提交 64a7e295 编写于 作者: O Omer Shpigelman 提交者: Oded Gabbay

habanalabs: split the host MMU properties

Host memory may be allocated with huge pages.
A different virtual range may be used for mapping in this case.
Add Huge PCI MMU (HPMMU) properties to support it.
This patch is a prerequisite for future ASICs support and has no effect on
Goya ASIC as currently a single virtual host range is used for all page
sizes.
Signed-off-by: NOmer Shpigelman <oshpigelman@habana.ai>
Reviewed-by: NOded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: NOded Gabbay <oded.gabbay@gmail.com>
上级 240c92fd
......@@ -393,9 +393,10 @@ static int mmu_show(struct seq_file *s, void *data)
}
is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
prop->va_space_dram_start_address,
prop->va_space_dram_end_address);
prop->dmmu.start_addr,
prop->dmmu.end_addr);
/* shifts and masks are the same in PMMU and HPMMU, use one of them */
mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
mutex_lock(&ctx->mmu_lock);
......@@ -547,12 +548,15 @@ static bool hl_is_device_va(struct hl_device *hdev, u64 addr)
goto out;
if (hdev->dram_supports_virtual_memory &&
addr >= prop->va_space_dram_start_address &&
addr < prop->va_space_dram_end_address)
(addr >= prop->dmmu.start_addr && addr < prop->dmmu.end_addr))
return true;
if (addr >= prop->va_space_host_start_address &&
addr < prop->va_space_host_end_address)
if (addr >= prop->pmmu.start_addr &&
addr < prop->pmmu.end_addr)
return true;
if (addr >= prop->pmmu_huge.start_addr &&
addr < prop->pmmu_huge.end_addr)
return true;
out:
return false;
......@@ -575,9 +579,10 @@ static int device_va_to_pa(struct hl_device *hdev, u64 virt_addr,
}
is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
prop->va_space_dram_start_address,
prop->va_space_dram_end_address);
prop->dmmu.start_addr,
prop->dmmu.end_addr);
/* shifts and masks are the same in PMMU and HPMMU, use one of them */
mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
mutex_lock(&ctx->mmu_lock);
......
......@@ -393,19 +393,21 @@ void goya_get_fixed_properties(struct hl_device *hdev)
prop->dmmu.hop2_mask = HOP2_MASK;
prop->dmmu.hop3_mask = HOP3_MASK;
prop->dmmu.hop4_mask = HOP4_MASK;
prop->dmmu.huge_page_size = PAGE_SIZE_2MB;
prop->dmmu.start_addr = VA_DDR_SPACE_START;
prop->dmmu.end_addr = VA_DDR_SPACE_END;
prop->dmmu.page_size = PAGE_SIZE_2MB;
/* No difference between PMMU and DMMU except of page size */
/* shifts and masks are the same in PMMU and DMMU */
memcpy(&prop->pmmu, &prop->dmmu, sizeof(prop->dmmu));
prop->dmmu.page_size = PAGE_SIZE_2MB;
prop->pmmu.start_addr = VA_HOST_SPACE_START;
prop->pmmu.end_addr = VA_HOST_SPACE_END;
prop->pmmu.page_size = PAGE_SIZE_4KB;
prop->va_space_host_start_address = VA_HOST_SPACE_START;
prop->va_space_host_end_address = VA_HOST_SPACE_END;
prop->va_space_dram_start_address = VA_DDR_SPACE_START;
prop->va_space_dram_end_address = VA_DDR_SPACE_END;
prop->dram_size_for_default_page_mapping =
prop->va_space_dram_end_address;
/* PMMU and HPMMU are the same except of page size */
memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu));
prop->pmmu_huge.page_size = PAGE_SIZE_2MB;
prop->dram_size_for_default_page_mapping = VA_DDR_SPACE_END;
prop->cfg_size = CFG_SIZE;
prop->max_asid = MAX_ASID;
prop->num_of_events = GOYA_ASYNC_EVENT_ID_SIZE;
......@@ -3443,12 +3445,13 @@ static int goya_validate_dma_pkt_mmu(struct hl_device *hdev,
/*
* WA for HW-23.
* We can't allow user to read from Host using QMANs other than 1.
* PMMU and HPMMU addresses are equal, check only one of them.
