提交 982216a4 编写于 作者: M Mauro Carvalho Chehab

edac.h: Add generic layers for describing a memory location

The edac core were written with the idea that memory controllers
are able to directly access csrows, and that the channels are
used inside a csrows select.

This is not true for FB-DIMM and RAMBUS memory controllers.

Also, some recent advanced memory controllers don't present a per-csrows
view. Instead, they view memories as DIMMs, instead of ranks, accessed
via csrow/channel.

So, changes are needed in order to allow the EDAC core to
work with all types of architectures.

In preparation for handling non-csrows based memory controllers,
add some memory structs and a macro:

enum hw_event_mc_err_type: describes the type of error
			   (corrected, uncorrected, fatal)

To be used by the new edac_mc_handle_error function;

enum edac_mc_layer: describes the type of a given memory
architecture layer (branch, channel, slot, csrow).

struct edac_mc_layer: describes the properties of a memory
		      layer (type, size, and if the layer
		      will be used on a virtual csrow.

EDAC_DIMM_PTR() - as the number of layers can vary from 1 to 3,
this macro converts from an address with up to 3 layers into
a linear address.
Reviewed-by: NBorislav Petkov <bp@amd64.org>
Cc: Doug Thompson <norsk5@yahoo.com>
Signed-off-by: NMauro Carvalho Chehab <mchehab@redhat.com>
上级 93e4fe64
...@@ -70,6 +70,25 @@ enum dev_type { ...@@ -70,6 +70,25 @@ enum dev_type {
#define DEV_FLAG_X32 BIT(DEV_X32) #define DEV_FLAG_X32 BIT(DEV_X32)
#define DEV_FLAG_X64 BIT(DEV_X64) #define DEV_FLAG_X64 BIT(DEV_X64)
/**
* enum hw_event_mc_err_type - type of the detected error
*
* @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC
* corrected error was detected
* @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that
* can't be corrected by ECC, but it is not
* fatal (maybe it is on an unused memory area,
* or the memory controller could recover from
* it for example, by re-trying the operation).
* @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not
* be recovered.
*/
enum hw_event_mc_err_type {
HW_EVENT_ERR_CORRECTED,
HW_EVENT_ERR_UNCORRECTED,
HW_EVENT_ERR_FATAL,
};
/** /**
* enum mem_type - memory types. For a more detailed reference, please see * enum mem_type - memory types. For a more detailed reference, please see
* http://en.wikipedia.org/wiki/DRAM * http://en.wikipedia.org/wiki/DRAM
...@@ -312,7 +331,89 @@ enum scrub_type { ...@@ -312,7 +331,89 @@ enum scrub_type {
* PS - I enjoyed writing all that about as much as you enjoyed reading it. * PS - I enjoyed writing all that about as much as you enjoyed reading it.
*/ */
/* FIXME: add a per-dimm ce error count */ /**
* enum edac_mc_layer - memory controller hierarchy layer
*
* @EDAC_MC_LAYER_BRANCH: memory layer is named "branch"
* @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel"
* @EDAC_MC_LAYER_SLOT: memory layer is named "slot"
* @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select"
*
* This enum is used by the drivers to tell edac_mc_sysfs what name should
* be used when describing a memory stick location.
*/
enum edac_mc_layer_type {
EDAC_MC_LAYER_BRANCH,
EDAC_MC_LAYER_CHANNEL,
EDAC_MC_LAYER_SLOT,
EDAC_MC_LAYER_CHIP_SELECT,
};
/**
* struct edac_mc_layer - describes the memory controller hierarchy
* @layer: layer type
* @size: number of components per layer. For example,
* if the channel layer has two channels, size = 2
* @is_virt_csrow: This layer is part of the "csrow" when old API
* compatibility mode is enabled. Otherwise, it is
* a channel
*/
struct edac_mc_layer {
enum edac_mc_layer_type type;
unsigned size;
bool is_virt_csrow;
};
/*
* Maximum number of layers used by the memory controller to uniquely
* identify a single memory stick.
* NOTE: Changing this constant requires not only to change the constant
* below, but also to change the existing code at the core, as there are
* some code there that are optimized for 3 layers.
*/
#define EDAC_MAX_LAYERS 3
/**
* EDAC_DIMM_PTR - Macro responsible to find a pointer inside a pointer array
* for the element given by [layer0,layer1,layer2] position
*
* @layers: a struct edac_mc_layer array, describing how many elements
* were allocated for each layer
* @var: name of the var where we want to get the pointer
* (like mci->dimms)
* @n_layers: Number of layers at the @layers array
* @layer0: layer0 position
* @layer1: layer1 position. Unused if n_layers < 2
* @layer2: layer2 position. Unused if n_layers < 3
*
* For 1 layer, this macro returns &var[layer0]
* For 2 layers, this macro is similar to allocate a bi-dimensional array
* and to return "&var[layer0][layer1]"
* For 3 layers, this macro is similar to allocate a tri-dimensional array
* and to return "&var[layer0][layer1][layer2]"
*
* A loop could be used here to make it more generic, but, as we only have
* 3 layers, this is a little faster.
* By design, layers can never be 0 or more than 3. If that ever happens,
* a NULL is returned, causing an OOPS during the memory allocation routine,
* with would point to the developer that he's doing something wrong.
*/
#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \
typeof(var) __p; \
if ((nlayers) == 1) \
__p = &var[layer0]; \
else if ((nlayers) == 2) \
__p = &var[(layer1) + ((layers[1]).size * (layer0))]; \
else if ((nlayers) == 3) \
__p = &var[(layer2) + ((layers[2]).size * ((layer1) + \
((layers[1]).size * (layer0))))]; \
else \
__p = NULL; \
__p; \
})
/* FIXME: add the proper per-location error counts */
struct dimm_info { struct dimm_info {
char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */ char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
unsigned memory_controller; unsigned memory_controller;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册