提交 888cdb89 编写于 作者: C Clément Léger 提交者: David S. Miller

net: dsa: rzn1-a5psw: add Renesas RZ/N1 advanced 5 port switch driver

Add Renesas RZ/N1 advanced 5 port switch driver. This switch handles 5
ports including 1 CPU management port. A MDIO bus is also exposed by
this switch and allows to communicate with PHYs connected to the ports.
Each switch port (except for the CPU management ports) is connected to
the MII converter.

This driver includes basic bridging support, more support will be added
later (vlan, etc).
Suggested-by: NJean-Pierre Geslin <jean-pierre.geslin@non.se.com>
Suggested-by: NPhil Edworthy <phil.edworthy@renesas.com>
Signed-off-by: NClément Léger <clement.leger@bootlin.com>
Reviewed-by: NVladimir Oltean <olteanv@gmail.com>
Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com>
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
上级 8956e96c
......@@ -70,6 +70,15 @@ config NET_DSA_QCA8K
source "drivers/net/dsa/realtek/Kconfig"
config NET_DSA_RZN1_A5PSW
tristate "Renesas RZ/N1 A5PSW Ethernet switch support"
depends on OF && ARCH_RZN1
select NET_DSA_TAG_RZN1_A5PSW
select PCS_RZN1_MIIC
help
This driver supports the A5PSW switch, which is embedded in Renesas
RZ/N1 SoC.
config NET_DSA_SMSC_LAN9303
tristate
select NET_DSA_TAG_LAN9303
......
......@@ -9,6 +9,7 @@ obj-$(CONFIG_NET_DSA_LANTIQ_GSWIP) += lantiq_gswip.o
obj-$(CONFIG_NET_DSA_MT7530) += mt7530.o
obj-$(CONFIG_NET_DSA_MV88E6060) += mv88e6060.o
obj-$(CONFIG_NET_DSA_QCA8K) += qca8k.o
obj-$(CONFIG_NET_DSA_RZN1_A5PSW) += rzn1_a5psw.o
obj-$(CONFIG_NET_DSA_SMSC_LAN9303) += lan9303-core.o
obj-$(CONFIG_NET_DSA_SMSC_LAN9303_I2C) += lan9303_i2c.o
obj-$(CONFIG_NET_DSA_SMSC_LAN9303_MDIO) += lan9303_mdio.o
......
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2022 Schneider-Electric
*
* Clément Léger <clement.leger@bootlin.com>
*/
#include <linux/clk.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/if_ether.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <net/dsa.h>
#include "rzn1_a5psw.h"
static void a5psw_reg_writel(struct a5psw *a5psw, int offset, u32 value)
{
writel(value, a5psw->base + offset);
}
static u32 a5psw_reg_readl(struct a5psw *a5psw, int offset)
{
return readl(a5psw->base + offset);
}
static void a5psw_reg_rmw(struct a5psw *a5psw, int offset, u32 mask, u32 val)
{
u32 reg;
spin_lock(&a5psw->reg_lock);
reg = a5psw_reg_readl(a5psw, offset);
reg &= ~mask;
reg |= val;
a5psw_reg_writel(a5psw, offset, reg);
spin_unlock(&a5psw->reg_lock);
}
static enum dsa_tag_protocol a5psw_get_tag_protocol(struct dsa_switch *ds,
int port,
enum dsa_tag_protocol mp)
{
return DSA_TAG_PROTO_RZN1_A5PSW;
}
static void a5psw_port_pattern_set(struct a5psw *a5psw, int port, int pattern,
bool enable)
{
u32 rx_match = 0;
if (enable)
rx_match |= A5PSW_RXMATCH_CONFIG_PATTERN(pattern);
a5psw_reg_rmw(a5psw, A5PSW_RXMATCH_CONFIG(port),
A5PSW_RXMATCH_CONFIG_PATTERN(pattern), rx_match);
}
static void a5psw_port_mgmtfwd_set(struct a5psw *a5psw, int port, bool enable)
{
/* Enable "management forward" pattern matching, this will forward
* packets from this port only towards the management port and thus
* isolate the port.
