提交 0feaf86d 编写于 作者: O Omer Shpigelman 提交者: Greg Kroah-Hartman

habanalabs: add virtual memory and MMU modules

This patch adds the Virtual Memory and MMU modules.

Goya has an internal MMU which provides process isolation on the internal
DDR. The internal MMU also performs translations for transactions that go
from Goya to the Host.

The driver is responsible for allocating and freeing memory on the DDR
upon user request. It also provides an interface to map and unmap DDR and
Host memory to the device address space.

The MMU in Goya supports 3-level and 4-level page tables. With 3-level, the
size of each page is 2MB, while with 4-level the size of each page is 4KB.

In the DDR, the physical pages are always 2MB.
Reviewed-by: NMike Rapoport <rppt@linux.ibm.com>
Signed-off-by: NOmer Shpigelman <oshpigelman@habana.ai>
Signed-off-by: NOded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
上级 eff6f4a0
......@@ -6,7 +6,7 @@ obj-m := habanalabs.o
habanalabs-y := habanalabs_drv.o device.o context.o asid.o habanalabs_ioctl.o \
command_buffer.o hw_queue.o irq.o sysfs.o hwmon.o memory.o \
command_submission.o
command_submission.o mmu.o
include $(src)/goya/Makefile
habanalabs-y += $(HL_GOYA_FILES)
......@@ -25,8 +25,10 @@ static void hl_ctx_fini(struct hl_ctx *ctx)
for (i = 0 ; i < HL_MAX_PENDING_CS ; i++)
dma_fence_put(ctx->cs_pending[i]);
if (ctx->asid != HL_KERNEL_ASID_ID)
if (ctx->asid != HL_KERNEL_ASID_ID) {
hl_vm_ctx_fini(ctx);
hl_asid_free(hdev, ctx->asid);
}
}
void hl_ctx_do_release(struct kref *ref)
......@@ -96,6 +98,8 @@ void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx)
int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx)
{
int rc = 0;
ctx->hdev = hdev;
kref_init(&ctx->refcount);
......@@ -113,9 +117,22 @@ int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx)
dev_err(hdev->dev, "No free ASID, failed to create context\n");
return -ENOMEM;
}
rc = hl_vm_ctx_init(ctx);
if (rc) {
dev_err(hdev->dev, "Failed to init mem ctx module\n");
rc = -ENOMEM;
goto mem_ctx_err;
}
}
return 0;
mem_ctx_err:
if (ctx->asid != HL_KERNEL_ASID_ID)
hl_asid_free(hdev, ctx->asid);
return rc;
}
void hl_ctx_get(struct hl_device *hdev, struct hl_ctx *ctx)
......
......@@ -615,8 +615,10 @@ int hl_device_reset(struct hl_device *hdev, bool hard_reset,
/* Reset the H/W. It will be in idle state after this returns */
hdev->asic_funcs->hw_fini(hdev, hard_reset);
if (hard_reset)
if (hard_reset) {
hl_vm_fini(hdev);
hl_eq_reset(hdev, &hdev->event_queue);
}
/* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
hl_hw_queue_reset(hdev, hard_reset);
......@@ -677,6 +679,13 @@ int hl_device_reset(struct hl_device *hdev, bool hard_reset,
goto out_err;
}
rc = hl_vm_init(hdev);
if (rc) {
dev_err(hdev->dev,
"Failed to init memory module after hard reset\n");
goto out_err;
}
hl_set_max_power(hdev, hdev->max_power);
hdev->hard_reset_pending = false;
......@@ -861,6 +870,13 @@ int hl_device_init(struct hl_device *hdev, struct class *hclass)
hdev->asic_name,
hdev->asic_prop.dram_size / 1024 / 1024 / 1024);
rc = hl_vm_init(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to initialize memory module\n");
rc = 0;
goto out_disabled;
}
/*
* hl_hwmon_init must be called after device_late_init, because only
* there we get the information from the device about which
......@@ -977,6 +993,8 @@ void hl_device_fini(struct hl_device *hdev)
/* Reset the H/W. It will be in idle state after this returns */
hdev->asic_funcs->hw_fini(hdev, true);
hl_vm_fini(hdev);
hl_eq_fini(hdev, &hdev->event_queue);
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
......
......@@ -6,6 +6,8 @@
*/
#include "goyaP.h"
#include "include/hw_ip/mmu/mmu_general.h"
#include "include/hw_ip/mmu/mmu_v1_0.h"
#include "include/goya/asic_reg/goya_masks.h"
#include <linux/pci.h>
......@@ -80,6 +82,7 @@
#define GOYA_PLDM_RESET_WAIT_MSEC 1000 /* 1s */
#define GOYA_CPU_TIMEOUT_USEC 10000000 /* 10s */
#define GOYA_TEST_QUEUE_WAIT_USEC 100000 /* 100ms */
#define GOYA_PLDM_MMU_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 100)
#define GOYA_QMAN0_FENCE_VAL 0xD169B243
......@@ -131,6 +134,70 @@ static const char *goya_axi_name[GOYA_MAX_INITIATORS] = {
"MMU"
};
static u64 goya_mmu_regs[GOYA_MMU_REGS_NUM] = {
mmDMA_QM_0_GLBL_NON_SECURE_PROPS,
mmDMA_QM_1_GLBL_NON_SECURE_PROPS,
mmDMA_QM_2_GLBL_NON_SECURE_PROPS,
mmDMA_QM_3_GLBL_NON_SECURE_PROPS,
mmDMA_QM_4_GLBL_NON_SECURE_PROPS,
mmTPC0_QM_GLBL_SECURE_PROPS,
mmTPC0_QM_GLBL_NON_SECURE_PROPS,
mmTPC0_CMDQ_GLBL_SECURE_PROPS,
mmTPC0_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC0_CFG_ARUSER,
mmTPC0_CFG_AWUSER,
mmTPC1_QM_GLBL_SECURE_PROPS,
mmTPC1_QM_GLBL_NON_SECURE_PROPS,
mmTPC1_CMDQ_GLBL_SECURE_PROPS,
