提交 3fe78ca2 编写于 作者: D Dmitry Kasatkin 提交者: Mimi Zohar

keys: change asymmetric keys to use common hash definitions

This patch makes use of the newly defined common hash algorithm info,
replacing, for example, PKEY_HASH with HASH_ALGO.

Changelog:
- Lindent fixes - Mimi

CC: David Howells <dhowells@redhat.com>
Signed-off-by: NDmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: NMimi Zohar <zohar@linux.vnet.ibm.com>
上级 ee08997f
...@@ -13,6 +13,7 @@ config ASYMMETRIC_PUBLIC_KEY_SUBTYPE ...@@ -13,6 +13,7 @@ config ASYMMETRIC_PUBLIC_KEY_SUBTYPE
tristate "Asymmetric public-key crypto algorithm subtype" tristate "Asymmetric public-key crypto algorithm subtype"
select MPILIB select MPILIB
select PUBLIC_KEY_ALGO_RSA select PUBLIC_KEY_ALGO_RSA
select CRYPTO_HASH_INFO
help help
This option provides support for asymmetric public key type handling. This option provides support for asymmetric public key type handling.
If signature generation and/or verification are to be used, If signature generation and/or verification are to be used,
......
...@@ -36,18 +36,6 @@ const struct public_key_algorithm *pkey_algo[PKEY_ALGO__LAST] = { ...@@ -36,18 +36,6 @@ const struct public_key_algorithm *pkey_algo[PKEY_ALGO__LAST] = {
}; };
EXPORT_SYMBOL_GPL(pkey_algo); EXPORT_SYMBOL_GPL(pkey_algo);
const char *const pkey_hash_algo_name[PKEY_HASH__LAST] = {
[PKEY_HASH_MD4] = "md4",
[PKEY_HASH_MD5] = "md5",
[PKEY_HASH_SHA1] = "sha1",
[PKEY_HASH_RIPE_MD_160] = "rmd160",
[PKEY_HASH_SHA256] = "sha256",
[PKEY_HASH_SHA384] = "sha384",
[PKEY_HASH_SHA512] = "sha512",
[PKEY_HASH_SHA224] = "sha224",
};
EXPORT_SYMBOL_GPL(pkey_hash_algo_name);
const char *const pkey_id_type_name[PKEY_ID_TYPE__LAST] = { const char *const pkey_id_type_name[PKEY_ID_TYPE__LAST] = {
[PKEY_ID_PGP] = "PGP", [PKEY_ID_PGP] = "PGP",
[PKEY_ID_X509] = "X509", [PKEY_ID_X509] = "X509",
......
...@@ -73,13 +73,13 @@ static const struct { ...@@ -73,13 +73,13 @@ static const struct {
size_t size; size_t size;
} RSA_ASN1_templates[PKEY_HASH__LAST] = { } RSA_ASN1_templates[PKEY_HASH__LAST] = {
#define _(X) { RSA_digest_info_##X, sizeof(RSA_digest_info_##X) } #define _(X) { RSA_digest_info_##X, sizeof(RSA_digest_info_##X) }
[PKEY_HASH_MD5] = _(MD5), [HASH_ALGO_MD5] = _(MD5),
[PKEY_HASH_SHA1] = _(SHA1), [HASH_ALGO_SHA1] = _(SHA1),
[PKEY_HASH_RIPE_MD_160] = _(RIPE_MD_160), [HASH_ALGO_RIPE_MD_160] = _(RIPE_MD_160),
[PKEY_HASH_SHA256] = _(SHA256), [HASH_ALGO_SHA256] = _(SHA256),
[PKEY_HASH_SHA384] = _(SHA384), [HASH_ALGO_SHA384] = _(SHA384),
[PKEY_HASH_SHA512] = _(SHA512), [HASH_ALGO_SHA512] = _(SHA512),
[PKEY_HASH_SHA224] = _(SHA224), [HASH_ALGO_SHA224] = _(SHA224),
#undef _ #undef _
}; };
......