*/
a5psw_port_pattern_set(a5psw, port, A5PSW_PATTERN_MGMTFWD, enable);
}
static void a5psw_port_enable_set(struct a5psw *a5psw, int port, bool enable)
{
u32 port_ena = 0;
if (enable)
port_ena |= A5PSW_PORT_ENA_TX_RX(port);
a5psw_reg_rmw(a5psw, A5PSW_PORT_ENA, A5PSW_PORT_ENA_TX_RX(port),
port_ena);
}
static int a5psw_lk_execute_ctrl(struct a5psw *a5psw, u32 *ctrl)
{
int ret;
a5psw_reg_writel(a5psw, A5PSW_LK_ADDR_CTRL, *ctrl);
ret = readl_poll_timeout(a5psw->base + A5PSW_LK_ADDR_CTRL, *ctrl,
!(*ctrl & A5PSW_LK_ADDR_CTRL_BUSY),
A5PSW_LK_BUSY_USEC_POLL, A5PSW_CTRL_TIMEOUT);
if (ret)
dev_err(a5psw->dev, "LK_CTRL timeout waiting for BUSY bit\n");
return ret;
}
static void a5psw_port_fdb_flush(struct a5psw *a5psw, int port)
{
u32 ctrl = A5PSW_LK_ADDR_CTRL_DELETE_PORT | BIT(port);
mutex_lock(&a5psw->lk_lock);
a5psw_lk_execute_ctrl(a5psw, &ctrl);
mutex_unlock(&a5psw->lk_lock);
}
static void a5psw_port_authorize_set(struct a5psw *a5psw, int port,
bool authorize)
{
u32 reg = a5psw_reg_readl(a5psw, A5PSW_AUTH_PORT(port));
if (authorize)
reg |= A5PSW_AUTH_PORT_AUTHORIZED;
else
reg &= ~A5PSW_AUTH_PORT_AUTHORIZED;
a5psw_reg_writel(a5psw, A5PSW_AUTH_PORT(port), reg);
}
static void a5psw_port_disable(struct dsa_switch *ds, int port)
{
struct a5psw *a5psw = ds->priv;
a5psw_port_authorize_set(a5psw, port, false);
a5psw_port_enable_set(a5psw, port, false);
}
static int a5psw_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct a5psw *a5psw = ds->priv;
a5psw_port_authorize_set(a5psw, port, true);
a5psw_port_enable_set(a5psw, port, true);
return 0;
}
static int a5psw_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
struct a5psw *a5psw = ds->priv;
new_mtu += ETH_HLEN + A5PSW_EXTRA_MTU_LEN + ETH_FCS_LEN;
a5psw_reg_writel(a5psw, A5PSW_FRM_LENGTH(port), new_mtu);
return 0;
}
static int a5psw_port_max_mtu(struct dsa_switch *ds, int port)
{
return A5PSW_MAX_MTU;
}
static void a5psw_phylink_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
unsigned long *intf = config->supported_interfaces;
config->mac_capabilities = MAC_1000FD;
if (dsa_is_cpu_port(ds, port)) {
/* GMII is used internally and GMAC2 is connected to the switch
* using 1000Mbps Full-Duplex mode only (cf ethernet manual)
*/
__set_bit(PHY_INTERFACE_MODE_GMII, intf);
} else {
config->mac_capabilities |= MAC_100 | MAC_10;
phy_interface_set_rgmii(intf);
__set_bit(PHY_INTERFACE_MODE_RMII, intf);
__set_bit(PHY_INTERFACE_MODE_MII, intf);
}
}
static struct phylink_pcs *
a5psw_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
phy_interface_t interface)
{
struct dsa_port *dp = dsa_to_port(ds, port);
struct a5psw *a5psw = ds->priv;
if (!dsa_port_is_cpu(dp) && a5psw->pcs[port])
return a5psw->pcs[port];
return NULL;
}
static void a5psw_phylink_mac_link_down(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface)
{
struct a5psw *a5psw = ds->priv;
u32 cmd_cfg;
cmd_cfg = a5psw_reg_readl(a5psw, A5PSW_CMD_CFG(port));
cmd_cfg &= ~(A5PSW_CMD_CFG_RX_ENA | A5PSW_CMD_CFG_TX_ENA);