mmTPC1_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC1_CFG_ARUSER,
mmTPC1_CFG_AWUSER,
mmTPC2_QM_GLBL_SECURE_PROPS,
mmTPC2_QM_GLBL_NON_SECURE_PROPS,
mmTPC2_CMDQ_GLBL_SECURE_PROPS,
mmTPC2_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC2_CFG_ARUSER,
mmTPC2_CFG_AWUSER,
mmTPC3_QM_GLBL_SECURE_PROPS,
mmTPC3_QM_GLBL_NON_SECURE_PROPS,
mmTPC3_CMDQ_GLBL_SECURE_PROPS,
mmTPC3_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC3_CFG_ARUSER,
mmTPC3_CFG_AWUSER,
mmTPC4_QM_GLBL_SECURE_PROPS,
mmTPC4_QM_GLBL_NON_SECURE_PROPS,
mmTPC4_CMDQ_GLBL_SECURE_PROPS,
mmTPC4_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC4_CFG_ARUSER,
mmTPC4_CFG_AWUSER,
mmTPC5_QM_GLBL_SECURE_PROPS,
mmTPC5_QM_GLBL_NON_SECURE_PROPS,
mmTPC5_CMDQ_GLBL_SECURE_PROPS,
mmTPC5_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC5_CFG_ARUSER,
mmTPC5_CFG_AWUSER,
mmTPC6_QM_GLBL_SECURE_PROPS,
mmTPC6_QM_GLBL_NON_SECURE_PROPS,
mmTPC6_CMDQ_GLBL_SECURE_PROPS,
mmTPC6_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC6_CFG_ARUSER,
mmTPC6_CFG_AWUSER,
mmTPC7_QM_GLBL_SECURE_PROPS,
mmTPC7_QM_GLBL_NON_SECURE_PROPS,
mmTPC7_CMDQ_GLBL_SECURE_PROPS,
mmTPC7_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC7_CFG_ARUSER,
mmTPC7_CFG_AWUSER,
mmMME_QM_GLBL_SECURE_PROPS,
mmMME_QM_GLBL_NON_SECURE_PROPS,
mmMME_CMDQ_GLBL_SECURE_PROPS,
mmMME_CMDQ_GLBL_NON_SECURE_PROPS,
mmMME_SBA_CONTROL_DATA,
mmMME_SBB_CONTROL_DATA,
mmMME_SBC_CONTROL_DATA,
mmMME_WBC_CONTROL_DATA
};
#define GOYA_ASYC_EVENT_GROUP_NON_FATAL_SIZE 121
static u32 goya_non_fatal_events[GOYA_ASYC_EVENT_GROUP_NON_FATAL_SIZE] = {
......@@ -258,6 +325,10 @@ static u32 goya_non_fatal_events[GOYA_ASYC_EVENT_GROUP_NON_FATAL_SIZE] = {
};
static int goya_armcp_info_get(struct hl_device *hdev);
static void goya_mmu_prepare(struct hl_device *hdev, u32 asid);
static int goya_mmu_clear_pgt_range(struct hl_device *hdev);
static int goya_mmu_update_asid_hop0_addr(struct hl_device *hdev, u32 asid,
u64 phys_addr);
static void goya_get_fixed_properties(struct hl_device *hdev)
{
......@@ -296,6 +367,16 @@ static void goya_get_fixed_properties(struct hl_device *hdev)
prop->sram_user_base_address = prop->sram_base_address +
SRAM_USER_BASE_OFFSET;
prop->mmu_pgt_addr = MMU_PAGE_TABLES_ADDR;
if (hdev->pldm)
prop->mmu_pgt_size = 0x800000; /* 8MB */
else
prop->mmu_pgt_size = MMU_PAGE_TABLES_SIZE;
prop->mmu_pte_size = HL_PTE_SIZE;
prop->mmu_hop_table_size = HOP_TABLE_SIZE;
prop->mmu_hop0_tables_total_size = HOP0_TABLES_TOTAL_SIZE;
prop->dram_page_size = PAGE_SIZE_2MB;
prop->host_phys_base_address = HOST_PHYS_BASE;
prop->va_space_host_start_address = VA_HOST_SPACE_START;
prop->va_space_host_end_address = VA_HOST_SPACE_END;
......@@ -752,7 +833,18 @@ static int goya_late_init(struct hl_device *hdev)
goya_fetch_psoc_frequency(hdev);
rc = goya_mmu_clear_pgt_range(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to clear MMU page tables range\n");
goto disable_pci_access;
}
return 0;
disable_pci_access:
goya_send_pci_access_msg(hdev, ARMCP_PACKET_DISABLE_PCI_ACCESS);
return rc;
}
/*
......@@ -2565,6 +2657,54 @@ static int goya_init_cpu(struct hl_device *hdev, u32 cpu_timeout)
return 0;
}
static int goya_mmu_init(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct goya_device *goya = hdev->asic_specific;
u64 hop0_addr;
int rc, i;
if (!hdev->mmu_enable)
return 0;
if (goya->hw_cap_initialized & HW_CAP_MMU)
return 0;
hdev->dram_supports_virtual_memory = true;
for (i = 0 ; i < prop->max_asid ; i++) {
hop0_addr = prop->mmu_pgt_addr +
(i * prop->mmu_hop_table_size);
rc = goya_mmu_update_asid_hop0_addr(hdev, i, hop0_addr);
if (rc) {
dev_err(hdev->dev,
"failed to set hop0 addr for asid %d\n", i);
goto err;
}
}
goya->hw_cap_initialized |= HW_CAP_MMU;
/* init MMU cache manage page */
WREG32(mmSTLB_CACHE_INV_BASE_39_8, MMU_CACHE_MNG_ADDR >> 8);
WREG32(mmSTLB_CACHE_INV_BASE_49_40, MMU_CACHE_MNG_ADDR << 40);
/* Remove follower feature due to performance bug */
WREG32_AND(mmSTLB_STLB_FEATURE_EN,
(~STLB_STLB_FEATURE_EN_FOLLOWER_EN_MASK));
hdev->asic_funcs->mmu_invalidate_cache(hdev, true);
WREG32(mmMMU_MMU_ENABLE, 1);
WREG32(mmMMU_SPI_MASK, 0xF);
return 0;
err:
return rc;
}
/*
* goya_hw_init - Goya hardware initialization code
*
......@@ -2614,6 +2754,10 @@ static int goya_hw_init(struct hl_device *hdev)
return rc;
}
rc = goya_mmu_init(hdev);
if (rc)
return rc;
goya_init_security(hdev);
goya_init_dma_qmans(hdev);
......@@ -4249,6 +4393,10 @@ int goya_context_switch(struct hl_device *hdev, u32 asid)
rc = goya_send_job_on_qman0(hdev, job);
/* no point in setting the asid in case of failure */
if (!rc)
goya_mmu_prepare(hdev, asid);
job->patched_cb->cs_cnt--;
hl_cb_put(job->patched_cb);
......@@ -4284,6 +4432,22 @@ void goya_restore_phase_topology(struct hl_device *hdev)