*/
if (parser->hw_queue_id != GOYA_QUEUE_ID_DMA_1 &&
hl_mem_area_inside_range(le64_to_cpu(user_dma_pkt->src_addr),
le32_to_cpu(user_dma_pkt->tsize),
hdev->asic_prop.va_space_host_start_address,
hdev->asic_prop.va_space_host_end_address)) {
hdev->asic_prop.pmmu.start_addr,
hdev->asic_prop.pmmu.end_addr)) {
dev_err(hdev->dev,
"Can't DMA from host on queue other then 1\n");
return -EFAULT;
......
......@@ -364,8 +364,8 @@ static int goya_etr_validate_address(struct hl_device *hdev, u64 addr,
u64 range_start, range_end;
if (hdev->mmu_enable) {
range_start = prop->va_space_dram_start_address;
range_end = prop->va_space_dram_end_address;
range_start = prop->dmmu.start_addr;
range_end = prop->dmmu.end_addr;
} else {
range_start = prop->dram_user_base_address;
range_end = prop->dram_end_address;
......
......@@ -132,6 +132,8 @@ enum hl_device_hw_state {
/**
* struct hl_mmu_properties - ASIC specific MMU address translation properties.
* @start_addr: virtual start address of the memory region.
* @end_addr: virtual end address of the memory region.
* @hop0_shift: shift of hop 0 mask.
* @hop1_shift: shift of hop 1 mask.
* @hop2_shift: shift of hop 2 mask.
......@@ -143,9 +145,10 @@ enum hl_device_hw_state {
* @hop3_mask: mask to get the PTE address in hop 3.
* @hop4_mask: mask to get the PTE address in hop 4.
* @page_size: default page size used to allocate memory.
* @huge_page_size: page size used to allocate memory with huge pages.
*/
struct hl_mmu_properties {
u64 start_addr;
u64 end_addr;
u64 hop0_shift;
u64 hop1_shift;
u64 hop2_shift;
......@@ -157,7 +160,6 @@ struct hl_mmu_properties {
u64 hop3_mask;
u64 hop4_mask;
u32 page_size;
u32 huge_page_size;
};
/**
......@@ -169,6 +171,8 @@ struct hl_mmu_properties {
* @preboot_ver: F/W Preboot version.
* @dmmu: DRAM MMU address translation properties.
* @pmmu: PCI (host) MMU address translation properties.
* @pmmu_huge: PCI (host) MMU address translation properties for memory
* allocated with huge pages.
* @sram_base_address: SRAM physical start address.
* @sram_end_address: SRAM physical end address.
* @sram_user_base_address - SRAM physical start address for user access.
......@@ -178,14 +182,6 @@ struct hl_mmu_properties {
* @dram_size: DRAM total size.
* @dram_pci_bar_size: size of PCI bar towards DRAM.
* @max_power_default: max power of the device after reset
* @va_space_host_start_address: base address of virtual memory range for
* mapping host memory.
* @va_space_host_end_address: end address of virtual memory range for
* mapping host memory.
* @va_space_dram_start_address: base address of virtual memory range for
* mapping DRAM memory.
* @va_space_dram_end_address: end address of virtual memory range for
* mapping DRAM memory.
* @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
* fault.
* @pcie_dbi_base_address: Base address of the PCIE_DBI block.
......@@ -218,6 +214,7 @@ struct asic_fixed_properties {
char preboot_ver[VERSION_MAX_LEN];
struct hl_mmu_properties dmmu;
struct hl_mmu_properties pmmu;
struct hl_mmu_properties pmmu_huge;
u64 sram_base_address;
u64 sram_end_address;
u64 sram_user_base_address;
......@@ -227,10 +224,6 @@ struct asic_fixed_properties {
u64 dram_size;
u64 dram_pci_bar_size;
u64 max_power_default;
u64 va_space_host_start_address;
u64 va_space_host_end_address;
u64 va_space_dram_start_address;
u64 va_space_dram_end_address;
u64 dram_size_for_default_page_mapping;
u64 pcie_dbi_base_address;
u64 pcie_aux_dbi_reg_addr;
......@@ -658,6 +651,8 @@ struct hl_va_range {
* this hits 0l. It is incremented on CS and CS_WAIT.
* @cs_pending: array of DMA fence objects representing pending CS.
* @host_va_range: holds available virtual addresses for host mappings.
* @host_huge_va_range: holds available virtual addresses for host mappings
* with huge pages.
* @dram_va_range: holds available virtual addresses for DRAM mappings.
* @mem_hash_lock: protects the mem_hash.
