提交 42202de8 编写于 作者: T Tang Jinyang 提交者: Zheng Zengkai

sw64: add dynamic frequency scaling support

Sunway inclusion
category: feature
bugzilla: https://gitee.com/openeuler/kernel/issues/I56QDM

--------------------------------

Dynamic voltage and frequency scaling (DVFS) is a well-known technique
to reduce power/or energy consumption of various applications. But in
the past, cpu frequency scaling has to be done manually on sw64. Now we
add dynamic frequency scaling support, which allows system to scale
frequency dynamically according to workload.
Signed-off-by: NTang Jinyang <tangjinyang@wxiat.com>
Signed-off-by: NGu Zitao <guzitao@wxiat.com>
Acked-by: NXie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
上级 1f1f3df7
......@@ -243,6 +243,245 @@ config LOCK_MEMB
bool "Insert mem barrier before lock instruction"
default y
menu "CPU Frequency scaling"
config CPU_FREQ
bool "CPU Frequency scaling"
select SRCU
help
CPU Frequency scaling allows you to change the clock speed of
CPUs on the fly. This is a nice method to save power, because
the lower the CPU clock speed, the less power the CPU consumes.
Note that this driver doesn't automatically change the CPU
clock speed, you need to either enable a dynamic cpufreq governor
(see below) after boot, or use a userspace tool.
For details, take a look at <file:Documentation/cpu-freq>.
If in doubt, say N.
if CPU_FREQ
config SW64_CPUFREQ
bool "sw64 CPU Frequency interface for Chip3 Asic"
depends on SW64_CHIP3
default y
help
Turns on the interface for SW64_CPU Frequency.
config CPU_FREQ_GOV_ATTR_SET
bool
config CPU_FREQ_GOV_COMMON
select CPU_FREQ_GOV_ATTR_SET
select IRQ_WORK
bool
config CPU_FREQ_BOOST_SW
bool
depends on THERMAL
config CPU_FREQ_STAT
bool "CPU frequency transition statistics"
help
Export CPU frequency statistics information through sysfs.
If in doubt, say N.
choice
prompt "Default CPUFreq governor"
default CPU_FREQ_DEFAULT_GOV_USERSPACE if ARM_SA1100_CPUFREQ || ARM_SA1110_CPUFREQ
default CPU_FREQ_DEFAULT_GOV_PERFORMANCE
help
This option sets which CPUFreq governor shall be loaded at
startup. If in doubt, select 'performance'.
config CPU_FREQ_DEFAULT_GOV_PERFORMANCE
bool "performance"
select CPU_FREQ_GOV_PERFORMANCE
help
Use the CPUFreq governor 'performance' as default. This sets
the frequency statically to the highest frequency supported by
the CPU.
config CPU_FREQ_DEFAULT_GOV_POWERSAVE
bool "powersave"
select CPU_FREQ_GOV_POWERSAVE
help
Use the CPUFreq governor 'powersave' as default. This sets
the frequency statically to the lowest frequency supported by
the CPU.
config CPU_FREQ_DEFAULT_GOV_USERSPACE
bool "userspace"
select CPU_FREQ_GOV_USERSPACE
help
Use the CPUFreq governor 'userspace' as default. This allows
you to set the CPU frequency manually or when a userspace
program shall be able to set the CPU dynamically without having
to enable the userspace governor manually.
config CPU_FREQ_DEFAULT_GOV_ONDEMAND
bool "ondemand"
select CPU_FREQ_GOV_ONDEMAND
select CPU_FREQ_GOV_PERFORMANCE
help
Use the CPUFreq governor 'ondemand' as default. This allows
you to get a full dynamic frequency capable system by simply
loading your cpufreq low-level hardware driver.
Be aware that not all cpufreq drivers support the ondemand
governor. If unsure have a look at the help section of the
driver. Fallback governor will be the performance governor.
config CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
bool "conservative"
select CPU_FREQ_GOV_CONSERVATIVE
select CPU_FREQ_GOV_PERFORMANCE
help
Use the CPUFreq governor 'conservative' as default. This allows
you to get a full dynamic frequency capable system by simply
loading your cpufreq low-level hardware driver.
Be aware that not all cpufreq drivers support the conservative
governor. If unsure have a look at the help section of the
driver. Fallback governor will be the performance governor.
config CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
bool "schedutil"
depends on SMP
select CPU_FREQ_GOV_SCHEDUTIL
select CPU_FREQ_GOV_PERFORMANCE
help
Use the 'schedutil' CPUFreq governor by default. If unsure,
have a look at the help section of that governor. The fallback
governor will be 'performance'.
endchoice
config CPU_FREQ_GOV_PERFORMANCE
tristate "'performance' governor"
help
This cpufreq governor sets the frequency statically to the
highest available CPU frequency.