i = RREG32(mmSYNC_MNGR_SOB_OBJ_0);
}
static u64 goya_read_pte(struct hl_device *hdev, u64 addr)
{
struct goya_device *goya = hdev->asic_specific;
return readq(hdev->pcie_bar[DDR_BAR_ID] +
(addr - goya->ddr_bar_cur_addr));
}
static void goya_write_pte(struct hl_device *hdev, u64 addr, u64 val)
{
struct goya_device *goya = hdev->asic_specific;
writeq(val, hdev->pcie_bar[DDR_BAR_ID] +
(addr - goya->ddr_bar_cur_addr));
}
static void goya_get_axi_name(struct hl_device *hdev, u32 agent_id,
u16 event_type, char *axi_name, int len)
{
......@@ -4567,6 +4731,233 @@ void *goya_get_events_stat(struct hl_device *hdev, u32 *size)
return goya->events_stat;
}
static int goya_mmu_clear_pgt_range(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct goya_device *goya = hdev->asic_specific;
struct packet_lin_dma *clear_pgt_range_pkt;
struct hl_cs_parser parser;
struct hl_cs_job *job;
u32 cb_size;
struct hl_cb *cb;
int rc;
if (!(goya->hw_cap_initialized & HW_CAP_MMU))
return 0;
cb = hl_cb_kernel_create(hdev, PAGE_SIZE);
if (!cb)
return -EFAULT;
clear_pgt_range_pkt = (struct packet_lin_dma *)
(uintptr_t) cb->kernel_address;
memset(clear_pgt_range_pkt, 0, sizeof(*clear_pgt_range_pkt));
cb_size = sizeof(*clear_pgt_range_pkt);
clear_pgt_range_pkt->ctl =
((PACKET_LIN_DMA << GOYA_PKT_CTL_OPCODE_SHIFT) |
(DMA_HOST_TO_DRAM << GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT) |
(1 << GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT) |
(1 << GOYA_PKT_LIN_DMA_CTL_WO_SHIFT) |
(1 << GOYA_PKT_CTL_RB_SHIFT) |
(1 << GOYA_PKT_CTL_MB_SHIFT));
clear_pgt_range_pkt->src_addr = 0;
clear_pgt_range_pkt->dst_addr = prop->mmu_pgt_addr;
clear_pgt_range_pkt->tsize = prop->mmu_pgt_size + MMU_CACHE_MNG_SIZE;
job = hl_cs_allocate_job(hdev, true);
if (!job) {
dev_err(hdev->dev, "Failed to allocate a new job\n");
rc = -ENOMEM;
goto release_cb;
}
job->id = 0;
job->user_cb = cb;
job->user_cb->cs_cnt++;
job->user_cb_size = cb_size;
job->hw_queue_id = GOYA_QUEUE_ID_DMA_0;
parser.ctx_id = HL_KERNEL_ASID_ID;
parser.cs_sequence = 0;
parser.job_id = job->id;
parser.hw_queue_id = job->hw_queue_id;
parser.job_userptr_list = &job->userptr_list;
parser.user_cb = job->user_cb;
parser.user_cb_size = job->user_cb_size;
parser.ext_queue = job->ext_queue;
parser.use_virt_addr = hdev->mmu_enable;
rc = hdev->asic_funcs->cs_parser(hdev, &parser);
if (rc) {
dev_err(hdev->dev,
"Failed to parse kernel CB when clearing pgt\n");
goto free_job;
}
job->patched_cb = parser.patched_cb;
job->job_cb_size = parser.patched_cb_size;
job->patched_cb->cs_cnt++;
rc = goya_send_job_on_qman0(hdev, job);
job->patched_cb->cs_cnt--;
hl_cb_put(job->patched_cb);
free_job:
hl_userptr_delete_list(hdev, &job->userptr_list);
kfree(job);
cb->cs_cnt--;
release_cb:
hl_cb_put(cb);
hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);
return rc;
}
static void goya_mmu_prepare(struct hl_device *hdev, u32 asid)
{
struct goya_device *goya = hdev->asic_specific;
int i;
if (!(goya->hw_cap_initialized & HW_CAP_MMU))
return;
if (asid & ~MME_QM_GLBL_SECURE_PROPS_ASID_MASK) {
WARN(1, "asid %u is too big\n", asid);
return;
}
/* zero the MMBP and ASID bits and then set the ASID */
for (i = 0 ; i < GOYA_MMU_REGS_NUM ; i++) {
WREG32_AND(goya_mmu_regs[i], ~0x7FF);
WREG32_OR(goya_mmu_regs[i], asid);
}
}
static void goya_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard)
{
struct goya_device *goya = hdev->asic_specific;
u32 status, timeout_usec;
int rc;
if (!(goya->hw_cap_initialized & HW_CAP_MMU))
return;
/* no need in L1 only invalidation in Goya */
if (!is_hard)
return;
if (hdev->pldm)
timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC;
else
timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
mutex_lock(&hdev->mmu_cache_lock);
/* L0 & L1 invalidation */
WREG32(mmSTLB_INV_ALL_START, 1);
rc = hl_poll_timeout(
hdev,
mmSTLB_INV_ALL_START,
status,
!status,
1000,
timeout_usec);
mutex_unlock(&hdev->mmu_cache_lock);
if (rc)
dev_notice_ratelimited(hdev->dev,
"Timeout when waiting for MMU cache invalidation\n");
}
static void goya_mmu_invalidate_cache_range(struct hl_device *hdev,
bool is_hard, u32 asid, u64 va, u64 size)
{
struct goya_device *goya = hdev->asic_specific;
u32 status, timeout_usec, inv_data, pi;
int rc;
if (!(goya->hw_cap_initialized & HW_CAP_MMU))
return;
/* no need in L1 only invalidation in Goya */
if (!is_hard)
return;
if (hdev->pldm)
timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC;
else
timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
mutex_lock(&hdev->mmu_cache_lock);
/*
* TODO: currently invalidate entire L0 & L1 as in regular hard
* invalidation. Need to apply invalidation of specific cache lines with
* mask of ASID & VA & size.
* Note that L1 with be flushed entirely in any case.