* @mmu_lock: protects the MMU page tables. Any change to the PGT, modifing the
......@@ -688,8 +683,9 @@ struct hl_ctx {
struct hl_device *hdev;
struct kref refcount;
struct dma_fence *cs_pending[HL_MAX_PENDING_CS];
struct hl_va_range host_va_range;
struct hl_va_range dram_va_range;
struct hl_va_range *host_va_range;
struct hl_va_range *host_huge_va_range;
struct hl_va_range *dram_va_range;
struct mutex mem_hash_lock;
struct mutex mmu_lock;
struct list_head debugfs_list;
......@@ -1291,6 +1287,8 @@ struct hl_device_idle_busy_ts {
* otherwise.
* @dram_supports_virtual_memory: is MMU enabled towards DRAM.
* @dram_default_page_mapping: is DRAM default page mapping enabled.
* @pmmu_huge_range: is a different virtual addresses range used for PMMU with
* huge pages.
* @init_done: is the initialization of the device done.
* @mmu_enable: is MMU enabled.
* @device_cpu_disabled: is the device CPU disabled (due to timeouts)
......@@ -1372,6 +1370,7 @@ struct hl_device {
u8 reset_on_lockup;
u8 dram_supports_virtual_memory;
u8 dram_default_page_mapping;
u8 pmmu_huge_range;
u8 init_done;
u8 device_cpu_disabled;
u8 dma_mask;
......
......@@ -530,7 +530,7 @@ static u64 get_va_block(struct hl_device *hdev,
* or not, hence we continue with the biggest possible
* granularity.
*/
page_size = hdev->asic_prop.pmmu.huge_page_size;
page_size = hdev->asic_prop.pmmu_huge.page_size;
else
page_size = hdev->asic_prop.dmmu.page_size;
......@@ -638,13 +638,12 @@ static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
struct hl_userptr *userptr,
struct hl_vm_phys_pg_pack **pphys_pg_pack)
{
struct hl_mmu_properties *mmu_prop = &ctx->hdev->asic_prop.pmmu;
struct hl_vm_phys_pg_pack *phys_pg_pack;
struct scatterlist *sg;
dma_addr_t dma_addr;
u64 page_mask, total_npages;
u32 npages, page_size = PAGE_SIZE,
huge_page_size = mmu_prop->huge_page_size;
huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
bool first = true, is_huge_page_opt = true;
int rc, i, j;
u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
......@@ -856,6 +855,7 @@ static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
struct hl_vm_phys_pg_pack *phys_pg_pack;
struct hl_userptr *userptr = NULL;
struct hl_vm_hash_node *hnode;
struct hl_va_range *va_range;
enum vm_type_t *vm_type;
u64 ret_vaddr, hint_addr;
u32 handle = 0;
......@@ -927,9 +927,16 @@ static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
goto hnode_err;
}
ret_vaddr = get_va_block(hdev,
is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
phys_pg_pack->total_size, hint_addr, is_userptr);
if (is_userptr)
if (phys_pg_pack->page_size == hdev->asic_prop.pmmu.page_size)
va_range = ctx->host_va_range;
else
va_range = ctx->host_huge_va_range;
else
va_range = ctx->dram_va_range;
ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
hint_addr, is_userptr);
if (!ret_vaddr) {
dev_err(hdev->dev, "no available va block for handle %u\n",
handle);
......@@ -968,10 +975,8 @@ static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
return 0;
map_err:
if (add_va_block(hdev,
is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
ret_vaddr,
ret_vaddr + phys_pg_pack->total_size - 1))
if (add_va_block(hdev, va_range, ret_vaddr,
ret_vaddr + phys_pg_pack->total_size - 1))
dev_warn(hdev->dev,
"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
handle, ret_vaddr);
......@@ -1033,7 +1038,6 @@ static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr, bool ctx_free)
if (*vm_type == VM_TYPE_USERPTR) {
is_userptr = true;
va_range = &ctx->host_va_range;
userptr = hnode->ptr;
rc = init_phys_pg_pack_from_userptr(ctx, userptr,
&phys_pg_pack);
......@@ -1043,9 +1047,15 @@ static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr, bool ctx_free)
vaddr);
goto vm_type_err;
}
if (phys_pg_pack->page_size ==
hdev->asic_prop.pmmu.page_size)
va_range = ctx->host_va_range;
else
va_range = ctx->host_huge_va_range;
} else if (*vm_type == VM_TYPE_PHYS_PACK) {
is_userptr = false;
va_range = &ctx->dram_va_range;
va_range = ctx->dram_va_range;
phys_pg_pack = hnode->ptr;
} else {
dev_warn(hdev->dev,
......@@ -1441,19 +1451,18 @@ bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
}
/*
* hl_va_range_init - initialize virtual addresses range
*
* @hdev : pointer to the habanalabs device structure
* @va_range : pointer to the range to initialize
* @start : range start address
* @end : range end address
* va_range_init - initialize virtual addresses range
* @hdev: pointer to the habanalabs device structure
* @va_range: pointer to the range to initialize
* @start: range start address
* @end: range end address
*
* This function does the following:
* - Initializes the virtual addresses list of the given range with the given
* addresses.
