提交 884a7e59 编写于 作者: S Suren Baghdasaryan 提交者: Linus Torvalds

mm: introduce process_mrelease system call

In modern systems it's not unusual to have a system component monitoring
memory conditions of the system and tasked with keeping system memory
pressure under control.  One way to accomplish that is to kill
non-essential processes to free up memory for more important ones.
Examples of this are Facebook's OOM killer daemon called oomd and
Android's low memory killer daemon called lmkd.

For such system component it's important to be able to free memory quickly
and efficiently.  Unfortunately the time process takes to free up its
memory after receiving a SIGKILL might vary based on the state of the
process (uninterruptible sleep), size and OPP level of the core the
process is running.  A mechanism to free resources of the target process
in a more predictable way would improve system's ability to control its
memory pressure.

Introduce process_mrelease system call that releases memory of a dying
process from the context of the caller.  This way the memory is freed in a
more controllable way with CPU affinity and priority of the caller.  The
workload of freeing the memory will also be charged to the caller.  The
operation is allowed only on a dying process.

After previous discussions [1, 2, 3] the decision was made [4] to
introduce a dedicated system call to cover this use case.

The API is as follows,

          int process_mrelease(int pidfd, unsigned int flags);

        DESCRIPTION
          The process_mrelease() system call is used to free the memory of
          an exiting process.

          The pidfd selects the process referred to by the PID file
          descriptor.
          (See pidfd_open(2) for further information)

          The flags argument is reserved for future use; currently, this
          argument must be specified as 0.

        RETURN VALUE
          On success, process_mrelease() returns 0. On error, -1 is
          returned and errno is set to indicate the error.

        ERRORS
          EBADF  pidfd is not a valid PID file descriptor.

          EAGAIN Failed to release part of the address space.

          EINTR  The call was interrupted by a signal; see signal(7).

          EINVAL flags is not 0.

          EINVAL The memory of the task cannot be released because the
                 process is not exiting, the address space is shared
                 with another live process or there is a core dump in
                 progress.

          ENOSYS This system call is not supported, for example, without
                 MMU support built into Linux.

          ESRCH  The target process does not exist (i.e., it has terminated
                 and been waited on).

[1] https://lore.kernel.org/lkml/20190411014353.113252-3-surenb@google.com/
[2] https://lore.kernel.org/linux-api/20201113173448.1863419-1-surenb@google.com/
[3] https://lore.kernel.org/linux-api/20201124053943.1684874-3-surenb@google.com/
[4] https://lore.kernel.org/linux-api/20201223075712.GA4719@lst.de/

Link: https://lkml.kernel.org/r/20210809185259.405936-1-surenb@google.comSigned-off-by: NSuren Baghdasaryan <surenb@google.com>
Reviewed-by: NShakeel Butt <shakeelb@google.com>
Acked-by: NDavid Hildenbrand <david@redhat.com>
Acked-by: NMichal Hocko <mhocko@suse.com>
Acked-by: NChristian Brauner <christian.brauner@ubuntu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Jan Engelhardt <jengelh@inai.de>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
上级 a7259df7
......@@ -28,6 +28,7 @@
#include <linux/sched/task.h>
#include <linux/sched/debug.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/cpuset.h>
......@@ -1141,3 +1142,72 @@ void pagefault_out_of_memory(void)
out_of_memory(&oc);
mutex_unlock(&oom_lock);
}
SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
{
#ifdef CONFIG_MMU
struct mm_struct *mm = NULL;
struct task_struct *task;
struct task_struct *p;
unsigned int f_flags;
bool reap = true;
struct pid *pid;
long ret = 0;
if (flags)
return -EINVAL;
pid = pidfd_get_pid(pidfd, &f_flags);
if (IS_ERR(pid))
return PTR_ERR(pid);
task = get_pid_task(pid, PIDTYPE_TGID);
if (!task) {
ret = -ESRCH;
goto put_pid;
}
/*
* Make sure to choose a thread which still has a reference to mm
* during the group exit
*/
p = find_lock_task_mm(task);
if (!p) {
ret = -ESRCH;
goto put_task;
}
mm = p->mm;
mmgrab(mm);
/* If the work has been done already, just exit with success */
if (test_bit(MMF_OOM_SKIP, &mm->flags))
reap = false;
else if (!task_will_free_mem(p)) {
reap = false;
ret = -EINVAL;
}
task_unlock(p);
if (!reap)
goto drop_mm;
if (mmap_read_lock_killable(mm)) {
ret = -EINTR;
goto drop_mm;
}
if (!__oom_reap_task_mm(mm))
ret = -EAGAIN;
mmap_read_unlock(mm);
drop_mm:
mmdrop(mm);
put_task:
put_task_struct(task);
put_pid:
put_pid(pid);
return ret;
#else
return -ENOSYS;
#endif /* CONFIG_MMU */
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册