*/
/* L0 & L1 invalidation */
inv_data = RREG32(mmSTLB_CACHE_INV);
/* PI is 8 bit */
pi = ((inv_data & STLB_CACHE_INV_PRODUCER_INDEX_MASK) + 1) & 0xFF;
WREG32(mmSTLB_CACHE_INV,
(inv_data & STLB_CACHE_INV_INDEX_MASK_MASK) | pi);
rc = hl_poll_timeout(
hdev,
mmSTLB_INV_CONSUMER_INDEX,
status,
status == pi,
1000,
timeout_usec);
mutex_unlock(&hdev->mmu_cache_lock);
if (rc)
dev_notice_ratelimited(hdev->dev,
"Timeout when waiting for MMU cache invalidation\n");
}
static int goya_mmu_update_asid_hop0_addr(struct hl_device *hdev, u32 asid,
u64 phys_addr)
{
u32 status, timeout_usec;
int rc;
if (hdev->pldm)
timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC;
else
timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
WREG32(MMU_HOP0_PA43_12, phys_addr >> MMU_HOP0_PA43_12_SHIFT);
WREG32(MMU_HOP0_PA49_44, phys_addr >> MMU_HOP0_PA49_44_SHIFT);
WREG32(MMU_ASID_BUSY, 0x80000000 | asid);
rc = hl_poll_timeout(
hdev,
MMU_ASID_BUSY,
status,
!(status & 0x80000000),
1000,
timeout_usec);
if (rc) {
dev_err(hdev->dev,
"Timeout during MMU hop0 config of asid %d\n", asid);
return rc;
}
return 0;
}
int goya_send_heartbeat(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
......@@ -4830,6 +5221,10 @@ static const struct hl_asic_funcs goya_funcs = {
.handle_eqe = goya_handle_eqe,
.set_pll_profile = goya_set_pll_profile,
.get_events_stat = goya_get_events_stat,
.read_pte = goya_read_pte,
.write_pte = goya_write_pte,
.mmu_invalidate_cache = goya_mmu_invalidate_cache,
.mmu_invalidate_cache_range = goya_mmu_invalidate_cache_range,
.send_heartbeat = goya_send_heartbeat,
.enable_clock_gating = goya_init_clock_gating,
.disable_clock_gating = goya_disable_clock_gating,
......
......@@ -19,6 +19,7 @@
#include <linux/dma-fence.h>
#include <linux/dma-direction.h>
#include <linux/scatterlist.h>
#include <linux/hashtable.h>
#define HL_NAME "habanalabs"
......@@ -39,6 +40,31 @@
/* MUST BE POWER OF 2 and larger than 1 */
#define HL_MAX_PENDING_CS 64
/* Memory */
#define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
/* MMU */
#define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
/**
* struct pgt_info - MMU hop page info.
* @node: hash linked-list node for the pgts hash of pgts.
* @addr: physical address of the pgt.
* @ctx: pointer to the owner ctx.
* @num_of_ptes: indicates how many ptes are used in the pgt.
*
* The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
* is needed during mapping, a new page is allocated and this structure holds
* its essential information. During unmapping, if no valid PTEs remained in the
* page, it is freed with its pgt_info structure.
*/
struct pgt_info {
struct hlist_node node;
u64 addr;
struct hl_ctx *ctx;
int num_of_ptes;
};
struct hl_device;
struct hl_fpriv;
......@@ -72,11 +98,11 @@ struct hw_queue_properties {
/**
* enum vm_type_t - virtual memory mapping request information.
* @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
* @VM_TYPE_PHYS_LIST: mapping of DRAM memory to device virtual address.
* @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
*/
enum vm_type_t {
VM_TYPE_USERPTR,
VM_TYPE_PHYS_LIST
VM_TYPE_PHYS_PACK
};
/**
......@@ -117,6 +143,12 @@ enum hl_device_hw_state {
* mapping DRAM memory.
* @va_space_dram_end_address: end address of virtual memory range for
* mapping DRAM memory.
* @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
* @mmu_pgt_size: MMU page tables total size.
* @mmu_pte_size: PTE size in MMU page tables.
* @mmu_hop_table_size: MMU hop table size.
* @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
* @dram_page_size: page size for MMU DRAM allocation.
* @cfg_size: configuration space size on SRAM.
* @sram_size: total size of SRAM.
* @max_asid: maximum number of open contexts (ASIDs).
......@@ -150,6 +182,12 @@ struct asic_fixed_properties {
u64 va_space_host_end_address;
u64 va_space_dram_start_address;
u64 va_space_dram_end_address;
u64 mmu_pgt_addr;
u32 mmu_pgt_size;
u32 mmu_pte_size;
u32 mmu_hop_table_size;
u32 mmu_hop0_tables_total_size;
u32 dram_page_size;
u32 cfg_size;
u32 sram_size;
u32 max_asid;
......@@ -419,6 +457,12 @@ enum hl_pll_frequency {
* @handle_eqe: handle event queue entry (IRQ) from ArmCP.
* @set_pll_profile: change PLL profile (manual/automatic).
* @get_events_stat: retrieve event queue entries histogram.
* @read_pte: read MMU page table entry from DRAM.
* @write_pte: write MMU page table entry to DRAM.
* @mmu_invalidate_cache: flush MMU STLB cache, either with soft (L1 only) or
* hard (L0 & L1) flush.
* @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
* ASID-VA-size mask.
* @send_heartbeat: send is-alive packet to ArmCP and verify response.
* @enable_clock_gating: enable clock gating for reducing power consumption.
* @disable_clock_gating: disable clock for accessing registers on HBW.
......@@ -483,6 +527,11 @@ struct hl_asic_funcs {
void (*set_pll_profile)(struct hl_device *hdev,
enum hl_pll_frequency freq);
void* (*get_events_stat)(struct hl_device *hdev, u32 *size);
u64 (*read_pte)(struct hl_device *hdev, u64 addr);
void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
void (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard);
void (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
u32 asid, u64 va, u64 size);
int (*send_heartbeat)(struct hl_device *hdev);
void (*enable_clock_gating)(struct hl_device *hdev);
void (*disable_clock_gating)(struct hl_device *hdev);
......@@ -504,17 +553,40 @@ struct hl_asic_funcs {
#define HL_KERNEL_ASID_ID 0
/**
* struct hl_va_range - virtual addresses range.
* @lock: protects the virtual addresses list.
* @list: list of virtual addresses blocks available for mappings.
* @start_addr: range start address.
* @end_addr: range end address.
*/
struct hl_va_range {
struct mutex lock;
struct list_head list;
u64 start_addr;
u64 end_addr;
};
/**
* struct hl_ctx - user/kernel context.
* @mem_hash: holds mapping from virtual address to virtual memory area
* descriptor (hl_vm_phys_pg_list or hl_userptr).
* @mmu_hash: holds a mapping from virtual address to pgt_info structure.
* @hpriv: pointer to the private (KMD) data of the process (fd).
* @hdev: pointer to the device structure.
* @refcount: reference counter for the context. Context is released only when
* this hits 0l. It is incremented on CS and CS_WAIT.
* @cs_pending: array of DMA fence objects representing pending CS.
* @host_va_range: holds available virtual addresses for host mappings.
* @dram_va_range: holds available virtual addresses for DRAM mappings.
