Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
openeuler
Kernel
提交
35be9544
K
Kernel
项目概览
openeuler
/
Kernel
1 年多 前同步成功
通知
8
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
K
Kernel
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
35be9544
编写于
9月 24, 2009
作者:
M
Mauro Carvalho Chehab
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Documentation/edac.txt: Reflect the sysfs changes at the document
Signed-off-by:
N
Mauro Carvalho Chehab
<
mchehab@redhat.com
>
上级
f338d736
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
29 addition
and
27 deletion
+29
-27
Documentation/edac.txt
Documentation/edac.txt
+29
-27
未找到文件。
Documentation/edac.txt
浏览文件 @
35be9544
...
...
@@ -766,7 +766,7 @@ exports one
For injecting a memory error, there are some sysfs nodes, under
/sys/devices/system/edac/mc/mc?/:
inject_addrmatch:
inject_addrmatch
/*
:
Controls the error injection mask register. It is possible to specify
several characteristics of the address to match an error code:
dimm = the affected dimm. Numbers are relative to a channel;
...
...
@@ -781,10 +781,12 @@ exports one
For example, to generate an error at rank 1 of dimm 2, for any channel,
any bank, any page, any column:
echo "dimm:2 rank:1" >/sys/devices/system/edac/mc/mc0/inject_addrmatch
echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
echo 1 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank
To return to the default behaviour of matching any, you can do:
echo "dimm:any rank:any" >/sys/devices/system/edac/mc/mc0/inject_addrmatch
echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank
inject_eccmask:
specifies what bits will have troubles,
...
...
@@ -813,7 +815,7 @@ exports one
For example, the following code will generate an error for any write access
at socket 0, on any DIMM/address on channel 2:
echo
"channel:2" > /sys/devices/system/edac/mc/mc0/inject_addrmatch
echo
2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/channel
echo 2 >/sys/devices/system/edac/mc/mc0/inject_type
echo 64 >/sys/devices/system/edac/mc/mc0/inject_eccmask
echo 3 >/sys/devices/system/edac/mc/mc0/inject_section
...
...
@@ -829,18 +831,23 @@ exports one
3) Nehalem specific Corrected Error memory counters
Nehalem have some registers to count memory errors, reporting it on a
way that it is different from what EDAC API allows. Due to that, a
separate sysfs note were created to handle such counters.
Nehalem have some registers to count memory errors. The driver uses those
registers to report Corrected Errors on devices with Registered Dimms.
They can be read by looking at the contents of "corrected_error_counts"
counter. Due to hardware limits, the output is different on machines
with unregistered memories and machines with registered ones.
However, those counters don't work with Unregistered Dimms. As the chipset
offers some counters that also work with UDIMMS (but with a worse level of
granularity than the default ones), the driver exposes those registers for
UDIMM memories.
With unregistered memories, it outputs:
They can be read by looking at the contents of all_channel_counts/
$ cat /sys/devices/system/edac/mc/mc0/corrected_error_counts
all channels UDIMM0: 0 UDIMM1: 0 UDIMM2: 0
$ for i in /sys/devices/system/edac/mc/mc0/all_channel_counts/*; do echo $i; cat $i; done
/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm0
0
/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm1
0
/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm2
0
What happens here is that errors on different csrows, but at the same
dimm number will increment the same counter.
...
...
@@ -849,21 +856,16 @@ exports one
csrow1: channel 0, dimm1
csrow2: channel 1, dimm0
csrow3: channel 2, dimm0
The hardware will increment UDIMM0 for an error at either csrow0, csrow2
or csrow3.
With registered memories, it outputs:
$cat /sys/devices/system/edac/mc/mc0/corrected_error_counts
channel 0 RDIMM0: 0 RDIMM1: 0 RDIMM2: 0
channel 1 RDIMM0: 0 RDIMM1: 0 RDIMM2: 0
channel 2 RDIMM0: 0 RDIMM1: 0 RDIMM2: 0
So, with registered memories, there's a direct map between a csrow and a
counter.
The hardware will increment udimm0 for an error at the first dimm at either
csrow0, csrow2 or csrow3;
The hardware will increment udimm1 for an error at the second dimm at either
csrow0, csrow2 or csrow3;
The hardware will increment udimm2 for an error at the third dimm at either
csrow0, csrow2 or csrow3;
4) Standard error counters
The standard error counters are generated when an mcelog error is received
by the driver. Since it is counted by software, it is possible that some
errors could be lost.
by the driver. Since, with udimm, this is counted by software, it is
possible that some errors could be lost. With rdimm's, they displays the
contents of the registers
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录