提交 9f2f6cd0 编写于 作者: B Ben Hutchings

sfc: Expand/correct comments on collector behaviour and function usage

Document exactly which registers and functions have special behaviour,
and why races on writes to descriptor pointers are safe.
Signed-off-by: NBen Hutchings <bhutchings@solarflare.com>
上级 51c56f40
...@@ -22,28 +22,39 @@ ...@@ -22,28 +22,39 @@
* *
* Notes on locking strategy: * Notes on locking strategy:
* *
* Most NIC registers require 16-byte (or 8-byte, for SRAM) atomic writes * Most CSRs are 128-bit (oword) and therefore cannot be read or
* which necessitates locking. * written atomically. Access from the host is buffered by the Bus
* Under normal operation few writes to NIC registers are made and these * Interface Unit (BIU). Whenever the host reads from the lowest
* registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and TX_DESC_UPD_REG) are special * address of such a register, or from the address of a different such
* cased to allow 4-byte (hence lockless) accesses. * register, the BIU latches the register's value. Subsequent reads
* from higher addresses of the same register will read the latched
* value. Whenever the host writes part of such a register, the BIU
* collects the written value and does not write to the underlying
* register until all 4 dwords have been written. A similar buffering
* scheme applies to host access to the NIC's 64-bit SRAM.
* *
* It *is* safe to write to these 4-byte registers in the middle of an * Access to different CSRs and 64-bit SRAM words must be serialised,
* access to an 8-byte or 16-byte register. We therefore use a * since interleaved access can result in lost writes or lost
* spinlock to protect accesses to the larger registers, but no locks * information from read-to-clear fields. We use efx_nic::biu_lock
* for the 4-byte registers. * for this. (We could use separate locks for read and write, but
* this is not normally a performance bottleneck.)
* *
* A write barrier is needed to ensure that DW3 is written after DW0/1/2 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
* due to the way the 16byte registers are "collected" in the BIU. * 128-bit but are special-cased in the BIU to avoid the need for
* locking in the host:
* *
* We also lock when carrying out reads, to ensure consistency of the * - They are write-only.
* data (made possible since the BIU reads all 128 bits into a cache). * - The semantics of writing to these registers are such that
* Reads are very rare, so this isn't a significant performance * replacing the low 96 bits with zero does not affect functionality.
* impact. (Most data transferred from NIC to host is DMAed directly * - If the host writes to the last dword address of such a register
* into host memory). * (i.e. the high 32 bits) the underlying register will always be
* * written. If the collector does not hold values for the low 96
* I/O BAR access uses locks for both reads and writes (but is only provided * bits of the register, they will be written as zero. Writing to
* for testing purposes). * the last qword does not have this effect and must not be done.
* - If the host writes to the address of any other part of such a
* register while the collector already holds values for some other
* register, the write is discarded and the collector maintains its
* current state.
*/ */
#if BITS_PER_LONG == 64 #if BITS_PER_LONG == 64
...@@ -72,7 +83,7 @@ static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg) ...@@ -72,7 +83,7 @@ static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
return (__force __le32)__raw_readl(efx->membase + reg); return (__force __le32)__raw_readl(efx->membase + reg);
} }
/* Writes to a normal 16-byte Efx register, locking as appropriate. */ /* Write a normal 128-bit CSR, locking as appropriate. */
static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value, static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg) unsigned int reg)
{ {
...@@ -98,8 +109,7 @@ static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value, ...@@ -98,8 +109,7 @@ static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value,
spin_unlock_irqrestore(&efx->biu_lock, flags); spin_unlock_irqrestore(&efx->biu_lock, flags);
} }
/* Write an 8-byte NIC SRAM entry through the supplied mapping, /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
* locking as appropriate. */
static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase, static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
efx_qword_t *value, unsigned int index) efx_qword_t *value, unsigned int index)
{ {
...@@ -122,29 +132,19 @@ static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase, ...@@ -122,29 +132,19 @@ static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
spin_unlock_irqrestore(&efx->biu_lock, flags); spin_unlock_irqrestore(&efx->biu_lock, flags);
} }
/* Write dword to NIC register that allows partial writes /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
*
* Some registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and
* TX_DESC_UPD_REG) can be written to as a single dword. This allows
* for lockless writes.