* @mem_hash_lock: protects the mem_hash.
* @mmu_lock: protects the MMU page tables. Any change to the PGT, modifing the
* MMU hash or walking the PGT requires talking this lock
* @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
* to user so user could inquire about CS. It is used as
* index to cs_pending array.
* @cs_lock: spinlock to protect cs_sequence.
* @dram_phys_mem: amount of used physical DRAM memory by this context.
* @thread_restore_token: token to prevent multiple threads of the same context
* from running the restore phase. Only one thread
* should run it.
......@@ -524,12 +596,19 @@ struct hl_asic_funcs {
* @asid: context's unique address space ID in the device's MMU.
*/
struct hl_ctx {
DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
DECLARE_HASHTABLE(mmu_hash, MMU_HASH_TABLE_BITS);
struct hl_fpriv *hpriv;
struct hl_device *hdev;
struct kref refcount;
struct dma_fence *cs_pending[HL_MAX_PENDING_CS];
struct hl_va_range host_va_range;
struct hl_va_range dram_va_range;
struct mutex mem_hash_lock;
struct mutex mmu_lock;
u64 cs_sequence;
spinlock_t cs_lock;
atomic64_t dram_phys_mem;
atomic_t thread_restore_token;
u32 thread_restore_wait_token;
u32 asid;
......@@ -672,6 +751,85 @@ struct hl_cs_parser {
};
/*
* MEMORY STRUCTURE
*/
/**
* struct hl_vm_hash_node - hash element from virtual address to virtual
* memory area descriptor (hl_vm_phys_pg_list or
* hl_userptr).
* @node: node to hang on the hash table in context object.
* @vaddr: key virtual address.
* @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
*/
struct hl_vm_hash_node {
struct hlist_node node;
u64 vaddr;
void *ptr;
};
/**
* struct hl_vm_phys_pg_pack - physical page pack.
* @vm_type: describes the type of the virtual area descriptor.
* @pages: the physical page array.
* @mapping_cnt: number of shared mappings.
* @asid: the context related to this list.
* @npages: num physical pages in the pack.
* @page_size: size of each page in the pack.
* @total_size: total size of all the pages in this list.
* @flags: HL_MEM_* flags related to this list.
* @handle: the provided handle related to this list.
* @offset: offset from the first page.
* @contiguous: is contiguous physical memory.
* @created_from_userptr: is product of host virtual address.
*/
struct hl_vm_phys_pg_pack {
enum vm_type_t vm_type; /* must be first */
u64 *pages;
atomic_t mapping_cnt;
u32 asid;
u32 npages;
u32 page_size;
u32 total_size;
u32 flags;
u32 handle;
u32 offset;
u8 contiguous;
u8 created_from_userptr;
};
/**
* struct hl_vm_va_block - virtual range block information.
* @node: node to hang on the virtual range list in context object.
* @start: virtual range start address.
* @end: virtual range end address.
* @size: virtual range size.
*/
struct hl_vm_va_block {
struct list_head node;
u64 start;
u64 end;
u64 size;
};
/**
* struct hl_vm - virtual memory manager for MMU.
* @dram_pg_pool: pool for DRAM physical pages of 2MB.
* @dram_pg_pool_refcount: reference counter for the pool usage.
* @idr_lock: protects the phys_pg_list_handles.
* @phys_pg_pack_handles: idr to hold all device allocations handles.
* @init_done: whether initialization was done. We need this because VM
* initialization might be skipped during device initialization.
*/
struct hl_vm {
struct gen_pool *dram_pg_pool;
struct kref dram_pg_pool_refcount;
spinlock_t idr_lock;
struct idr phys_pg_pack_handles;
u8 init_done;
};
/*
* FILE PRIVATE STRUCTURE
*/
......@@ -787,12 +945,16 @@ struct hl_device_reset_work {
* @asic_prop: ASIC specific immutable properties.
* @asic_funcs: ASIC specific functions.
* @asic_specific: ASIC specific information to use only from ASIC files.
* @mmu_pgt_pool: pool of available MMU hops.
* @vm: virtual memory manager for MMU.
* @mmu_cache_lock: protects MMU cache invalidation as it can serve one context
* @hwmon_dev: H/W monitor device.
* @pm_mng_profile: current power management profile.
* @hl_chip_info: ASIC's sensors information.
* @cb_pool: list of preallocated CBs.
* @cb_pool_lock: protects the CB pool.
* @user_ctx: current user context executing.
* @dram_used_mem: current DRAM memory consumption.
* @in_reset: is device in reset flow.
* @curr_pll_profile: current PLL profile.
* @fd_open_cnt: number of open user processes.
......@@ -812,6 +974,7 @@ struct hl_device_reset_work {
* @heartbeat: is heartbeat sanity check towards ArmCP enabled.
* @reset_on_lockup: true if a reset should be done in case of stuck CS, false
* otherwise.
* @dram_supports_virtual_memory: is MMU enabled towards DRAM.
* @init_done: is the initialization of the device done.
* @mmu_enable: is MMU enabled.
*/
......@@ -846,6 +1009,9 @@ struct hl_device {
struct asic_fixed_properties asic_prop;
const struct hl_asic_funcs *asic_funcs;
void *asic_specific;
struct gen_pool *mmu_pgt_pool;
struct hl_vm vm;
struct mutex mmu_cache_lock;
struct device *hwmon_dev;
enum hl_pm_mng_profile pm_mng_profile;
struct hwmon_chip_info *hl_chip_info;
......@@ -856,6 +1022,7 @@ struct hl_device {
/* TODO: remove user_ctx for multiple process support */
struct hl_ctx *user_ctx;
atomic64_t dram_used_mem;
atomic_t in_reset;
atomic_t curr_pll_profile;
atomic_t fd_open_cnt;
......@@ -872,6 +1039,7 @@ struct hl_device {
u8 hard_reset_pending;
u8 heartbeat;
u8 reset_on_lockup;
u8 dram_supports_virtual_memory;
u8 init_done;
/* Parameters for bring-up */
......@@ -1021,6 +1189,7 @@ int hl_device_reset(struct hl_device *hdev, bool hard_reset,
void hl_hpriv_get(struct hl_fpriv *hpriv);
void hl_hpriv_put(struct hl_fpriv *hpriv);
int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
int hl_build_hwmon_channel_info(struct hl_device *hdev,
struct armcp_sensor *sensors_arr);
......@@ -1048,6 +1217,12 @@ struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, bool ext_queue);
void goya_set_asic_funcs(struct hl_device *hdev);
int hl_vm_ctx_init(struct hl_ctx *ctx);
void hl_vm_ctx_fini(struct hl_ctx *ctx);
int hl_vm_init(struct hl_device *hdev);
void hl_vm_fini(struct hl_device *hdev);
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u32 size,
struct hl_userptr *userptr);
int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
......@@ -1057,6 +1232,15 @@ bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
struct list_head *userptr_list,
struct hl_userptr **userptr);
int hl_mmu_init(struct hl_device *hdev);
void hl_mmu_fini(struct hl_device *hdev);
void hl_mmu_ctx_init(struct hl_ctx *ctx);
void hl_mmu_ctx_fini(struct hl_ctx *ctx);
int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size);
int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size);
void hl_mmu_swap_out(struct hl_ctx *ctx);
void hl_mmu_swap_in(struct hl_ctx *ctx);
long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
long hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr);
......@@ -1074,5 +1258,6 @@ long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
#endif /* HABANALABSP_H_ */
......@@ -188,7 +188,7 @@ int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
hdev->reset_on_lockup = reset_on_lockup;
/* Parameters for bring-up - set them to defaults */
hdev->mmu_enable = 0;
hdev->mmu_enable = 1;
hdev->cpu_enable = 1;
hdev->reset_pcilink = 0;
hdev->cpu_queues_enable = 1;
......
