提交 57bd63a4 编写于 作者: M Maxime Coquelin 提交者: Philipp Zabel

dt-bindings: Document the STM32 reset bindings

This adds documentation of device tree bindings for the
STM32 reset controller.
Signed-off-by: NMaxime Coquelin <mcoquelin.stm32@gmail.com>
Signed-off-by: NGabriel Fernandez <gabriel.fernandez@st.com>
Acked-by: NRob Herring <robh@kernel.org>
Signed-off-by: NPhilipp Zabel <p.zabel@pengutronix.de>
上级 ca9f71f0
STMicroelectronics STM32 Reset and Clock Controller
===================================================
The RCC IP is both a reset and a clock controller. This documentation only
describes the clock part.
The RCC IP is both a reset and a clock controller.
Please also refer to clock-bindings.txt in this directory for common clock
controller binding usage.
Please refer to clock-bindings.txt for common clock controller binding usage.
Please also refer to reset.txt for common reset controller binding usage.
Required properties:
- compatible: Should be "st,stm32f42xx-rcc"
- reg: should be register base and length as documented in the
datasheet
- #reset-cells: 1, see below
- #clock-cells: 2, device nodes should specify the clock in their "clocks"
property, containing a phandle to the clock device node, an index selecting
between gated clocks and other clocks and an index specifying the clock to
......@@ -19,6 +19,7 @@ Required properties:
Example:
rcc: rcc@40023800 {
#reset-cells = <1>;
#clock-cells = <2>
compatible = "st,stm32f42xx-rcc", "st,stm32-rcc";
reg = <0x40023800 0x400>;
......@@ -35,16 +36,23 @@ from the first RCC clock enable register (RCC_AHB1ENR, address offset 0x30).
It is calculated as: index = register_offset / 4 * 32 + bit_offset.
Where bit_offset is the bit offset within the register (LSB is 0, MSB is 31).
To simplify the usage and to share bit definition with the reset and clock
drivers of the RCC IP, macros are available to generate the index in
human-readble format.
For STM32F4 series, the macro are available here:
- include/dt-bindings/mfd/stm32f4-rcc.h
Example:
/* Gated clock, AHB1 bit 0 (GPIOA) */
... {
clocks = <&rcc 0 0>
clocks = <&rcc 0 STM32F4_AHB1_CLOCK(GPIOA)>
};
/* Gated clock, AHB2 bit 4 (CRYP) */
... {
clocks = <&rcc 0 36>
clocks = <&rcc 0 STM32F4_AHB2_CLOCK(CRYP)>
};
Specifying other clocks
......@@ -61,5 +69,25 @@ Example:
/* Misc clock, FCLK */
... {
clocks = <&rcc 1 1>
clocks = <&rcc 1 STM32F4_APB1_CLOCK(TIM2)>
};
Specifying softreset control of devices
=======================================
Device nodes should specify the reset channel required in their "resets"
property, containing a phandle to the reset device node and an index specifying
which channel to use.
The index is the bit number within the RCC registers bank, starting from RCC
base address.
It is calculated as: index = register_offset / 4 * 32 + bit_offset.
Where bit_offset is the bit offset within the register.
For example, for CRC reset:
crc = AHB1RSTR_offset / 4 * 32 + CRCRST_bit_offset = 0x10 / 4 * 32 + 12 = 140
example:
timer2 {
resets = <&rcc STM32F4_APB1_RESET(TIM2)>;
};
STMicroelectronics STM32 Peripheral Reset Controller
====================================================
The RCC IP is both a reset and a clock controller.
Please see Documentation/devicetree/bindings/clock/st,stm32-rcc.txt
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册