a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port), cmd_cfg);
}
static void a5psw_phylink_mac_link_up(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev, int speed,
int duplex, bool tx_pause, bool rx_pause)
{
u32 cmd_cfg = A5PSW_CMD_CFG_RX_ENA | A5PSW_CMD_CFG_TX_ENA |
A5PSW_CMD_CFG_TX_CRC_APPEND;
struct a5psw *a5psw = ds->priv;
if (speed == SPEED_1000)
cmd_cfg |= A5PSW_CMD_CFG_ETH_SPEED;
if (duplex == DUPLEX_HALF)
cmd_cfg |= A5PSW_CMD_CFG_HD_ENA;
cmd_cfg |= A5PSW_CMD_CFG_CNTL_FRM_ENA;
if (!rx_pause)
cmd_cfg &= ~A5PSW_CMD_CFG_PAUSE_IGNORE;
a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port), cmd_cfg);
}
static int a5psw_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
{
struct a5psw *a5psw = ds->priv;
unsigned long rate;
u64 max, tmp;
u32 agetime;
rate = clk_get_rate(a5psw->clk);
max = div64_ul(((u64)A5PSW_LK_AGETIME_MASK * A5PSW_TABLE_ENTRIES * 1024),
rate) * 1000;
if (msecs > max)
return -EINVAL;
tmp = div_u64(rate, MSEC_PER_SEC);
agetime = div_u64(msecs * tmp, 1024 * A5PSW_TABLE_ENTRIES);
a5psw_reg_writel(a5psw, A5PSW_LK_AGETIME, agetime);
return 0;
}
static void a5psw_flooding_set_resolution(struct a5psw *a5psw, int port,
bool set)
{
u8 offsets[] = {A5PSW_UCAST_DEF_MASK, A5PSW_BCAST_DEF_MASK,
A5PSW_MCAST_DEF_MASK};
int i;
if (set)
a5psw->bridged_ports |= BIT(port);
else
a5psw->bridged_ports &= ~BIT(port);
for (i = 0; i < ARRAY_SIZE(offsets); i++)
a5psw_reg_writel(a5psw, offsets[i], a5psw->bridged_ports);
}
static int a5psw_port_bridge_join(struct dsa_switch *ds, int port,
struct dsa_bridge bridge,
bool *tx_fwd_offload,
struct netlink_ext_ack *extack)
{
struct a5psw *a5psw = ds->priv;
/* We only support 1 bridge device */
if (a5psw->br_dev && bridge.dev != a5psw->br_dev) {
NL_SET_ERR_MSG_MOD(extack,
"Forwarding offload supported for a single bridge");
return -EOPNOTSUPP;
}
a5psw->br_dev = bridge.dev;
a5psw_flooding_set_resolution(a5psw, port, true);
a5psw_port_mgmtfwd_set(a5psw, port, false);
return 0;
}
static void a5psw_port_bridge_leave(struct dsa_switch *ds, int port,
struct dsa_bridge bridge)
{
struct a5psw *a5psw = ds->priv;
a5psw_flooding_set_resolution(a5psw, port, false);
a5psw_port_mgmtfwd_set(a5psw, port, true);
/* No more ports bridged */
if (a5psw->bridged_ports == BIT(A5PSW_CPU_PORT))
a5psw->br_dev = NULL;
}
static void a5psw_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
u32 mask = A5PSW_INPUT_LEARN_DIS(port) | A5PSW_INPUT_LEARN_BLOCK(port);
struct a5psw *a5psw = ds->priv;
u32 reg = 0;
switch (state) {
case BR_STATE_DISABLED:
case BR_STATE_BLOCKING:
reg |= A5PSW_INPUT_LEARN_DIS(port);
reg |= A5PSW_INPUT_LEARN_BLOCK(port);
break;
case BR_STATE_LISTENING:
reg |= A5PSW_INPUT_LEARN_DIS(port);
break;
case BR_STATE_LEARNING:
reg |= A5PSW_INPUT_LEARN_BLOCK(port);
break;
case BR_STATE_FORWARDING:
default:
break;
}
a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN, mask, reg);
}
static void a5psw_port_fast_age(struct dsa_switch *ds, int port)
{
struct a5psw *a5psw = ds->priv;
a5psw_port_fdb_flush(a5psw, port);
}