......@@ -18,7 +18,8 @@
static const struct hl_ioctl_desc hl_ioctls[] = {
HL_IOCTL_DEF(HL_IOCTL_CB, hl_cb_ioctl),
HL_IOCTL_DEF(HL_IOCTL_CS, hl_cs_ioctl),
HL_IOCTL_DEF(HL_IOCTL_WAIT_CS, hl_cs_wait_ioctl)
HL_IOCTL_DEF(HL_IOCTL_WAIT_CS, hl_cs_wait_ioctl),
HL_IOCTL_DEF(HL_IOCTL_MEMORY, hl_mem_ioctl)
};
#define HL_CORE_IOCTL_COUNT ARRAY_SIZE(hl_ioctls)
......
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright 2016-2018 HabanaLabs, Ltd.
* All Rights Reserved.
*
*/
#ifndef INCLUDE_MMU_GENERAL_H_
#define INCLUDE_MMU_GENERAL_H_
#define PAGE_SHIFT_4KB 12
#define PAGE_SHIFT_2MB 21
#define PAGE_SIZE_2MB (_AC(1, UL) << PAGE_SHIFT_2MB)
#define PAGE_SIZE_4KB (_AC(1, UL) << PAGE_SHIFT_4KB)
#define PAGE_MASK_2MB (~(PAGE_SIZE_2MB - 1))
#define PAGE_PRESENT_MASK 0x0000000000001
#define SWAP_OUT_MASK 0x0000000000004
#define LAST_MASK 0x0000000000800
#define PHYS_ADDR_MASK 0x3FFFFFFFFF000ull
#define HOP0_MASK 0x3000000000000ull
#define HOP1_MASK 0x0FF8000000000ull
#define HOP2_MASK 0x0007FC0000000ull
#define HOP3_MASK 0x000003FE00000
#define HOP4_MASK 0x00000001FF000
#define OFFSET_MASK 0x0000000000FFF
#define HOP0_SHIFT 48
#define HOP1_SHIFT 39
#define HOP2_SHIFT 30
#define HOP3_SHIFT 21
#define HOP4_SHIFT 12
#define PTE_PHYS_ADDR_SHIFT 12
#define PTE_PHYS_ADDR_MASK ~0xFFF
#define HL_PTE_SIZE sizeof(u64)
#define HOP_TABLE_SIZE PAGE_SIZE_4KB
#define HOP0_TABLES_TOTAL_SIZE (HOP_TABLE_SIZE * MAX_ASID)
#define MMU_HOP0_PA43_12_SHIFT 12
#define MMU_HOP0_PA49_44_SHIFT (12 + 32)
#define MMU_CONFIG_TIMEOUT_USEC 2000 /* 2 ms */
#endif /* INCLUDE_MMU_GENERAL_H_ */
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright 2016-2018 HabanaLabs, Ltd.
* All Rights Reserved.
*
*/
#ifndef INCLUDE_MMU_V1_0_H_
#define INCLUDE_MMU_V1_0_H_
#define MMU_HOP0_PA43_12 0x490004
#define MMU_HOP0_PA49_44 0x490008
#define MMU_ASID_BUSY 0x490000
#endif /* INCLUDE_MMU_V1_0_H_ */
此差异已折叠。
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include "include/hw_ip/mmu/mmu_general.h"
#include <linux/genalloc.h>
#include <linux/slab.h>
static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 addr)
{
struct pgt_info *pgt_info = NULL;
hash_for_each_possible(ctx->mmu_hash, pgt_info, node,
(unsigned long) addr)
if (addr == pgt_info->addr)
break;
return pgt_info;
}
static void free_hop(struct hl_ctx *ctx, u64 hop_addr)
{
struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
gen_pool_free(pgt_info->ctx->hdev->mmu_pgt_pool, pgt_info->addr,
ctx->hdev->asic_prop.mmu_hop_table_size);
hash_del(&pgt_info->node);
kfree(pgt_info);
}
static u64 alloc_hop(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
struct pgt_info *pgt_info;
u64 addr;
pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
if (!pgt_info)
return ULLONG_MAX;
addr = (u64) gen_pool_alloc(hdev->mmu_pgt_pool,
hdev->asic_prop.mmu_hop_table_size);
if (!addr) {
dev_err(hdev->dev, "failed to allocate page\n");
kfree(pgt_info);
return ULLONG_MAX;
}
pgt_info->addr = addr;
pgt_info->ctx = ctx;
pgt_info->num_of_ptes = 0;
hash_add(ctx->mmu_hash, &pgt_info->node, addr);
return addr;
}
static inline void clear_pte(struct hl_device *hdev, u64 pte_addr)
{
/* clear the last and present bits */
hdev->asic_funcs->write_pte(hdev, pte_addr, 0);
}
static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr)
{
get_pgt_info(ctx, hop_addr)->num_of_ptes++;
}
/*
* put_pte - decrement the num of ptes and free the hop if possible
*
* @ctx: pointer to the context structure
* @hop_addr: addr of the hop
*
* This function returns the number of ptes left on this hop. If the number is
* 0, it means the pte was freed.