To compile this driver as a module, choose M here: the
module will be called cpufreq_performance.
If in doubt, say Y.
config CPU_FREQ_GOV_POWERSAVE
tristate "'powersave' governor"
help
This cpufreq governor sets the frequency statically to the
lowest available CPU frequency.
To compile this driver as a module, choose M here: the
module will be called cpufreq_powersave.
If in doubt, say Y.
config CPU_FREQ_GOV_USERSPACE
tristate "'userspace' governor for userspace frequency scaling"
help
Enable this cpufreq governor when you either want to set the
CPU frequency manually or when a userspace program shall
be able to set the CPU dynamically, like on LART
<http://www.lartmaker.nl/>.
To compile this driver as a module, choose M here: the
module will be called cpufreq_userspace.
For details, take a look at <file:Documentation/cpu-freq/>.
If in doubt, say Y.
config CPU_FREQ_GOV_ONDEMAND
tristate "'ondemand' cpufreq policy governor"
select CPU_FREQ_GOV_COMMON
help
'ondemand' - This driver adds a dynamic cpufreq policy governor.
The governor does a periodic polling and
changes frequency based on the CPU utilization.
The support for this governor depends on CPU capability to
do fast frequency switching (i.e, very low latency frequency
transitions).
To compile this driver as a module, choose M here: the
module will be called cpufreq_ondemand.
For details, take a look at linux/Documentation/cpu-freq.
If in doubt, say N.
config CPU_FREQ_GOV_CONSERVATIVE
tristate "'conservative' cpufreq governor"
depends on CPU_FREQ
select CPU_FREQ_GOV_COMMON
help
'conservative' - this driver is rather similar to the 'ondemand'
governor both in its source code and its purpose, the difference is
its optimisation for better suitability in a battery powered
environment. The frequency is gracefully increased and decreased
rather than jumping to 100% when speed is required.
If you have a desktop machine then you should really be considering
the 'ondemand' governor instead, however if you are using a laptop,
PDA or even an AMD64 based computer (due to the unacceptable
step-by-step latency issues between the minimum and maximum frequency
transitions in the CPU) you will probably want to use this governor.
To compile this driver as a module, choose M here: the
module will be called cpufreq_conservative.
For details, take a look at linux/Documentation/cpu-freq.
If in doubt, say N.
config CPU_FREQ_GOV_SCHEDUTIL
bool "'schedutil' cpufreq policy governor"
depends on CPU_FREQ && SMP
select CPU_FREQ_GOV_ATTR_SET
select IRQ_WORK
help
This governor makes decisions based on the utilization data provided
by the scheduler. It sets the CPU frequency to be proportional to
the utilization/capacity ratio coming from the scheduler. If the
utilization is frequency-invariant, the new frequency is also
proportional to the maximum available frequency. If that is not the
case, it is proportional to the current frequency of the CPU. The
frequency tipping point is at utilization/capacity equal to 80% in
both cases.
If in doubt, say N.
comment "CPU frequency scaling drivers"
config CPUFREQ_DT
tristate "Generic DT based cpufreq driver"
depends on HAVE_CLK && OF
# if CPU_THERMAL is on and THERMAL=m, CPUFREQ_DT cannot be =y:
depends on !CPU_THERMAL || THERMAL
select CPUFREQ_DT_PLATDEV
select PM_OPP
help
This adds a generic DT based cpufreq driver for frequency management.
It supports both uniprocessor (UP) and symmetric multiprocessor (SMP)
systems.
If in doubt, say N.
config CPUFREQ_DT_PLATDEV
bool
help
This adds a generic DT based cpufreq platdev driver for frequency
management. This creates a 'cpufreq-dt' platform device, on the
supported platforms.
If in doubt, say N.
endif
endmenu
# clear all implied options (don't want default values for those):
# Most of these machines have ISA slots; not exactly sure which don't,
# and this doesn't activate hordes of code, so do it always.
......