static int a5psw_setup(struct dsa_switch *ds)
{
struct a5psw *a5psw = ds->priv;
int port, vlan, ret;
struct dsa_port *dp;
u32 reg;
/* Validate that there is only 1 CPU port with index A5PSW_CPU_PORT */
dsa_switch_for_each_cpu_port(dp, ds) {
if (dp->index != A5PSW_CPU_PORT) {
dev_err(a5psw->dev, "Invalid CPU port\n");
return -EINVAL;
}
}
/* Configure management port */
reg = A5PSW_CPU_PORT | A5PSW_MGMT_CFG_DISCARD;
a5psw_reg_writel(a5psw, A5PSW_MGMT_CFG, reg);
/* Set pattern 0 to forward all frame to mgmt port */
a5psw_reg_writel(a5psw, A5PSW_PATTERN_CTRL(A5PSW_PATTERN_MGMTFWD),
A5PSW_PATTERN_CTRL_MGMTFWD);
/* Enable port tagging */
reg = FIELD_PREP(A5PSW_MGMT_TAG_CFG_TAGFIELD, ETH_P_DSA_A5PSW);
reg |= A5PSW_MGMT_TAG_CFG_ENABLE | A5PSW_MGMT_TAG_CFG_ALL_FRAMES;
a5psw_reg_writel(a5psw, A5PSW_MGMT_TAG_CFG, reg);
/* Enable normal switch operation */
reg = A5PSW_LK_ADDR_CTRL_BLOCKING | A5PSW_LK_ADDR_CTRL_LEARNING |
A5PSW_LK_ADDR_CTRL_AGEING | A5PSW_LK_ADDR_CTRL_ALLOW_MIGR |
A5PSW_LK_ADDR_CTRL_CLEAR_TABLE;
a5psw_reg_writel(a5psw, A5PSW_LK_CTRL, reg);
ret = readl_poll_timeout(a5psw->base + A5PSW_LK_CTRL, reg,
!(reg & A5PSW_LK_ADDR_CTRL_CLEAR_TABLE),
A5PSW_LK_BUSY_USEC_POLL, A5PSW_CTRL_TIMEOUT);
if (ret) {
dev_err(a5psw->dev, "Failed to clear lookup table\n");
return ret;
}
/* Reset learn count to 0 */
reg = A5PSW_LK_LEARNCOUNT_MODE_SET;
a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
/* Clear VLAN resource table */
reg = A5PSW_VLAN_RES_WR_PORTMASK | A5PSW_VLAN_RES_WR_TAGMASK;
for (vlan = 0; vlan < A5PSW_VLAN_COUNT; vlan++)
a5psw_reg_writel(a5psw, A5PSW_VLAN_RES(vlan), reg);
/* Reset all ports */
dsa_switch_for_each_port(dp, ds) {
port = dp->index;
/* Reset the port */
a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port),
A5PSW_CMD_CFG_SW_RESET);
/* Enable only CPU port */
a5psw_port_enable_set(a5psw, port, dsa_port_is_cpu(dp));
if (dsa_port_is_unused(dp))
continue;
/* Enable egress flooding for CPU port */
if (dsa_port_is_cpu(dp))
a5psw_flooding_set_resolution(a5psw, port, true);
/* Enable management forward only for user ports */
if (dsa_port_is_user(dp))
a5psw_port_mgmtfwd_set(a5psw, port, true);
}
return 0;
}
static const struct dsa_switch_ops a5psw_switch_ops = {
.get_tag_protocol = a5psw_get_tag_protocol,
.setup = a5psw_setup,
.port_disable = a5psw_port_disable,
.port_enable = a5psw_port_enable,
.phylink_get_caps = a5psw_phylink_get_caps,
.phylink_mac_select_pcs = a5psw_phylink_mac_select_pcs,
.phylink_mac_link_down = a5psw_phylink_mac_link_down,
.phylink_mac_link_up = a5psw_phylink_mac_link_up,
.port_change_mtu = a5psw_port_change_mtu,
.port_max_mtu = a5psw_port_max_mtu,
.set_ageing_time = a5psw_set_ageing_time,
.port_bridge_join = a5psw_port_bridge_join,
.port_bridge_leave = a5psw_port_bridge_leave,
.port_stp_state_set = a5psw_port_stp_state_set,
.port_fast_age = a5psw_port_fast_age,
};
static int a5psw_mdio_wait_busy(struct a5psw *a5psw)
{
u32 status;
int err;
err = readl_poll_timeout(a5psw->base + A5PSW_MDIO_CFG_STATUS, status,