*/
static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr)
{
struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
int num_of_ptes_left;
pgt_info->num_of_ptes--;
/*
* Need to save the number of ptes left because free_hop might free
* the pgt_info
*/
num_of_ptes_left = pgt_info->num_of_ptes;
if (!num_of_ptes_left)
free_hop(ctx, hop_addr);
return num_of_ptes_left;
}
static inline u64 get_hop0_addr(struct hl_ctx *ctx)
{
return ctx->hdev->asic_prop.mmu_pgt_addr +
(ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
}
static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr,
u64 virt_addr, u64 mask, u64 shift)
{
return hop_addr + ctx->hdev->asic_prop.mmu_pte_size *
((virt_addr & mask) >> shift);
}
static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr)
{
return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP0_MASK, HOP0_SHIFT);
}
static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr)
{
return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP1_MASK, HOP1_SHIFT);
}
static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr)
{
return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP2_MASK, HOP2_SHIFT);
}
static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr)
{
return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP3_MASK, HOP3_SHIFT);
}
static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr)
{
return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP4_MASK, HOP4_SHIFT);
}
static inline u64 get_next_hop_addr(u64 curr_pte)
{
if (curr_pte & PAGE_PRESENT_MASK)
return curr_pte & PHYS_ADDR_MASK;
else
return ULLONG_MAX;
}
static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte,
bool *is_new_hop)
{
u64 hop_addr = get_next_hop_addr(curr_pte);
if (hop_addr == ULLONG_MAX) {
hop_addr = alloc_hop(ctx);
*is_new_hop = true;
}
return hop_addr;
}
/*
* hl_mmu_init - init the mmu module
*
* @hdev: pointer to the habanalabs device structure
*
* This function does the following:
* - Allocate max_asid zeroed hop0 pgts so no mapping is available
* - Enable mmu in hw
* - Invalidate the mmu cache
* - Create a pool of pages for pgts
* - Returns 0 on success
*
* This function depends on DMA QMAN to be working!
*/
int hl_mmu_init(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
int rc;
if (!hdev->mmu_enable)
return 0;
/* MMU HW init was already done in device hw_init() */
mutex_init(&hdev->mmu_cache_lock);
hdev->mmu_pgt_pool =
gen_pool_create(__ffs(prop->mmu_hop_table_size), -1);
if (!hdev->mmu_pgt_pool) {
dev_err(hdev->dev, "Failed to create page gen pool\n");
rc = -ENOMEM;
goto err_pool_create;
}
rc = gen_pool_add(hdev->mmu_pgt_pool, prop->mmu_pgt_addr +
prop->mmu_hop0_tables_total_size,
prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size,
-1);
if (rc) {
dev_err(hdev->dev, "Failed to add memory to page gen pool\n");
goto err_pool_add;
}
return 0;
err_pool_add:
gen_pool_destroy(hdev->mmu_pgt_pool);
err_pool_create:
mutex_destroy(&hdev->mmu_cache_lock);
return rc;
}
/*
* hl_mmu_fini - release the mmu module.
*
* @hdev: pointer to the habanalabs device structure
*
* This function does the following:
* - Disable mmu in hw
* - free the pgts pool
*
* All ctxs should be freed before calling this func
*/
void hl_mmu_fini(struct hl_device *hdev)
{
if (!hdev->mmu_enable)
return;
gen_pool_destroy(hdev->mmu_pgt_pool);
mutex_destroy(&hdev->mmu_cache_lock);
/* MMU HW fini will be done in device hw_fini() */
}
/*
* hl_mmu_ctx_init - init a ctx for using the mmu module
*
* @ctx: pointer to the context structure
*
* This function does the following:
* - Init a mutex to protect the concurrent mapping flow
* - Init a hash to hold all pgts related to this ctx
*/
void hl_mmu_ctx_init(struct hl_ctx *ctx)
{
if (!ctx->hdev->mmu_enable)
return;
mutex_init(&ctx->mmu_lock);
hash_init(ctx->mmu_hash);
}
/*
* hl_mmu_ctx_fini - disable a ctx from using the mmu module
*
* @ctx: pointer to the context structure
*
* This function does the following:
* - Free any pgts which were not freed yet
* - Free the mutex
*/
void hl_mmu_ctx_fini(struct hl_ctx *ctx)
{
struct pgt_info *pgt_info;
struct hlist_node *tmp;
int i;
if (!ctx->hdev->mmu_enable)
return;
if (!hash_empty(ctx->mmu_hash))
dev_err(ctx->hdev->dev,
"ctx is freed while it has pgts in use\n");
hash_for_each_safe(ctx->mmu_hash, i, tmp, pgt_info, node) {
dev_err(ctx->hdev->dev,
"pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n",
pgt_info->addr, ctx->asid, pgt_info->num_of_ptes);
free_hop(ctx, pgt_info->addr);
}
mutex_destroy(&ctx->mmu_lock);
}
static int _hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr)
{
struct hl_device *hdev = ctx->hdev;
u64 hop0_addr = 0, hop0_pte_addr = 0,
hop1_addr = 0, hop1_pte_addr = 0,
hop2_addr = 0, hop2_pte_addr = 0,
hop3_addr = 0, hop3_pte_addr = 0,
hop4_addr = 0, hop4_pte_addr = 0,
curr_pte;
int clear_hop3 = 1;
hop0_addr = get_hop0_addr(ctx);
hop0_pte_addr = get_hop0_pte_addr(ctx, hop0_addr, virt_addr);
curr_pte = hdev->asic_funcs->read_pte(hdev, hop0_pte_addr);
hop1_addr = get_next_hop_addr(curr_pte);
if (hop1_addr == ULLONG_MAX)
goto not_mapped;
hop1_pte_addr = get_hop1_pte_addr(ctx, hop1_addr, virt_addr);
curr_pte = hdev->asic_funcs->read_pte(hdev, hop1_pte_addr);
hop2_addr = get_next_hop_addr(curr_pte);
if (hop2_addr == ULLONG_MAX)
goto not_mapped;
hop2_pte_addr = get_hop2_pte_addr(ctx, hop2_addr, virt_addr);
curr_pte = hdev->asic_funcs->read_pte(hdev, hop2_pte_addr);
hop3_addr = get_next_hop_addr(curr_pte);
if (hop3_addr == ULLONG_MAX)
goto not_mapped;
hop3_pte_addr = get_hop3_pte_addr(ctx, hop3_addr, virt_addr);
curr_pte = hdev->asic_funcs->read_pte(hdev, hop3_pte_addr);
if (!(curr_pte & LAST_MASK)) {
hop4_addr = get_next_hop_addr(curr_pte);
if (hop4_addr == ULLONG_MAX)
goto not_mapped;
hop4_pte_addr = get_hop4_pte_addr(ctx, hop4_addr, virt_addr);
curr_pte = hdev->asic_funcs->read_pte(hdev, hop4_pte_addr);
clear_hop3 = 0;
}
if (!(curr_pte & PAGE_PRESENT_MASK))
goto not_mapped;
clear_pte(hdev, hop4_addr ? hop4_pte_addr : hop3_pte_addr);
if (hop4_addr && !put_pte(ctx, hop4_addr))
clear_hop3 = 1;
if (!clear_hop3)
goto flush;
clear_pte(hdev, hop3_pte_addr);
if (put_pte(ctx, hop3_addr))
goto flush;
clear_pte(hdev, hop2_pte_addr);
if (put_pte(ctx, hop2_addr))
goto flush;
clear_pte(hdev, hop1_pte_addr);
if (put_pte(ctx, hop1_addr))
goto flush;
clear_pte(hdev, hop0_pte_addr);
flush:
/* flush all writes from all cores to reach PCI */
mb();
hdev->asic_funcs->read_pte(hdev,
hop4_addr ? hop4_pte_addr : hop3_pte_addr);
return 0;
not_mapped:
dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
virt_addr);
return -EINVAL;
}
/*
* hl_mmu_unmap - unmaps a virtual addr
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @page_size: size of the page to unmap
*
* This function does the following:
* - Check that the virt addr is mapped
* - Unmap the virt addr and frees pgts if possible
* - Returns 0 on success, -EINVAL if the given addr is not mapped
*
* Because this function changes the page tables in the device and because it
* changes the MMU hash, it must be protected by a lock.