...@@ -154,32 +154,32 @@ int x509_note_pkey_algo(void *context, size_t hdrlen, ...@@ -154,32 +154,32 @@ int x509_note_pkey_algo(void *context, size_t hdrlen,
return -ENOPKG; /* Unsupported combination */ return -ENOPKG; /* Unsupported combination */
case OID_md4WithRSAEncryption: case OID_md4WithRSAEncryption:
ctx->cert->sig.pkey_hash_algo = PKEY_HASH_MD5; ctx->cert->sig.pkey_hash_algo = HASH_ALGO_MD5;
ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA; ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA;
break; break;
case OID_sha1WithRSAEncryption: case OID_sha1WithRSAEncryption:
ctx->cert->sig.pkey_hash_algo = PKEY_HASH_SHA1; ctx->cert->sig.pkey_hash_algo = HASH_ALGO_SHA1;
ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA; ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA;
break; break;
case OID_sha256WithRSAEncryption: case OID_sha256WithRSAEncryption:
ctx->cert->sig.pkey_hash_algo = PKEY_HASH_SHA256; ctx->cert->sig.pkey_hash_algo = HASH_ALGO_SHA256;
ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA; ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA;
break; break;
case OID_sha384WithRSAEncryption: case OID_sha384WithRSAEncryption:
ctx->cert->sig.pkey_hash_algo = PKEY_HASH_SHA384; ctx->cert->sig.pkey_hash_algo = HASH_ALGO_SHA384;
ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA; ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA;
break; break;
case OID_sha512WithRSAEncryption: case OID_sha512WithRSAEncryption:
ctx->cert->sig.pkey_hash_algo = PKEY_HASH_SHA512; ctx->cert->sig.pkey_hash_algo = HASH_ALGO_SHA512;
ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA; ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA;
break; break;
case OID_sha224WithRSAEncryption: case OID_sha224WithRSAEncryption:
ctx->cert->sig.pkey_hash_algo = PKEY_HASH_SHA224; ctx->cert->sig.pkey_hash_algo = HASH_ALGO_SHA224;
ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA; ctx->cert->sig.pkey_algo = PKEY_ALGO_RSA;
break; break;
} }
......
...@@ -21,6 +21,8 @@ struct x509_certificate { ...@@ -21,6 +21,8 @@ struct x509_certificate {
char *authority; /* Authority key fingerprint as hex */ char *authority; /* Authority key fingerprint as hex */
struct tm valid_from; struct tm valid_from;
struct tm valid_to; struct tm valid_to;
enum pkey_algo pkey_algo : 8; /* Public key algorithm */
enum hash_algo sig_hash_algo : 8; /* Signature hash algorithm */
const void *tbs; /* Signed data */ const void *tbs; /* Signed data */
unsigned tbs_size; /* Size of signed data */ unsigned tbs_size; /* Size of signed data */
unsigned raw_sig_size; /* Size of sigature */ unsigned raw_sig_size; /* Size of sigature */
......
...@@ -96,7 +96,7 @@ int x509_get_sig_params(struct x509_certificate *cert) ...@@ -96,7 +96,7 @@ int x509_get_sig_params(struct x509_certificate *cert)
/* Allocate the hashing algorithm we're going to need and find out how /* Allocate the hashing algorithm we're going to need and find out how
* big the hash operational data will be. * big the hash operational data will be.
*/ */
tfm = crypto_alloc_shash(pkey_hash_algo_name[cert->sig.pkey_hash_algo], 0, 0); tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
if (IS_ERR(tfm)) if (IS_ERR(tfm))
return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm); return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
...@@ -199,7 +199,7 @@ static int x509_key_preparse(struct key_preparsed_payload *prep) ...@@ -199,7 +199,7 @@ static int x509_key_preparse(struct key_preparsed_payload *prep)
cert->sig.pkey_hash_algo >= PKEY_HASH__LAST || cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
!pkey_algo[cert->pub->pkey_algo] || !pkey_algo[cert->pub->pkey_algo] ||
!pkey_algo[cert->sig.pkey_algo] || !pkey_algo[cert->sig.pkey_algo] ||
!pkey_hash_algo_name[cert->sig.pkey_hash_algo]) { !hash_algo_name[cert->sig.pkey_hash_algo]) {
ret = -ENOPKG; ret = -ENOPKG;
goto error_free_cert; goto error_free_cert;
} }
...@@ -213,9 +213,8 @@ static int x509_key_preparse(struct key_preparsed_payload *prep) ...@@ -213,9 +213,8 @@ static int x509_key_preparse(struct key_preparsed_payload *prep)
cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1, cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1,
cert->valid_to.tm_mday, cert->valid_to.tm_hour, cert->valid_to.tm_mday, cert->valid_to.tm_hour,