!(status & A5PSW_MDIO_CFG_STATUS_BUSY), 10,
1000 * USEC_PER_MSEC);
if (err)
dev_err(a5psw->dev, "MDIO command timeout\n");
return err;
}
static int a5psw_mdio_read(struct mii_bus *bus, int phy_id, int phy_reg)
{
struct a5psw *a5psw = bus->priv;
u32 cmd, status;
int ret;
if (phy_reg & MII_ADDR_C45)
return -EOPNOTSUPP;
cmd = A5PSW_MDIO_COMMAND_READ;
cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_REG_ADDR, phy_reg);
cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_PHY_ADDR, phy_id);
a5psw_reg_writel(a5psw, A5PSW_MDIO_COMMAND, cmd);
ret = a5psw_mdio_wait_busy(a5psw);
if (ret)
return ret;
ret = a5psw_reg_readl(a5psw, A5PSW_MDIO_DATA) & A5PSW_MDIO_DATA_MASK;
status = a5psw_reg_readl(a5psw, A5PSW_MDIO_CFG_STATUS);
if (status & A5PSW_MDIO_CFG_STATUS_READERR)
return -EIO;
return ret;
}
static int a5psw_mdio_write(struct mii_bus *bus, int phy_id, int phy_reg,
u16 phy_data)
{
struct a5psw *a5psw = bus->priv;
u32 cmd;
if (phy_reg & MII_ADDR_C45)
return -EOPNOTSUPP;
cmd = FIELD_PREP(A5PSW_MDIO_COMMAND_REG_ADDR, phy_reg);
cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_PHY_ADDR, phy_id);
a5psw_reg_writel(a5psw, A5PSW_MDIO_COMMAND, cmd);
a5psw_reg_writel(a5psw, A5PSW_MDIO_DATA, phy_data);
return a5psw_mdio_wait_busy(a5psw);
}
static int a5psw_mdio_config(struct a5psw *a5psw, u32 mdio_freq)
{
unsigned long rate;
unsigned long div;
u32 cfgstatus;
rate = clk_get_rate(a5psw->hclk);
div = ((rate / mdio_freq) / 2);
if (div > FIELD_MAX(A5PSW_MDIO_CFG_STATUS_CLKDIV) ||
div < A5PSW_MDIO_CLK_DIV_MIN) {
dev_err(a5psw->dev, "MDIO clock div %ld out of range\n", div);
return -ERANGE;
}
cfgstatus = FIELD_PREP(A5PSW_MDIO_CFG_STATUS_CLKDIV, div);
a5psw_reg_writel(a5psw, A5PSW_MDIO_CFG_STATUS, cfgstatus);
return 0;
}
static int a5psw_probe_mdio(struct a5psw *a5psw, struct device_node *node)
{
struct device *dev = a5psw->dev;
struct mii_bus *bus;
u32 mdio_freq;
int ret;
if (of_property_read_u32(node, "clock-frequency", &mdio_freq))
mdio_freq = A5PSW_MDIO_DEF_FREQ;
ret = a5psw_mdio_config(a5psw, mdio_freq);
if (ret)
return ret;
bus = devm_mdiobus_alloc(dev);
if (!bus)
return -ENOMEM;
bus->name = "a5psw_mdio";
bus->read = a5psw_mdio_read;
bus->write = a5psw_mdio_write;
bus->priv = a5psw;
bus->parent = dev;
snprintf(bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
a5psw->mii_bus = bus;
return devm_of_mdiobus_register(dev, bus, node);
}
static void a5psw_pcs_free(struct a5psw *a5psw)
{
int i;
for (i = 0; i < ARRAY_SIZE(a5psw->pcs); i++) {
if (a5psw->pcs[i])
miic_destroy(a5psw->pcs[i]);
}
}
static int a5psw_pcs_get(struct a5psw *a5psw)
{
struct device_node *ports, *port, *pcs_node;
struct phylink_pcs *pcs;
int ret;
u32 reg;
ports = of_get_child_by_name(a5psw->dev->of_node, "ethernet-ports");
if (!ports)
return -EINVAL;
for_each_available_child_of_node(ports, port) {
pcs_node = of_parse_phandle(port, "pcs-handle", 0);
if (!pcs_node)
continue;
if (of_property_read_u32(port, "reg", &reg)) {
ret = -EINVAL;
goto free_pcs;
}
if (reg >= ARRAY_SIZE(a5psw->pcs)) {