*/
static int hl_va_range_init(struct hl_device *hdev,
struct hl_va_range *va_range, u64 start, u64 end)
static int va_range_init(struct hl_device *hdev, struct hl_va_range *va_range,
u64 start, u64 end)
{
int rc;
......@@ -1488,47 +1497,105 @@ static int hl_va_range_init(struct hl_device *hdev,
}
/*
* hl_vm_ctx_init_with_ranges - initialize virtual memory for context
* va_range_fini() - clear a virtual addresses range
* @hdev: pointer to the habanalabs structure
* va_range: pointer to virtual addresses range
*
* @ctx : pointer to the habanalabs context structure
* @host_range_start : host virtual addresses range start
* @host_range_end : host virtual addresses range end
* @dram_range_start : dram virtual addresses range start
* @dram_range_end : dram virtual addresses range end
* This function does the following:
* - Frees the virtual addresses block list and its lock
*/
static void va_range_fini(struct hl_device *hdev,
struct hl_va_range *va_range)
{
mutex_lock(&va_range->lock);
clear_va_list_locked(hdev, &va_range->list);
mutex_unlock(&va_range->lock);
mutex_destroy(&va_range->lock);
kfree(va_range);
}
/*
* vm_ctx_init_with_ranges() - initialize virtual memory for context
* @ctx: pointer to the habanalabs context structure
* @host_range_start: host virtual addresses range start.
* @host_range_end: host virtual addresses range end.
* @host_huge_range_start: host virtual addresses range start for memory
* allocated with huge pages.
* @host_huge_range_end: host virtual addresses range end for memory allocated
* with huge pages.
* @dram_range_start: dram virtual addresses range start.
* @dram_range_end: dram virtual addresses range end.
*
* This function initializes the following:
* - MMU for context
* - Virtual address to area descriptor hashtable
* - Virtual block list of available virtual memory
*/
static int hl_vm_ctx_init_with_ranges(struct hl_ctx *ctx, u64 host_range_start,
u64 host_range_end, u64 dram_range_start,
u64 dram_range_end)
static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
u64 host_range_start,
u64 host_range_end,
u64 host_huge_range_start,
u64 host_huge_range_end,
u64 dram_range_start,
u64 dram_range_end)
{
struct hl_device *hdev = ctx->hdev;
int rc;
ctx->host_va_range = kzalloc(sizeof(*ctx->host_va_range), GFP_KERNEL);
if (!ctx->host_va_range)
return -ENOMEM;
ctx->host_huge_va_range = kzalloc(sizeof(*ctx->host_huge_va_range),
GFP_KERNEL);
if (!ctx->host_huge_va_range) {
rc = -ENOMEM;
goto host_huge_va_range_err;
}
ctx->dram_va_range = kzalloc(sizeof(*ctx->dram_va_range), GFP_KERNEL);
if (!ctx->dram_va_range) {
rc = -ENOMEM;
goto dram_va_range_err;
}
rc = hl_mmu_ctx_init(ctx);
if (rc) {
dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
return rc;
goto mmu_ctx_err;
}
mutex_init(&ctx->mem_hash_lock);
hash_init(ctx->mem_hash);
mutex_init(&ctx->host_va_range.lock);
mutex_init(&ctx->host_va_range->lock);
rc = hl_va_range_init(hdev, &ctx->host_va_range, host_range_start,
host_range_end);
rc = va_range_init(hdev, ctx->host_va_range, host_range_start,
host_range_end);
if (rc) {
dev_err(hdev->dev, "failed to init host vm range\n");
goto host_vm_err;
goto host_page_range_err;
}
if (hdev->pmmu_huge_range) {
mutex_init(&ctx->host_huge_va_range->lock);
rc = va_range_init(hdev, ctx->host_huge_va_range,
host_huge_range_start,
host_huge_range_end);
if (rc) {
dev_err(hdev->dev,
"failed to init host huge vm range\n");
goto host_hpage_range_err;
}
} else {
ctx->host_huge_va_range = ctx->host_va_range;
}
mutex_init(&ctx->dram_va_range.lock);
mutex_init(&ctx->dram_va_range->lock);
rc = hl_va_range_init(hdev, &ctx->dram_va_range, dram_range_start,
rc = va_range_init(hdev, ctx->dram_va_range, dram_range_start,
