提交 4ec22e9c 编写于 作者: W Waiman Long 提交者: Tejun Heo

cpuset: Enable cpuset controller in default hierarchy

Given the fact that thread mode had been merged into 4.14, it is now
time to enable cpuset to be used in the default hierarchy (cgroup v2)
as it is clearly threaded.

The cpuset controller had experienced feature creep since its
introduction more than a decade ago. Besides the core cpus and mems
control files to limit cpus and memory nodes, there are a bunch of
additional features that can be controlled from the userspace. Some of
the features are of doubtful usefulness and may not be actively used.

This patch enables cpuset controller in the default hierarchy with
a minimal set of features, namely just the cpus and mems and their
effective_* counterparts.  We can certainly add more features to the
default hierarchy in the future if there is a real user need for them
later on.

Alternatively, with the unified hiearachy, it may make more sense
to move some of those additional cpuset features, if desired, to
memory controller or may be to the cpu controller instead of staying
with cpuset.
Signed-off-by: NWaiman Long <longman@redhat.com>
Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: NTejun Heo <tj@kernel.org>
上级 4d9ebbe2
......@@ -56,11 +56,13 @@ v1 is available under Documentation/cgroup-v1/.
5-3-3-2. IO Latency Interface Files
5-4. PID
5-4-1. PID Interface Files
5-5. Device
5-6. RDMA
5-6-1. RDMA Interface Files
5-7. Misc
5-7-1. perf_event
5-5. Cpuset
5.5-1. Cpuset Interface Files
5-6. Device
5-7. RDMA
5-7-1. RDMA Interface Files
5-8. Misc
5-8-1. perf_event
5-N. Non-normative information
5-N-1. CPU controller root cgroup process behaviour
5-N-2. IO controller root cgroup process behaviour
......@@ -1610,6 +1612,103 @@ through fork() or clone(). These will return -EAGAIN if the creation
of a new process would cause a cgroup policy to be violated.
Cpuset
------
The "cpuset" controller provides a mechanism for constraining
the CPU and memory node placement of tasks to only the resources
specified in the cpuset interface files in a task's current cgroup.
This is especially valuable on large NUMA systems where placing jobs
on properly sized subsets of the systems with careful processor and
memory placement to reduce cross-node memory access and contention
can improve overall system performance.
The "cpuset" controller is hierarchical. That means the controller
cannot use CPUs or memory nodes not allowed in its parent.
Cpuset Interface Files
~~~~~~~~~~~~~~~~~~~~~~
cpuset.cpus
A read-write multiple values file which exists on non-root
cpuset-enabled cgroups.
It lists the requested CPUs to be used by tasks within this
cgroup. The actual list of CPUs to be granted, however, is
subjected to constraints imposed by its parent and can differ
from the requested CPUs.
The CPU numbers are comma-separated numbers or ranges.
For example:
# cat cpuset.cpus
0-4,6,8-10
An empty value indicates that the cgroup is using the same
setting as the nearest cgroup ancestor with a non-empty
"cpuset.cpus" or all the available CPUs if none is found.
The value of "cpuset.cpus" stays constant until the next update
and won't be affected by any CPU hotplug events.
cpuset.cpus.effective
A read-only multiple values file which exists on non-root
cpuset-enabled cgroups.
It lists the onlined CPUs that are actually granted to this
cgroup by its parent. These CPUs are allowed to be used by
tasks within the current cgroup.
If "cpuset.cpus" is empty, the "cpuset.cpus.effective" file shows
all the CPUs from the parent cgroup that can be available to
be used by this cgroup. Otherwise, it should be a subset of
"cpuset.cpus" unless none of the CPUs listed in "cpuset.cpus"
can be granted. In this case, it will be treated just like an
empty "cpuset.cpus".
Its value will be affected by CPU hotplug events.
cpuset.mems
A read-write multiple values file which exists on non-root
cpuset-enabled cgroups.
It lists the requested memory nodes to be used by tasks within
this cgroup. The actual list of memory nodes granted, however,
is subjected to constraints imposed by its parent and can differ
from the requested memory nodes.
The memory node numbers are comma-separated numbers or ranges.
For example:
# cat cpuset.mems
0-1,3
An empty value indicates that the cgroup is using the same
setting as the nearest cgroup ancestor with a non-empty
"cpuset.mems" or all the available memory nodes if none
is found.
The value of "cpuset.mems" stays constant until the next update
and won't be affected by any memory nodes hotplug events.
cpuset.mems.effective
A read-only multiple values file which exists on non-root
cpuset-enabled cgroups.
It lists the onlined memory nodes that are actually granted to
this cgroup by its parent. These memory nodes are allowed to
be used by tasks within the current cgroup.
If "cpuset.mems" is empty, it shows all the memory nodes from the
parent cgroup that will be available to be used by this cgroup.
Otherwise, it should be a subset of "cpuset.mems" unless none of
the memory nodes listed in "cpuset.mems" can be granted. In this
case, it will be treated just like an empty "cpuset.mems".
Its value will be affected by memory nodes hotplug events.
Device controller
-----------------
......
......@@ -1824,12 +1824,11 @@ static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
return 0;
}
/*
* for the common functions, 'private' gives the type of file
*/
static struct cftype files[] = {
static struct cftype legacy_files[] = {
{
.name = "cpus",
.seq_show = cpuset_common_seq_show,
......@@ -1931,6 +1930,47 @@ static struct cftype files[] = {
{ } /* terminate */
};
/*
* This is currently a minimal set for the default hierarchy. It can be
* expanded later on by migrating more features and control files from v1.
*/
static struct cftype dfl_files[] = {
{
.name = "cpus",
.seq_show = cpuset_common_seq_show,
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * NR_CPUS),
.private = FILE_CPULIST,
.flags = CFTYPE_NOT_ON_ROOT,
},
{
.name = "mems",
.seq_show = cpuset_common_seq_show,
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * MAX_NUMNODES),
.private = FILE_MEMLIST,
.flags = CFTYPE_NOT_ON_ROOT,
},
{
.name = "cpus.effective",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_CPULIST,
.flags = CFTYPE_NOT_ON_ROOT,
},
{
.name = "mems.effective",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_MEMLIST,
.flags = CFTYPE_NOT_ON_ROOT,
},
{ } /* terminate */
};
/*
* cpuset_css_alloc - allocate a cpuset css
* cgrp: control group that the new cpuset will be part of
......@@ -2105,8 +2145,10 @@ struct cgroup_subsys cpuset_cgrp_subsys = {
.post_attach = cpuset_post_attach,
.bind = cpuset_bind,
.fork = cpuset_fork,
.legacy_cftypes = files,
.legacy_cftypes = legacy_files,
.dfl_cftypes = dfl_files,
.early_init = true,
.threaded = true,
};
/**
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册