC ||
(unlikely(!netif_running(sl->dev)) &&
likely(!test_bit(SLF_XCMD, &sl->flags)))) {
spin_unlock_bh(&sl->lock);
return;
}
if (sl->xleft <= 0) {
if (unlikely(test_bit(SLF_XCMD, &sl->flags))) {
clear_bit(SLF_XCMD, &sl->flags);
clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
spin_unlock_bh(&sl->lock);
wake_up(&sl->xcmd_wait);
return;
}
/* Now serial buffer is almost free & we can start
* transmission of another packet */
sl->dev->stats.tx_packets++;
......@@ -365,7 +615,7 @@ static netdev_tx_t slc_xmit(struct sk_buff *skb, struct net_device *dev)
spin_lock(&sl->lock);
if (!netif_running(dev)) {
spin_unlock(&sl->lock);
printk(KERN_WARNING "%s: xmit: iface is down\n", dev->name);
netdev_warn(dev, "xmit: iface is down\n");
goto out;
}
if (sl->tty == NULL) {
......@@ -387,17 +637,63 @@ static netdev_tx_t slc_xmit(struct sk_buff *skb, struct net_device *dev)
* Routines looking at netdevice side.
******************************************/
static int slcan_transmit_cmd(struct slcan *sl, const unsigned char *cmd)
{
int ret, actual, n;
spin_lock(&sl->lock);
if (!sl->tty) {
spin_unlock(&sl->lock);
return -ENODEV;
}
n = snprintf(sl->xbuff, sizeof(sl->xbuff), "%s", cmd);
set_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
actual = sl->tty->ops->write(sl->tty, sl->xbuff, n);
sl->xleft = n - actual;
sl->xhead = sl->xbuff + actual;
set_bit(SLF_XCMD, &sl->flags);
spin_unlock(&sl->lock);
ret = wait_event_interruptible_timeout(sl->xcmd_wait,
!test_bit(SLF_XCMD, &sl->flags),
HZ);
clear_bit(SLF_XCMD, &sl->flags);
if (ret == -ERESTARTSYS)
return ret;
if (ret == 0)
return -ETIMEDOUT;
return 0;
}
/* Netdevice UP -> DOWN routine */
static int slc_close(struct net_device *dev)
{
struct slcan *sl = netdev_priv(dev);
int err;
spin_lock_bh(&sl->lock);
if (sl->tty) {
if (sl->can.bittiming.bitrate &&
sl->can.bittiming.bitrate != CAN_BITRATE_UNKNOWN) {
spin_unlock_bh(&sl->lock);
err = slcan_transmit_cmd(sl, "C\r");
spin_lock_bh(&sl->lock);
if (err)
netdev_warn(dev,
"failed to send close command 'C\\r'\n");
}
/* TTY discipline is running. */
clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
}
netif_stop_queue(dev);
close_candev(dev);
sl->can.state = CAN_STATE_STOPPED;
if (sl->can.bittiming.bitrate == CAN_BITRATE_UNKNOWN)
sl->can.bittiming.bitrate = CAN_BITRATE_UNSET;
sl->rcount = 0;
sl->xleft = 0;
spin_unlock_bh(&sl->lock);
......@@ -409,20 +705,77 @@ static int slc_close(struct net_device *dev)
static int slc_open(struct net_device *dev)
{
struct slcan *sl = netdev_priv(dev);
unsigned char cmd[SLC_MTU];
int err, s;
if (sl->tty == NULL)
return -ENODEV;
sl->flags &= (1 << SLF_INUSE);
/* The baud rate is not set with the command
* `ip link set <iface> type can bitrate <baud>' and therefore
* can.bittiming.bitrate is CAN_BITRATE_UNSET (0), causing
* open_candev() to fail. So let's set to a fake value.
*/
if (sl->can.bittiming.bitrate == CAN_BITRATE_UNSET)
sl->can.bittiming.bitrate = CAN_BITRATE_UNKNOWN;
err = open_candev(dev);
if (err) {
netdev_err(dev, "failed to open can device\n");
return err;
}
sl->flags &= BIT(SLF_INUSE);
if (sl->can.bittiming.bitrate != CAN_BITRATE_UNKNOWN) {
for (s = 0; s < ARRAY_SIZE(slcan_bitrate_const); s++) {
if (sl->can.bittiming.bitrate == slcan_bitrate_const[s])
break;
}
/* The CAN framework has already validate the bitrate value,
* so we can avoid to check if `s' has been properly set.