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_SW64_CLOCK_H
#define _ASM_SW64_CLOCK_H
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/seq_file.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
struct clk;
extern struct cpufreq_frequency_table sw64_clockmod_table[];
struct clk_ops {
void (*init)(struct clk *clk);
void (*enable)(struct clk *clk);
void (*disable)(struct clk *clk);
void (*recalc)(struct clk *clk);
int (*set_rate)(struct clk *clk, unsigned long rate, int algo_id);
long (*round_rate)(struct clk *clk, unsigned long rate);
};
struct clk {
struct list_head node;
const char *name;
int id;
struct module *owner;
struct clk *parent;
const struct clk_ops *ops;
struct kref kref;
unsigned long rate;
unsigned long flags;
};
#define CLK_ALWAYS_ENABLED (1 << 0)
#define CLK_RATE_PROPAGATES (1 << 1)
int clk_init(void);
int sw64_set_rate(int index, unsigned long rate);
struct clk *sw64_clk_get(struct device *dev, const char *id);
unsigned long sw64_clk_get_rate(struct clk *clk);
void sw64_update_clockevents(unsigned long cpu, u32 freq);
#endif /* _ASM_SW64_CLOCK_H */
......@@ -168,5 +168,6 @@ DECLARE_STATIC_KEY_FALSE(run_mode_emul_key);
#define CACHE_INDEX_BITS_MASK (0x3fUL << CACHE_INDEX_BITS_SHIFT)
#define CACHE_INDEX_BITS(val) \
(((val) & CACHE_INDEX_BITS_MASK) >> CACHE_INDEX_BITS_SHIFT)
#define current_cpu_data cpu_data[smp_processor_id()]
#endif /* HW_INIT_H */
......@@ -15,7 +15,7 @@ endif
obj-y := entry.o traps.o process.o sys_sw64.o irq.o \
irq_sw64.o signal.o setup.o ptrace.o time.o \
systbls.o dup_print.o tc.o \
systbls.o dup_print.o tc.o platform.o \
insn.o early_init.o topology.o cacheinfo.o \
vdso.o vdso/
......@@ -44,6 +44,7 @@ endif
# Core logic support
obj-$(CONFIG_SW64) += core.o timer.o
obj-$(CONFIG_SW64_CPUFREQ) += clock.o
obj-$(CONFIG_CRASH_DUMP) += crash_dump.o
obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel.o
......
// SPDX-License-Identifier: GPL-2.0
/*
* linux/arch/sw/kernel/setup.c
*
* Copyright (C) 1995 Linus Torvalds
*/
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <asm/sw64io.h>
#include <asm/hw_init.h>
#include <asm/debug.h>
#include <asm/clock.h>
#define CLK_PRT 0x1UL
#define CORE_CLK0_V (0x1UL << 1)
#define CORE_CLK0_R (0x1UL << 2)
#define CORE_CLK2_V (0x1UL << 15)
#define CORE_CLK2_R (0x1UL << 16)
#define CLK_LV1_SEL_PRT 0x1UL
#define CLK_LV1_SEL_MUXA (0x1UL << 2)
#define CLK_LV1_SEL_MUXB (0x1UL << 3)
#define CORE_PLL0_CFG_SHIFT 4
#define CORE_PLL2_CFG_SHIFT 18
/* Minimum CLK support */
enum {
DC_0, DC_1, DC_2, DC_3, DC_4, DC_5, DC_6, DC_7, DC_8,
DC_9, DC_10, DC_11, DC_12, DC_13, DC_14, DC_15, DC_16, DC_RESV
};
static int cpu_freq[14] = {
0, 1200, 1800, 1900,
1950, 2000, 2050, 2100,
2150, 2200, 2250, 2300,
2350, 2400 };
struct cpufreq_frequency_table sw64_clockmod_table[] = {
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{0, DC_1, 0},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{0, DC_2, 0},
{-1, DC_RESV, CPUFREQ_ENTRY_INVALID},
{0, DC_3, 0},
{0, DC_4, 0},