*/
static inline void efx_writed(struct efx_nic *efx, efx_dword_t *value, static inline void efx_writed(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg) unsigned int reg)
{ {
netif_vdbg(efx, hw, efx->net_dev, netif_vdbg(efx, hw, efx->net_dev,
"writing partial register %x with "EFX_DWORD_FMT"\n", "writing register %x with "EFX_DWORD_FMT"\n",
reg, EFX_DWORD_VAL(*value)); reg, EFX_DWORD_VAL(*value));
/* No lock required */ /* No lock required */
_efx_writed(efx, value->u32[0], reg); _efx_writed(efx, value->u32[0], reg);
} }
/* Read from a NIC register /* Read a 128-bit CSR, locking as appropriate. */
*
* This reads an entire 16-byte register in one go, locking as
* appropriate. It is essential to read the first dword first, as this
* prompts the NIC to load the current value into the shadow register.
*/
static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value, static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg) unsigned int reg)
{ {
...@@ -163,8 +163,7 @@ static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value, ...@@ -163,8 +163,7 @@ static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
EFX_OWORD_VAL(*value)); EFX_OWORD_VAL(*value));
} }
/* Read an 8-byte SRAM entry through supplied mapping, /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
* locking as appropriate. */
static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase, static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
efx_qword_t *value, unsigned int index) efx_qword_t *value, unsigned int index)
{ {
...@@ -186,7 +185,7 @@ static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase, ...@@ -186,7 +185,7 @@ static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
addr, EFX_QWORD_VAL(*value)); addr, EFX_QWORD_VAL(*value));
} }
/* Read dword from register that allows partial writes (sic) */ /* Read a 32-bit CSR or SRAM */
static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value, static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg) unsigned int reg)
{ {
...@@ -196,28 +195,28 @@ static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value, ...@@ -196,28 +195,28 @@ static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
reg, EFX_DWORD_VAL(*value)); reg, EFX_DWORD_VAL(*value));
} }
/* Write to a register forming part of a table */ /* Write a 128-bit CSR forming part of a table */
static inline void efx_writeo_table(struct efx_nic *efx, efx_oword_t *value, static inline void efx_writeo_table(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int index) unsigned int reg, unsigned int index)
{ {
efx_writeo(efx, value, reg + index * sizeof(efx_oword_t)); efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
} }
/* Read to a register forming part of a table */ /* Read a 128-bit CSR forming part of a table */
static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value, static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int index) unsigned int reg, unsigned int index)
{ {
efx_reado(efx, value, reg + index * sizeof(efx_oword_t)); efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
} }
/* Write to a dword register forming part of a table */ /* Write a 32-bit CSR forming part of a table, or 32-bit SRAM */
static inline void efx_writed_table(struct efx_nic *efx, efx_dword_t *value, static inline void efx_writed_table(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg, unsigned int index) unsigned int reg, unsigned int index)
{ {
efx_writed(efx, value, reg + index * sizeof(efx_oword_t)); efx_writed(efx, value, reg + index * sizeof(efx_oword_t));
} }
/* Read from a dword register forming part of a table */ /* Read a 32-bit CSR forming part of a table, or 32-bit SRAM */
static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value, static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg, unsigned int index) unsigned int reg, unsigned int index)
{ {
...@@ -231,25 +230,26 @@ static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value, ...@@ -231,25 +230,26 @@ static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value,
#define EFX_PAGED_REG(page, reg) \ #define EFX_PAGED_REG(page, reg) \
((page) * EFX_PAGE_BLOCK_SIZE + (reg)) ((page) * EFX_PAGE_BLOCK_SIZE + (reg))
/* As for efx_writeo(), but for a page-mapped register. */ /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
static inline void efx_writeo_page(struct efx_nic *efx, efx_oword_t *value, static inline void efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
unsigned int reg, unsigned int page) unsigned int reg, unsigned int page)
{ {
efx_writeo(efx, value, EFX_PAGED_REG(page, reg)); efx_writeo(efx, value, EFX_PAGED_REG(page, reg));
} }
/* As for efx_writed(), but for a page-mapped register. */ /* Write a page-mapped 32-bit CSR (EVQ_RPTR or the high bits of
* RX_DESC_UPD or TX_DESC_UPD)
*/
static inline void efx_writed_page(struct efx_nic *efx, efx_dword_t *value, static inline void efx_writed_page(struct efx_nic *efx, efx_dword_t *value,
unsigned int reg, unsigned int page) unsigned int reg, unsigned int page)
{ {
efx_writed(efx, value, EFX_PAGED_REG(page, reg)); efx_writed(efx, value, EFX_PAGED_REG(page, reg));
} }
/* Write dword to page-mapped register with an extra lock. /* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug
* * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
* As for efx_writed_page(), but for a register that suffers from * collector register.
* SFC bug 3181. Take out a lock so the BIU collector cannot be */
* confused. */
static inline void efx_writed_page_locked(struct efx_nic *efx, static inline void efx_writed_page_locked(struct efx_nic *efx,
efx_dword_t *value, efx_dword_t *value,
unsigned int reg, unsigned int reg,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册