cert->valid_to.tm_min, cert->valid_to.tm_sec); cert->valid_to.tm_min, cert->valid_to.tm_sec);
pr_devel("Cert Signature: %s + %s\n", pr_devel("Cert Signature: %s\n",
pkey_algo_name[cert->sig.pkey_algo], hash_algo_name[cert->sig.pkey_hash_algo]);
pkey_hash_algo_name[cert->sig.pkey_hash_algo]);
if (!cert->fingerprint) { if (!cert->fingerprint) {
pr_warn("Cert for '%s' must have a SubjKeyId extension\n", pr_warn("Cert for '%s' must have a SubjKeyId extension\n",
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#define _LINUX_PUBLIC_KEY_H #define _LINUX_PUBLIC_KEY_H
#include <linux/mpi.h> #include <linux/mpi.h>
#include <crypto/hash_info.h>
enum pkey_algo { enum pkey_algo {
PKEY_ALGO_DSA, PKEY_ALGO_DSA,
...@@ -25,19 +26,8 @@ enum pkey_algo { ...@@ -25,19 +26,8 @@ enum pkey_algo {
extern const char *const pkey_algo_name[PKEY_ALGO__LAST]; extern const char *const pkey_algo_name[PKEY_ALGO__LAST];
extern const struct public_key_algorithm *pkey_algo[PKEY_ALGO__LAST]; extern const struct public_key_algorithm *pkey_algo[PKEY_ALGO__LAST];
enum pkey_hash_algo { /* asymmetric key implementation supports only up to SHA224 */
PKEY_HASH_MD4, #define PKEY_HASH__LAST (HASH_ALGO_SHA224 + 1)
PKEY_HASH_MD5,
PKEY_HASH_SHA1,
PKEY_HASH_RIPE_MD_160,
PKEY_HASH_SHA256,
PKEY_HASH_SHA384,
PKEY_HASH_SHA512,
PKEY_HASH_SHA224,
PKEY_HASH__LAST
};
extern const char *const pkey_hash_algo_name[PKEY_HASH__LAST];
enum pkey_id_type { enum pkey_id_type {
PKEY_ID_PGP, /* OpenPGP generated key ID */ PKEY_ID_PGP, /* OpenPGP generated key ID */
...@@ -91,7 +81,7 @@ struct public_key_signature { ...@@ -91,7 +81,7 @@ struct public_key_signature {
u8 digest_size; /* Number of bytes in digest */ u8 digest_size; /* Number of bytes in digest */
u8 nr_mpi; /* Occupancy of mpi[] */ u8 nr_mpi; /* Occupancy of mpi[] */
enum pkey_algo pkey_algo : 8; enum pkey_algo pkey_algo : 8;
enum pkey_hash_algo pkey_hash_algo : 8; enum hash_algo pkey_hash_algo : 8;
union { union {
MPI mpi[2]; MPI mpi[2];
struct { struct {
......
...@@ -29,7 +29,7 @@ ...@@ -29,7 +29,7 @@
*/ */
struct module_signature { struct module_signature {
u8 algo; /* Public-key crypto algorithm [enum pkey_algo] */ u8 algo; /* Public-key crypto algorithm [enum pkey_algo] */
u8 hash; /* Digest algorithm [enum pkey_hash_algo] */ u8 hash; /* Digest algorithm [enum hash_algo] */
u8 id_type; /* Key identifier type [enum pkey_id_type] */ u8 id_type; /* Key identifier type [enum pkey_id_type] */
u8 signer_len; /* Length of signer's name */ u8 signer_len; /* Length of signer's name */
u8 key_id_len; /* Length of key identifier */ u8 key_id_len; /* Length of key identifier */
...@@ -40,7 +40,7 @@ struct module_signature { ...@@ -40,7 +40,7 @@ struct module_signature {
/* /*
* Digest the module contents. * Digest the module contents.
*/ */
static struct public_key_signature *mod_make_digest(enum pkey_hash_algo hash, static struct public_key_signature *mod_make_digest(enum hash_algo hash,
const void *mod, const void *mod,
unsigned long modlen) unsigned long modlen)
{ {
...@@ -55,7 +55,7 @@ static struct public_key_signature *mod_make_digest(enum pkey_hash_algo hash, ...@@ -55,7 +55,7 @@ static struct public_key_signature *mod_make_digest(enum pkey_hash_algo hash,
/* Allocate the hashing algorithm we're going to need and find out how /* Allocate the hashing algorithm we're going to need and find out how
* big the hash operational data will be. * big the hash operational data will be.
*/ */
tfm = crypto_alloc_shash(pkey_hash_algo_name[hash], 0, 0); tfm = crypto_alloc_shash(hash_algo_name[hash], 0, 0);
if (IS_ERR(tfm)) if (IS_ERR(tfm))
return (PTR_ERR(tfm) == -ENOENT) ? ERR_PTR(-ENOPKG) : ERR_CAST(tfm); return (PTR_ERR(tfm) == -ENOENT) ? ERR_PTR(-ENOPKG) : ERR_CAST(tfm);
...@@ -218,7 +218,7 @@ int mod_verify_sig(const void *mod, unsigned long *_modlen) ...@@ -218,7 +218,7 @@ int mod_verify_sig(const void *mod, unsigned long *_modlen)
return -ENOPKG; return -ENOPKG;
if (ms.hash >= PKEY_HASH__LAST || if (ms.hash >= PKEY_HASH__LAST ||
!pkey_hash_algo_name[ms.hash]) !hash_algo_name[ms.hash])
return -ENOPKG; return -ENOPKG;
key = request_asymmetric_key(sig, ms.signer_len, key = request_asymmetric_key(sig, ms.signer_len,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册