{0, DC_5, 0},
{0, DC_6, 0},
{0, DC_7, 0},
{0, DC_8, 0},
{0, DC_9, 0},
{0, DC_10, 0},
{0, DC_11, 0},
{0, DC_12, 0},
{0, DC_13, 0},
{-1, DC_RESV, CPUFREQ_TABLE_END},
};
EXPORT_SYMBOL_GPL(sw64_clockmod_table);
static struct clk cpu_clk = {
.name = "cpu_clk",
.flags = CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES,
.rate = 2400000000,
};
struct clk *sw64_clk_get(struct device *dev, const char *id)
{
return &cpu_clk;
}
EXPORT_SYMBOL(sw64_clk_get);
unsigned long sw64_clk_get_rate(struct clk *clk)
{
if (!clk)
return 0;
return (unsigned long)clk->rate;
}
EXPORT_SYMBOL(sw64_clk_get_rate);
int sw64_set_rate(int index, unsigned long rate)
{
unsigned int i, val;
rate /= 1000000;
for (i = 0; i < sizeof(cpu_freq)/sizeof(int); i++) {
if (rate == cpu_freq[i]) {
index = i;
break;
}
}
if (index < 0)
return -EINVAL;
sw64_io_write(0, CLK_CTL, CORE_CLK2_R | CORE_CLK2_V | CLK_PRT);
sw64_io_write(1, CLK_CTL, CORE_CLK2_R | CORE_CLK2_V | CLK_PRT);
val = sw64_io_read(0, CLK_CTL);
sw64_io_write(0, CLK_CTL, val | index << CORE_PLL2_CFG_SHIFT);
sw64_io_write(1, CLK_CTL, val | index << CORE_PLL2_CFG_SHIFT);
udelay(1);
sw64_io_write(0, CLK_CTL, CORE_CLK2_V | CLK_PRT
| index << CORE_PLL2_CFG_SHIFT);
sw64_io_write(1, CLK_CTL, CORE_CLK2_V | CLK_PRT
| index << CORE_PLL2_CFG_SHIFT);
val = sw64_io_read(0, CLK_CTL);
/* LV1 select PLL1/PLL2 */
sw64_io_write(0, CLU_LV1_SEL, CLK_LV1_SEL_MUXA | CLK_LV1_SEL_PRT);
sw64_io_write(1, CLU_LV1_SEL, CLK_LV1_SEL_MUXA | CLK_LV1_SEL_PRT);
/* Set CLK_CTL PLL0 */
sw64_io_write(0, CLK_CTL, val | CORE_CLK0_R | CORE_CLK0_V);
sw64_io_write(1, CLK_CTL, val | CORE_CLK0_R | CORE_CLK0_V);
sw64_io_write(0, CLK_CTL, val | CORE_CLK0_R | CORE_CLK0_V
| index << CORE_PLL0_CFG_SHIFT);
sw64_io_write(1, CLK_CTL, val | CORE_CLK0_R | CORE_CLK0_V
| index << CORE_PLL0_CFG_SHIFT);
udelay(1);
sw64_io_write(0, CLK_CTL, val | CORE_CLK0_V
| index << CORE_PLL0_CFG_SHIFT);
sw64_io_write(1, CLK_CTL, val | CORE_CLK0_V
| index << CORE_PLL0_CFG_SHIFT);
/* LV1 select PLL0/PLL1 */
sw64_io_write(0, CLU_LV1_SEL, CLK_LV1_SEL_MUXB | CLK_LV1_SEL_PRT);
sw64_io_write(1, CLU_LV1_SEL, CLK_LV1_SEL_MUXB | CLK_LV1_SEL_PRT);
return index;
}
EXPORT_SYMBOL_GPL(sw64_set_rate);
// SPDX-License-Identifier: GPL-2.0
/*
* linux/arch/sw/kernel/setup.c
*
* Copyright (C) 1995 Linus Torvalds
*/
#include <linux/platform_device.h>
static struct platform_device sw64_cpufreq_device = {
.name = "sw64_cpufreq",
.id = -1,
};
static int __init sw64_cpufreq_init(void)
{
return platform_device_register(&sw64_cpufreq_device);
}
arch_initcall(sw64_cpufreq_init);
......@@ -87,6 +87,14 @@ static int timer_set_oneshot(struct clock_event_device *evt)
return 0;
}
void sw64_update_clockevents(unsigned long cpu, u32 freq)
{
struct clock_event_device *swevt = &per_cpu(timer_events, cpu);
if (cpu == smp_processor_id())
clockevents_update_freq(swevt, freq);
}
/*
* Setup the local timer for this CPU. Copy the initilized values
* of the boot CPU and register the clock event in the framework.
......