ret = -ENODEV;
goto free_pcs;
}
pcs = miic_create(a5psw->dev, pcs_node);
if (IS_ERR(pcs)) {
dev_err(a5psw->dev, "Failed to create PCS for port %d\n",
reg);
ret = PTR_ERR(pcs);
goto free_pcs;
}
a5psw->pcs[reg] = pcs;
}
of_node_put(ports);
return 0;
free_pcs:
of_node_put(port);
of_node_put(ports);
a5psw_pcs_free(a5psw);
return ret;
}
static int a5psw_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *mdio;
struct dsa_switch *ds;
struct a5psw *a5psw;
int ret;
a5psw = devm_kzalloc(dev, sizeof(*a5psw), GFP_KERNEL);
if (!a5psw)
return -ENOMEM;
a5psw->dev = dev;
mutex_init(&a5psw->lk_lock);
spin_lock_init(&a5psw->reg_lock);
a5psw->base = devm_platform_ioremap_resource(pdev, 0);
if (!a5psw->base)
return -EINVAL;
ret = a5psw_pcs_get(a5psw);
if (ret)
return ret;
a5psw->hclk = devm_clk_get(dev, "hclk");
if (IS_ERR(a5psw->hclk)) {
dev_err(dev, "failed get hclk clock\n");
ret = PTR_ERR(a5psw->hclk);
goto free_pcs;
}
a5psw->clk = devm_clk_get(dev, "clk");
if (IS_ERR(a5psw->clk)) {
dev_err(dev, "failed get clk_switch clock\n");
ret = PTR_ERR(a5psw->clk);
goto free_pcs;
}
ret = clk_prepare_enable(a5psw->clk);
if (ret)
goto free_pcs;
ret = clk_prepare_enable(a5psw->hclk);
if (ret)
goto clk_disable;
mdio = of_get_child_by_name(dev->of_node, "mdio");
if (of_device_is_available(mdio)) {
ret = a5psw_probe_mdio(a5psw, mdio);
if (ret) {
of_node_put(mdio);
dev_err(dev, "Failed to register MDIO: %d\n", ret);
goto hclk_disable;
}
}
of_node_put(mdio);
ds = &a5psw->ds;
ds->dev = dev;
ds->num_ports = A5PSW_PORTS_NUM;
ds->ops = &a5psw_switch_ops;
ds->priv = a5psw;
ret = dsa_register_switch(ds);
if (ret) {
dev_err(dev, "Failed to register DSA switch: %d\n", ret);
goto hclk_disable;
}
return 0;
hclk_disable:
clk_disable_unprepare(a5psw->hclk);
clk_disable:
clk_disable_unprepare(a5psw->clk);
free_pcs:
a5psw_pcs_free(a5psw);
return ret;
}
static int a5psw_remove(struct platform_device *pdev)
{
struct a5psw *a5psw = platform_get_drvdata(pdev);
if (!a5psw)
return 0;
dsa_unregister_switch(&a5psw->ds);
a5psw_pcs_free(a5psw);
clk_disable_unprepare(a5psw->hclk);
clk_disable_unprepare(a5psw->clk);
platform_set_drvdata(pdev, NULL);
return 0;
}
static void a5psw_shutdown(struct platform_device *pdev)
{
struct a5psw *a5psw = platform_get_drvdata(pdev);
if (!a5psw)
return;
dsa_switch_shutdown(&a5psw->ds);
platform_set_drvdata(pdev, NULL);
}
static const struct of_device_id a5psw_of_mtable[] = {
{ .compatible = "renesas,rzn1-a5psw", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, a5psw_of_mtable);
static struct platform_driver a5psw_driver = {
.driver = {
.name = "rzn1_a5psw",
.of_match_table = of_match_ptr(a5psw_of_mtable),
},
.probe = a5psw_probe,
.remove = a5psw_remove,
.shutdown = a5psw_shutdown,
};
module_platform_driver(a5psw_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Renesas RZ/N1 Advanced 5-port Switch driver");
MODULE_AUTHOR("Clément Léger <clement.leger@bootlin.com>");
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2022 Schneider Electric