*/
snprintf(cmd, sizeof(cmd), "C\rS%d\r", s);
err = slcan_transmit_cmd(sl, cmd);
if (err) {
netdev_err(dev,
"failed to send bitrate command 'C\\rS%d\\r'\n",
s);
goto cmd_transmit_failed;
}
if (test_bit(CF_ERR_RST, &sl->cmd_flags)) {
err = slcan_transmit_cmd(sl, "F\r");
if (err) {
netdev_err(dev,
"failed to send error command 'F\\r'\n");
goto cmd_transmit_failed;
}
}
err = slcan_transmit_cmd(sl, "O\r");
if (err) {
netdev_err(dev, "failed to send open command 'O\\r'\n");
goto cmd_transmit_failed;
}
}
sl->can.state = CAN_STATE_ERROR_ACTIVE;
netif_start_queue(dev);
return 0;
cmd_transmit_failed:
close_candev(dev);
return err;
}
/* Hook the destructor so we can free slcan devs at the right point in time */
static void slc_free_netdev(struct net_device *dev)
static void slc_dealloc(struct slcan *sl)
{
int i = dev->base_addr;
int i = sl->dev->base_addr;
free_candev(sl->dev);
slcan_devs[i] = NULL;
}
......@@ -438,24 +791,6 @@ static const struct net_device_ops slc_netdev_ops = {
.ndo_change_mtu = slcan_change_mtu,
};
static void slc_setup(struct net_device *dev)
{
dev->netdev_ops = &slc_netdev_ops;
dev->needs_free_netdev = true;
dev->priv_destructor = slc_free_netdev;
dev->hard_header_len = 0;
dev->addr_len = 0;
dev->tx_queue_len = 10;
dev->mtu = CAN_MTU;
dev->type = ARPHRD_CAN;
/* New-style flags. */
dev->flags = IFF_NOARP;
dev->features = NETIF_F_HW_CSUM;
}
/******************************************
Routines looking at TTY side.
******************************************/
......@@ -518,11 +853,8 @@ static void slc_sync(void)
static struct slcan *slc_alloc(void)
{
int i;
char name[IFNAMSIZ];
struct net_device *dev = NULL;
struct can_ml_priv *can_ml;
struct slcan *sl;
int size;
for (i = 0; i < maxdev; i++) {
dev = slcan_devs[i];
......@@ -535,22 +867,24 @@ static struct slcan *slc_alloc(void)
if (i >= maxdev)
return NULL;
sprintf(name, "slcan%d", i);
size = ALIGN(sizeof(*sl), NETDEV_ALIGN) + sizeof(struct can_ml_priv);
dev = alloc_netdev(size, name, NET_NAME_UNKNOWN, slc_setup);
dev = alloc_candev(sizeof(*sl), 1);
if (!dev)
return NULL;
snprintf(dev->name, sizeof(dev->name), "slcan%d", i);
dev->netdev_ops = &slc_netdev_ops;
dev->base_addr = i;
slcan_set_ethtool_ops(dev);
sl = netdev_priv(dev);
can_ml = (void *)sl + ALIGN(sizeof(*sl), NETDEV_ALIGN);
can_set_ml_priv(dev, can_ml);
/* Initialize channel control data */
sl->magic = SLCAN_MAGIC;
sl->dev = dev;
sl->can.bitrate_const = slcan_bitrate_const;
sl->can.bitrate_const_cnt = ARRAY_SIZE(slcan_bitrate_const);
spin_lock_init(&sl->lock);
INIT_WORK(&sl->tx_work, slcan_transmit);
init_waitqueue_head(&sl->xcmd_wait);
slcan_devs[i] = dev;
return sl;
......@@ -609,26 +943,28 @@ static int slcan_open(struct tty_struct *tty)
set_bit(SLF_INUSE, &sl->flags);
err = register_netdevice(sl->dev);
if (err)
rtnl_unlock();
err = register_candev(sl->dev);
if (err) {
pr_err("slcan: can't register candev\n");
goto err_free_chan;
}
} else {
rtnl_unlock();
}
/* Done. We have linked the TTY line to a channel. */
rtnl_unlock();
tty->receive_room = 65536; /* We don't flow control */
/* TTY layer expects 0 on success */
return 0;
err_free_chan:
rtnl_lock();
sl->tty = NULL;
tty->disc_data = NULL;
clear_bit(SLF_INUSE, &sl->flags);
slc_free_netdev(sl->dev);
/* do not call free_netdev before rtnl_unlock */
slc_dealloc(sl);
rtnl_unlock();
free_netdev(sl->dev);
return err;
err_exit:
......@@ -662,9 +998,11 @@ static void slcan_close(struct tty_struct *tty)
synchronize_rcu();
flush_work(&sl->tx_work);
/* Flush network side */
unregister_netdev(sl->dev);
/* This will complete via sl_free_netdev */
slc_close(sl->dev);
unregister_candev(sl->dev);
rtnl_lock();
slc_dealloc(sl);
rtnl_unlock();
}
static void slcan_hangup(struct tty_struct *tty)
......@@ -772,15 +1110,15 @@ static void __exit slcan_exit(void)
dev = slcan_devs[i];
if (!dev)
continue;
slcan_devs[i] = NULL;
sl = netdev_priv(dev);
if (sl->tty) {
printk(KERN_ERR "%s: tty discipline still running\n",
dev->name);
netdev_err(dev, "tty discipline still running\n");
}
unregister_netdev(dev);
slc_close(dev);
unregister_candev(dev);
slc_dealloc(sl);
}
kfree(slcan_devs);
......