......@@ -109,3 +109,4 @@ obj-$(CONFIG_LOONGSON1_CPUFREQ) += loongson1-cpufreq.o
obj-$(CONFIG_SH_CPU_FREQ) += sh-cpufreq.o
obj-$(CONFIG_SPARC_US2E_CPUFREQ) += sparc-us2e-cpufreq.o
obj-$(CONFIG_SPARC_US3_CPUFREQ) += sparc-us3-cpufreq.o
obj-$(CONFIG_SW64_CPUFREQ) += sw64_cpufreq.o
// SPDX-License-Identifier: GPL-2.0
/*
* linux/arch/sw/kernel/setup.c
*
* Copyright (C) 1995 Linus Torvalds
*/
/*
* Cpufreq driver for the sw64 processors
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpufreq.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/sched.h> /* set_cpus_allowed() */
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/mod_devicetable.h>
#include <asm/hw_init.h>
#include <asm/clock.h>
static uint nowait;
static struct clk *cpuclk;
static int sw64_cpu_freq_notifier(struct notifier_block *nb,
unsigned long val, void *data);
static struct notifier_block sw64_cpufreq_notifier_block = {
.notifier_call = sw64_cpu_freq_notifier
};
static int sw64_cpu_freq_notifier(struct notifier_block *nb,
unsigned long val, void *data)
{
struct cpufreq_freqs *freqs = (struct cpufreq_freqs *)data;
unsigned long cpu;
for_each_online_cpu(cpu) {
if (val == CPUFREQ_POSTCHANGE) {
sw64_update_clockevents(cpu, freqs->new * 1000);
current_cpu_data.loops_per_jiffy = loops_per_jiffy;
}
}
return 0;
}
static unsigned int sw64_cpufreq_get(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
if (!policy || IS_ERR(policy->clk)) {
pr_err("%s: No %s associated to cpu: %d\n",
__func__, policy ? "clk" : "policy", cpu);
return 0;
}
return sw64_clk_get_rate(policy->clk);
}
/*
* Here we notify other drivers of the proposed change and the final change.
*/
static int sw64_cpufreq_target(struct cpufreq_policy *policy,
unsigned int index)
{
unsigned long freq;
freq = (get_cpu_freq() / 1000) * index / 48;
/* setting the cpu frequency */
sw64_set_rate(-1, freq * 1000);
return 0;
}
static int sw64_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
unsigned long rate;
int i;
cpuclk = sw64_clk_get(NULL, "cpu_clk");
if (IS_ERR(cpuclk)) {
pr_err("couldn't get CPU clk\n");
return PTR_ERR(cpuclk);
}
rate = get_cpu_freq() / 1000;
/* clock table init */
for (i = 0;
(sw64_clockmod_table[i].frequency != CPUFREQ_TABLE_END);
i++)
if (sw64_clockmod_table[i].frequency == 0)
sw64_clockmod_table[i].frequency = (rate * i) / 48;
sw64_set_rate(-1, rate * 1000);
policy->clk = cpuclk;
cpufreq_generic_init(policy, &sw64_clockmod_table[0], 0);
return 0;
}
static int sw64_cpufreq_verify(struct cpufreq_policy_data *policy)
{
return cpufreq_frequency_table_verify(policy, &sw64_clockmod_table[0]);
}
static int sw64_cpufreq_exit(struct cpufreq_policy *policy)
{
return 0;
}
static struct freq_attr *sw64_table_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs, NULL,
};
static struct cpufreq_driver sw64_cpufreq_driver = {
.name = "sw64",
.init = sw64_cpufreq_cpu_init,
.verify = sw64_cpufreq_verify,
.target_index = sw64_cpufreq_target,
.get = sw64_cpufreq_get,
.exit = sw64_cpufreq_exit,
.attr = sw64_table_attr,
};
static const struct platform_device_id platform_device_ids[] = {
{
.name = "sw64_cpufreq",
},
{}
};
MODULE_DEVICE_TABLE(platform, platform_device_ids);
static struct platform_driver platform_driver = {
.driver = {
.name = "sw64_cpufreq",
},
.id_table = platform_device_ids,
};
static int __init cpufreq_init(void)
{
int ret;
/* Register platform stuff */
ret = platform_driver_register(&platform_driver);
if (ret)
return ret;
pr_info("SW-64 CPU frequency driver\n");
cpufreq_register_notifier(&sw64_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
return cpufreq_register_driver(&sw64_cpufreq_driver);
}
static void __exit cpufreq_exit(void)
{
cpufreq_unregister_driver(&sw64_cpufreq_driver);
cpufreq_unregister_notifier(&sw64_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
platform_driver_unregister(&platform_driver);
}
module_init(cpufreq_init);
module_exit(cpufreq_exit);
module_param(nowait, uint, 0644);
MODULE_PARM_DESC(nowait, "Disable SW-64 specific wait");
MODULE_DESCRIPTION("cpufreq driver for sw64");
MODULE_LICENSE("GPL");
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册