*
* Clément Léger <clement.leger@bootlin.com>
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/platform_device.h>
#include <linux/pcs-rzn1-miic.h>
#include <net/dsa.h>
#define A5PSW_REVISION 0x0
#define A5PSW_PORT_OFFSET(port) (0x400 * (port))
#define A5PSW_PORT_ENA 0x8
#define A5PSW_PORT_ENA_RX_SHIFT 16
#define A5PSW_PORT_ENA_TX_RX(port) (BIT((port) + A5PSW_PORT_ENA_RX_SHIFT) | \
BIT(port))
#define A5PSW_UCAST_DEF_MASK 0xC
#define A5PSW_VLAN_VERIFY 0x10
#define A5PSW_VLAN_VERI_SHIFT 0
#define A5PSW_VLAN_DISC_SHIFT 16
#define A5PSW_BCAST_DEF_MASK 0x14
#define A5PSW_MCAST_DEF_MASK 0x18
#define A5PSW_INPUT_LEARN 0x1C
#define A5PSW_INPUT_LEARN_DIS(p) BIT((p) + 16)
#define A5PSW_INPUT_LEARN_BLOCK(p) BIT(p)
#define A5PSW_MGMT_CFG 0x20
#define A5PSW_MGMT_CFG_DISCARD BIT(7)
#define A5PSW_MODE_CFG 0x24
#define A5PSW_MODE_STATS_RESET BIT(31)
#define A5PSW_VLAN_IN_MODE 0x28
#define A5PSW_VLAN_IN_MODE_PORT_SHIFT(port) ((port) * 2)
#define A5PSW_VLAN_IN_MODE_PORT(port) (GENMASK(1, 0) << \
A5PSW_VLAN_IN_MODE_PORT_SHIFT(port))
#define A5PSW_VLAN_IN_MODE_SINGLE_PASSTHROUGH 0x0
#define A5PSW_VLAN_IN_MODE_SINGLE_REPLACE 0x1
#define A5PSW_VLAN_IN_MODE_TAG_ALWAYS 0x2
#define A5PSW_VLAN_OUT_MODE 0x2C
#define A5PSW_VLAN_OUT_MODE_PORT(port) (GENMASK(1, 0) << ((port) * 2))
#define A5PSW_VLAN_OUT_MODE_DIS 0x0
#define A5PSW_VLAN_OUT_MODE_STRIP 0x1
#define A5PSW_VLAN_OUT_MODE_TAG_THROUGH 0x2
#define A5PSW_VLAN_OUT_MODE_TRANSPARENT 0x3
#define A5PSW_VLAN_IN_MODE_ENA 0x30
#define A5PSW_VLAN_TAG_ID 0x34
#define A5PSW_SYSTEM_TAGINFO(port) (0x200 + A5PSW_PORT_OFFSET(port))
#define A5PSW_AUTH_PORT(port) (0x240 + 4 * (port))
#define A5PSW_AUTH_PORT_AUTHORIZED BIT(0)
#define A5PSW_VLAN_RES(entry) (0x280 + 4 * (entry))
#define A5PSW_VLAN_RES_WR_PORTMASK BIT(30)
#define A5PSW_VLAN_RES_WR_TAGMASK BIT(29)
#define A5PSW_VLAN_RES_RD_TAGMASK BIT(28)
#define A5PSW_VLAN_RES_ID GENMASK(16, 5)
#define A5PSW_VLAN_RES_PORTMASK GENMASK(4, 0)
#define A5PSW_RXMATCH_CONFIG(port) (0x3e80 + 4 * (port))
#define A5PSW_RXMATCH_CONFIG_PATTERN(p) BIT(p)
#define A5PSW_PATTERN_CTRL(p) (0x3eb0 + 4 * (p))
#define A5PSW_PATTERN_CTRL_MGMTFWD BIT(1)
#define A5PSW_LK_CTRL 0x400
#define A5PSW_LK_ADDR_CTRL_BLOCKING BIT(0)
#define A5PSW_LK_ADDR_CTRL_LEARNING BIT(1)
#define A5PSW_LK_ADDR_CTRL_AGEING BIT(2)
#define A5PSW_LK_ADDR_CTRL_ALLOW_MIGR BIT(3)
#define A5PSW_LK_ADDR_CTRL_CLEAR_TABLE BIT(6)
#define A5PSW_LK_ADDR_CTRL 0x408
#define A5PSW_LK_ADDR_CTRL_BUSY BIT(31)
#define A5PSW_LK_ADDR_CTRL_DELETE_PORT BIT(30)
#define A5PSW_LK_ADDR_CTRL_CLEAR BIT(29)
#define A5PSW_LK_ADDR_CTRL_LOOKUP BIT(28)
#define A5PSW_LK_ADDR_CTRL_WAIT BIT(27)
#define A5PSW_LK_ADDR_CTRL_READ BIT(26)
#define A5PSW_LK_ADDR_CTRL_WRITE BIT(25)
#define A5PSW_LK_ADDR_CTRL_ADDRESS GENMASK(12, 0)
#define A5PSW_LK_DATA_LO 0x40C
#define A5PSW_LK_DATA_HI 0x410
#define A5PSW_LK_DATA_HI_VALID BIT(16)
#define A5PSW_LK_DATA_HI_PORT BIT(16)
#define A5PSW_LK_LEARNCOUNT 0x418
#define A5PSW_LK_LEARNCOUNT_COUNT GENMASK(13, 0)
