dma-buf: mmap support
Compared to Rob Clark's RFC I've ditched the prepare/finish hooks and corresponding ioctls on the dma_buf file. The major reason for that is that many people seem to be under the impression that this is also for synchronization with outstanding asynchronous processsing. I'm pretty massively opposed to this because: - It boils down reinventing a new rather general-purpose userspace synchronization interface. If we look at things like futexes, this is hard to get right. - Furthermore a lot of kernel code has to interact with this synchronization primitive. This smells a look like the dri1 hw_lock, a horror show I prefer not to reinvent. - Even more fun is that multiple different subsystems would interact here, so we have plenty of opportunities to create funny deadlock scenarios. I think synchronization is a wholesale different problem from data sharing and should be tackled as an orthogonal problem. Now we could demand that prepare/finish may only ensure cache coherency (as Rob intended), but that runs up into the next problem: We not only need mmap support to facilitate sw-only processing nodes in a pipeline (without jumping through hoops by importing the dma_buf into some sw-access only importer), which allows for a nicer ION->dma-buf upgrade path for existing Android userspace. We also need mmap support for existing importing subsystems to support existing userspace libraries. And a loot of these subsystems are expected to export coherent userspace mappings. So prepare/finish can only ever be optional and the exporter /needs/ to support coherent mappings. Given that mmap access is always somewhat fallback-y in nature I've decided to drop this optimization, instead of just making it optional. If we demonstrate a clear need for this, supported by benchmark results, we can always add it in again later as an optional extension. Other differences compared to Rob's RFC is the above mentioned support for mapping a dma-buf through facilities provided by the importer. Which results in mmap support no longer being optional. Note that this dma-buf mmap patch does _not_ support every possible insanity an existing subsystem could pull of with mmap: Because it does not allow to intercept pagefaults and shoot down ptes importing subsystems can't add some magic of their own at these points (e.g. to automatically synchronize with outstanding rendering or set up some special resources). I've done a cursory read through a few mmap implementions of various subsytems and I'm hopeful that we can avoid this (and the complexity it'd bring with it). Additonally I've extended the documentation a bit to explain the hows and whys of this mmap extension. In case we ever want to add support for explicitly cache maneged userspace mmap with a prepare/finish ioctl pair, we could specify that userspace needs to mmap a different part of the dma_buf, e.g. the range starting at dma_buf->size up to dma_buf->size*2. This works because the size of a dma_buf is invariant over it's lifetime. The exporter would obviously need to fall back to coherent mappings for both ranges if a legacy clients maps the coherent range and the architecture cannot suppor conflicting caching policies. Also, this would obviously be optional and userspace needs to be able to fall back to coherent mappings. v2: - Spelling fixes from Rob Clark. - Compile fix for !DMA_BUF from Rob Clark. - Extend commit message to explain how explicitly cache managed mmap support could be added later. - Extend the documentation with implementations notes for exporters that need to manually fake coherency. v3: - dma_buf pointer initialization goof-up noticed by Rebecca Schultz Zavin. Cc: Rob Clark <rob.clark@linaro.org> Cc: Rebecca Schultz Zavin <rebecca@android.com> Acked-by: NRob Clark <rob.clark@linaro.org> Signed-Off-by: NDaniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: NSumit Semwal <sumit.semwal@linaro.org>
Showing
想要评论请 注册 或 登录