dram_range_end);
if (rc) {
dev_err(hdev->dev, "failed to init dram vm range\n");
......@@ -1540,15 +1607,29 @@ static int hl_vm_ctx_init_with_ranges(struct hl_ctx *ctx, u64 host_range_start,
return 0;
dram_vm_err:
mutex_destroy(&ctx->dram_va_range.lock);
mutex_destroy(&ctx->dram_va_range->lock);
mutex_lock(&ctx->host_va_range.lock);
clear_va_list_locked(hdev, &ctx->host_va_range.list);
mutex_unlock(&ctx->host_va_range.lock);
host_vm_err:
mutex_destroy(&ctx->host_va_range.lock);
if (hdev->pmmu_huge_range) {
mutex_lock(&ctx->host_huge_va_range->lock);
clear_va_list_locked(hdev, &ctx->host_huge_va_range->list);
mutex_unlock(&ctx->host_huge_va_range->lock);
}
host_hpage_range_err:
if (hdev->pmmu_huge_range)
mutex_destroy(&ctx->host_huge_va_range->lock);
mutex_lock(&ctx->host_va_range->lock);
clear_va_list_locked(hdev, &ctx->host_va_range->list);
mutex_unlock(&ctx->host_va_range->lock);
host_page_range_err:
mutex_destroy(&ctx->host_va_range->lock);
mutex_destroy(&ctx->mem_hash_lock);
hl_mmu_ctx_fini(ctx);
mmu_ctx_err:
kfree(ctx->dram_va_range);
dram_va_range_err:
kfree(ctx->host_huge_va_range);
host_huge_va_range_err:
kfree(ctx->host_va_range);
return rc;
}
......@@ -1556,8 +1637,8 @@ static int hl_vm_ctx_init_with_ranges(struct hl_ctx *ctx, u64 host_range_start,
int hl_vm_ctx_init(struct hl_ctx *ctx)
{
struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
u64 host_range_start, host_range_end, dram_range_start,
dram_range_end;
u64 host_range_start, host_range_end, host_huge_range_start,
host_huge_range_end, dram_range_start, dram_range_end;
atomic64_set(&ctx->dram_phys_mem, 0);
......@@ -1569,38 +1650,26 @@ int hl_vm_ctx_init(struct hl_ctx *ctx)
* address of the memory related to the given handle.
*/
if (ctx->hdev->mmu_enable) {
dram_range_start = prop->va_space_dram_start_address;
dram_range_end = prop->va_space_dram_end_address;
host_range_start = prop->va_space_host_start_address;
host_range_end = prop->va_space_host_end_address;
dram_range_start = prop->dmmu.start_addr;
dram_range_end = prop->dmmu.end_addr;
host_range_start = prop->pmmu.start_addr;
host_range_end = prop->pmmu.end_addr;
host_huge_range_start = prop->pmmu_huge.start_addr;
host_huge_range_end = prop->pmmu_huge.end_addr;
} else {
dram_range_start = prop->dram_user_base_address;
dram_range_end = prop->dram_end_address;
host_range_start = prop->dram_user_base_address;
host_range_end = prop->dram_end_address;
host_huge_range_start = prop->dram_user_base_address;
host_huge_range_end = prop->dram_end_address;
}
return hl_vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
dram_range_start, dram_range_end);
}
/*
* hl_va_range_fini - clear a virtual addresses range
*
* @hdev : pointer to the habanalabs structure
* va_range : pointer to virtual addresses range
*
* This function does the following:
* - Frees the virtual addresses block list and its lock
*/
static void hl_va_range_fini(struct hl_device *hdev,
struct hl_va_range *va_range)
{
mutex_lock(&va_range->lock);
clear_va_list_locked(hdev, &va_range->list);
mutex_unlock(&va_range->lock);
mutex_destroy(&va_range->lock);
return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
host_huge_range_start,
host_huge_range_end,
dram_range_start,
dram_range_end);
}
/*
......@@ -1667,8 +1736,10 @@ void hl_vm_ctx_fini(struct hl_ctx *ctx)
}
spin_unlock(&vm->idr_lock);
hl_va_range_fini(hdev, &ctx->dram_va_range);
hl_va_range_fini(hdev, &ctx->host_va_range);
va_range_fini(hdev, ctx->dram_va_range);
if (hdev->pmmu_huge_range)
va_range_fini(hdev, ctx->host_huge_va_range);
va_range_fini(hdev, ctx->host_va_range);
mutex_destroy(&ctx->mem_hash_lock);
hl_mmu_ctx_fini(ctx);
......