#define A5PSW_LK_LEARNCOUNT_MODE GENMASK(31, 30)
#define A5PSW_LK_LEARNCOUNT_MODE_SET 0x0
#define A5PSW_LK_LEARNCOUNT_MODE_INC 0x1
#define A5PSW_LK_LEARNCOUNT_MODE_DEC 0x2
#define A5PSW_MGMT_TAG_CFG 0x480
#define A5PSW_MGMT_TAG_CFG_TAGFIELD GENMASK(31, 16)
#define A5PSW_MGMT_TAG_CFG_ALL_FRAMES BIT(1)
#define A5PSW_MGMT_TAG_CFG_ENABLE BIT(0)
#define A5PSW_LK_AGETIME 0x41C
#define A5PSW_LK_AGETIME_MASK GENMASK(23, 0)
#define A5PSW_MDIO_CFG_STATUS 0x700
#define A5PSW_MDIO_CFG_STATUS_CLKDIV GENMASK(15, 7)
#define A5PSW_MDIO_CFG_STATUS_READERR BIT(1)
#define A5PSW_MDIO_CFG_STATUS_BUSY BIT(0)
#define A5PSW_MDIO_COMMAND 0x704
/* Register is named TRAININIT in datasheet and should be set when reading */
#define A5PSW_MDIO_COMMAND_READ BIT(15)
#define A5PSW_MDIO_COMMAND_PHY_ADDR GENMASK(9, 5)
#define A5PSW_MDIO_COMMAND_REG_ADDR GENMASK(4, 0)
#define A5PSW_MDIO_DATA 0x708
#define A5PSW_MDIO_DATA_MASK GENMASK(15, 0)
#define A5PSW_CMD_CFG(port) (0x808 + A5PSW_PORT_OFFSET(port))
#define A5PSW_CMD_CFG_CNTL_FRM_ENA BIT(23)
#define A5PSW_CMD_CFG_SW_RESET BIT(13)
#define A5PSW_CMD_CFG_TX_CRC_APPEND BIT(11)
#define A5PSW_CMD_CFG_HD_ENA BIT(10)
#define A5PSW_CMD_CFG_PAUSE_IGNORE BIT(8)
#define A5PSW_CMD_CFG_CRC_FWD BIT(6)
#define A5PSW_CMD_CFG_ETH_SPEED BIT(3)
#define A5PSW_CMD_CFG_RX_ENA BIT(1)
#define A5PSW_CMD_CFG_TX_ENA BIT(0)
#define A5PSW_FRM_LENGTH(port) (0x814 + A5PSW_PORT_OFFSET(port))
#define A5PSW_FRM_LENGTH_MASK GENMASK(13, 0)
#define A5PSW_STATUS(port) (0x840 + A5PSW_PORT_OFFSET(port))
#define A5PSW_STATS_HIWORD 0x900
#define A5PSW_VLAN_TAG(prio, id) (((prio) << 12) | (id))
#define A5PSW_PORTS_NUM 5
#define A5PSW_CPU_PORT (A5PSW_PORTS_NUM - 1)
#define A5PSW_MDIO_DEF_FREQ 2500000
#define A5PSW_MDIO_TIMEOUT 100
#define A5PSW_JUMBO_LEN (10 * SZ_1K)
#define A5PSW_MDIO_CLK_DIV_MIN 5
#define A5PSW_TAG_LEN 8
#define A5PSW_VLAN_COUNT 32
/* Ensure enough space for 2 VLAN tags */
#define A5PSW_EXTRA_MTU_LEN (A5PSW_TAG_LEN + 8)
#define A5PSW_MAX_MTU (A5PSW_JUMBO_LEN - A5PSW_EXTRA_MTU_LEN)
#define A5PSW_PATTERN_MGMTFWD 0
#define A5PSW_LK_BUSY_USEC_POLL 10
#define A5PSW_CTRL_TIMEOUT 1000
#define A5PSW_TABLE_ENTRIES 8192
/**
* struct a5psw - switch struct
* @base: Base address of the switch
* @hclk: hclk_switch clock
* @clk: clk_switch clock
* @dev: Device associated to the switch
* @mii_bus: MDIO bus struct
* @mdio_freq: MDIO bus frequency requested
* @pcs: Array of PCS connected to the switch ports (not for the CPU)
* @ds: DSA switch struct
* @lk_lock: Lock for the lookup table
* @reg_lock: Lock for register read-modify-write operation
* @bridged_ports: Mask of ports that are bridged and should be flooded
* @br_dev: Bridge net device
*/
struct a5psw {
void __iomem *base;
struct clk *hclk;
struct clk *clk;
struct device *dev;
struct mii_bus *mii_bus;
struct phylink_pcs *pcs[A5PSW_PORTS_NUM - 1];
struct dsa_switch ds;
struct mutex lk_lock;
spinlock_t reg_lock;
u32 bridged_ports;
struct net_device *br_dev;
};
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册