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (c) 2022 Amarula Solutions, Dario Binacchi <dario.binacchi@amarulasolutions.com>
*
*/
#include <linux/can/dev.h>
#include <linux/ethtool.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include "slcan.h"
static const char slcan_priv_flags_strings[][ETH_GSTRING_LEN] = {
#define SLCAN_PRIV_FLAGS_ERR_RST_ON_OPEN BIT(0)
"err-rst-on-open",
};
static void slcan_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
switch (stringset) {
case ETH_SS_PRIV_FLAGS:
memcpy(data, slcan_priv_flags_strings,
sizeof(slcan_priv_flags_strings));
}
}
static u32 slcan_get_priv_flags(struct net_device *ndev)
{
u32 flags = 0;
if (slcan_err_rst_on_open(ndev))
flags |= SLCAN_PRIV_FLAGS_ERR_RST_ON_OPEN;
return flags;
}
static int slcan_set_priv_flags(struct net_device *ndev, u32 flags)
{
bool err_rst_op_open = !!(flags & SLCAN_PRIV_FLAGS_ERR_RST_ON_OPEN);
return slcan_enable_err_rst_on_open(ndev, err_rst_op_open);
}
static int slcan_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_PRIV_FLAGS:
return ARRAY_SIZE(slcan_priv_flags_strings);
default:
return -EOPNOTSUPP;
}
}
static const struct ethtool_ops slcan_ethtool_ops = {
.get_strings = slcan_get_strings,
.get_priv_flags = slcan_get_priv_flags,
.set_priv_flags = slcan_set_priv_flags,
.get_sset_count = slcan_get_sset_count,
};
void slcan_set_ethtool_ops(struct net_device *netdev)
{
netdev->ethtool_ops = &slcan_ethtool_ops;
}
/* SPDX-License-Identifier: GPL-2.0
* slcan.h - serial line CAN interface driver
*
* Copyright (C) Laurence Culhane <loz@holmes.demon.co.uk>
* Copyright (C) Fred N. van Kempen <waltje@uwalt.nl.mugnet.org>
* Copyright (C) Oliver Hartkopp <socketcan@hartkopp.net>
* Copyright (C) 2022 Amarula Solutions, Dario Binacchi <dario.binacchi@amarulasolutions.com>
*
*/
#ifndef _SLCAN_H
#define _SLCAN_H
bool slcan_err_rst_on_open(struct net_device *ndev);
int slcan_enable_err_rst_on_open(struct net_device *ndev, bool on);
void slcan_set_ethtool_ops(struct net_device *ndev);
#endif /* _SLCAN_H */
......@@ -11,6 +11,8 @@
#define CAN_SYNC_SEG 1
#define CAN_BITRATE_UNSET 0
#define CAN_BITRATE_UNKNOWN (-1U)
#define CAN_CTRLMODE_TDC_MASK \
(CAN_CTRLMODE_TDC_AUTO | CAN_CTRLMODE_TDC_MANUAL)
......
......@@ -38,8 +38,9 @@
#define N_NULL 27 /* Null ldisc used for error handling */
#define N_MCTP 28 /* MCTP-over-serial */
#define N_DEVELOPMENT 29 /* Manual out-of-tree testing */
#define N_CAN327 30 /* ELM327 based OBD-II interfaces */
/* Always the newest line discipline + 1 */
#define NR_LDISCS 30
#define NR_LDISCS 31
#endif /* _UAPI_LINUX_TTY_H */
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册