......@@ -254,6 +254,15 @@ static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr)
return phys_hop_addr + pte_offset;
}
static bool is_dram_va(struct hl_device *hdev, u64 virt_addr)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
prop->dmmu.start_addr,
prop->dmmu.end_addr);
}
static int dram_default_mapping_init(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
......@@ -548,6 +557,7 @@ static int _hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr)
curr_pte;
bool is_huge, clear_hop3 = true;
/* shifts and masks are the same in PMMU and HPMMU, use one of them */
mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
hop0_addr = get_hop0_addr(ctx);
......@@ -702,26 +712,25 @@ int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
if (!hdev->mmu_enable)
return 0;
is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
prop->va_space_dram_start_address,
prop->va_space_dram_end_address);
is_dram_addr = is_dram_va(hdev, virt_addr);
mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
if (is_dram_addr)
mmu_prop = &prop->dmmu;
else if ((page_size % prop->pmmu_huge.page_size) == 0)
mmu_prop = &prop->pmmu_huge;
else
mmu_prop = &prop->pmmu;
/*
* The H/W handles mapping of specific page sizes. Hence if the page
* size is bigger, we break it to sub-pages and unmap them separately.
*/
if ((page_size % mmu_prop->huge_page_size) == 0) {
real_page_size = mmu_prop->huge_page_size;
} else if ((page_size % mmu_prop->page_size) == 0) {
if ((page_size % mmu_prop->page_size) == 0) {
real_page_size = mmu_prop->page_size;
} else {
dev_err(hdev->dev,
"page size of %u is not %uKB nor %uMB aligned, can't unmap\n",
page_size,
mmu_prop->page_size >> 10,
mmu_prop->huge_page_size >> 20);
"page size of %u is not %uKB aligned, can't unmap\n",
page_size, mmu_prop->page_size >> 10);
return -EFAULT;
}
......@@ -759,8 +768,6 @@ static int _hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
hop4_new = false, is_huge;
int rc = -ENOMEM;
mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
/*
* This mapping function can map a page or a huge page. For huge page
* there are only 3 hops rather than 4. Currently the DRAM allocation
......@@ -768,11 +775,15 @@ static int _hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
* one of the two page sizes. Since this is a common code for all the
* three cases, we need this hugs page check.
*/
is_huge = page_size == mmu_prop->huge_page_size;
if (is_dram_addr && !is_huge) {
dev_err(hdev->dev, "DRAM mapping should use huge pages only\n");
return -EFAULT;
if (is_dram_addr) {
mmu_prop = &prop->dmmu;
is_huge = true;
} else if (page_size == prop->pmmu_huge.page_size) {
mmu_prop = &prop->pmmu_huge;
is_huge = true;
} else {
mmu_prop = &prop->pmmu;
is_huge = false;
}
hop0_addr = get_hop0_addr(ctx);
......@@ -942,26 +953,25 @@ int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
if (!hdev->mmu_enable)
return 0;
is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
prop->va_space_dram_start_address,
prop->va_space_dram_end_address);
is_dram_addr = is_dram_va(hdev, virt_addr);
mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
if (is_dram_addr)
mmu_prop = &prop->dmmu;
else if ((page_size % prop->pmmu_huge.page_size) == 0)
mmu_prop = &prop->pmmu_huge;
else
mmu_prop = &prop->pmmu;
/*
* The H/W handles mapping of specific page sizes. Hence if the page
* size is bigger, we break it to sub-pages and map them separately.
*/
if ((page_size % mmu_prop->huge_page_size) == 0) {
real_page_size = mmu_prop->huge_page_size;
} else if ((page_size % mmu_prop->page_size) == 0) {
if ((page_size % mmu_prop->page_size) == 0) {
real_page_size = mmu_prop->page_size;
} else {
dev_err(hdev->dev,
"page size of %u is not %dKB nor %dMB aligned, can't unmap\n",
page_size,
mmu_prop->page_size >> 10,
mmu_prop->huge_page_size >> 20);
"page size of %u is not %uKB aligned, can't unmap\n",
page_size, mmu_prop->page_size >> 10);
return -EFAULT;
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册