* However, because it maps only a single page, the lock should be implemented
* in a higher level in order to protect the entire mapping of the memory area
*/
int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size)
{
struct hl_device *hdev = ctx->hdev;
u64 real_virt_addr;
u32 real_page_size, npages;
int i, rc;
if (!hdev->mmu_enable)
return 0;
/*
* The H/W handles mapping of 4KB/2MB page. Hence if the host page size
* is bigger, we break it to sub-pages and unmap them separately.
*/
if ((page_size % PAGE_SIZE_2MB) == 0) {
real_page_size = PAGE_SIZE_2MB;
} else if ((page_size % PAGE_SIZE_4KB) == 0) {
real_page_size = PAGE_SIZE_4KB;
} else {
dev_err(hdev->dev,
"page size of %u is not 4KB nor 2MB aligned, can't unmap\n",
page_size);
return -EFAULT;
}
npages = page_size / real_page_size;
real_virt_addr = virt_addr;
for (i = 0 ; i < npages ; i++) {
rc = _hl_mmu_unmap(ctx, real_virt_addr);
if (rc)
return rc;
real_virt_addr += real_page_size;
}
return 0;
}
static int _hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
u32 page_size)
{
struct hl_device *hdev = ctx->hdev;
u64 hop0_addr = 0, hop0_pte_addr = 0,
hop1_addr = 0, hop1_pte_addr = 0,
hop2_addr = 0, hop2_pte_addr = 0,
hop3_addr = 0, hop3_pte_addr = 0,
hop4_addr = 0, hop4_pte_addr = 0,
curr_pte = 0;
bool hop1_new = false, hop2_new = false, hop3_new = false,
hop4_new = false, is_huge;
int rc = -ENOMEM;
/*
* This mapping function can map a 4KB/2MB page. For 2MB page there are
* only 3 hops rather than 4. Currently the DRAM allocation uses 2MB
* pages only but user memory could have been allocated with one of the
* two page sizes. Since this is a common code for all the three cases,
* we need this hugs page check.
*/
is_huge = page_size == PAGE_SIZE_2MB;
hop0_addr = get_hop0_addr(ctx);
hop0_pte_addr = get_hop0_pte_addr(ctx, hop0_addr, virt_addr);
curr_pte = hdev->asic_funcs->read_pte(hdev, hop0_pte_addr);
hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new);
if (hop1_addr == ULLONG_MAX)
goto err;
hop1_pte_addr = get_hop1_pte_addr(ctx, hop1_addr, virt_addr);
curr_pte = hdev->asic_funcs->read_pte(hdev, hop1_pte_addr);
hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new);
if (hop2_addr == ULLONG_MAX)
goto err;
hop2_pte_addr = get_hop2_pte_addr(ctx, hop2_addr, virt_addr);
curr_pte = hdev->asic_funcs->read_pte(hdev, hop2_pte_addr);
hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new);
if (hop3_addr == ULLONG_MAX)
goto err;
hop3_pte_addr = get_hop3_pte_addr(ctx, hop3_addr, virt_addr);
curr_pte = hdev->asic_funcs->read_pte(hdev, hop3_pte_addr);
if (!is_huge) {
hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new);
if (hop4_addr == ULLONG_MAX)
goto err;
hop4_pte_addr = get_hop4_pte_addr(ctx, hop4_addr, virt_addr);
curr_pte = hdev->asic_funcs->read_pte(hdev, hop4_pte_addr);
}
if (curr_pte & PAGE_PRESENT_MASK) {
dev_err(hdev->dev,
"mapping already exists for virt_addr 0x%llx\n",
virt_addr);
dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n",
hdev->asic_funcs->read_pte(hdev, hop0_pte_addr),
hop0_pte_addr);
dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n",
hdev->asic_funcs->read_pte(hdev, hop1_pte_addr),
hop1_pte_addr);
dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n",
hdev->asic_funcs->read_pte(hdev, hop2_pte_addr),
hop2_pte_addr);
dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n",
hdev->asic_funcs->read_pte(hdev, hop3_pte_addr),
hop3_pte_addr);
if (!is_huge)
dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n",
hdev->asic_funcs->read_pte(hdev,
hop4_pte_addr),
hop4_pte_addr);
rc = EINVAL;
goto err;
}
curr_pte = (phys_addr & PTE_PHYS_ADDR_MASK) | LAST_MASK
| PAGE_PRESENT_MASK;
hdev->asic_funcs->write_pte(hdev,
is_huge ? hop3_pte_addr : hop4_pte_addr,
curr_pte);
if (hop1_new) {
curr_pte = (hop1_addr & PTE_PHYS_ADDR_MASK) |
PAGE_PRESENT_MASK;
ctx->hdev->asic_funcs->write_pte(ctx->hdev, hop0_pte_addr,
curr_pte);
}
if (hop2_new) {
curr_pte = (hop2_addr & PTE_PHYS_ADDR_MASK) |
PAGE_PRESENT_MASK;
ctx->hdev->asic_funcs->write_pte(ctx->hdev, hop1_pte_addr,
curr_pte);
get_pte(ctx, hop1_addr);
}
if (hop3_new) {
curr_pte = (hop3_addr & PTE_PHYS_ADDR_MASK) |
PAGE_PRESENT_MASK;
ctx->hdev->asic_funcs->write_pte(ctx->hdev, hop2_pte_addr,
curr_pte);
get_pte(ctx, hop2_addr);
}
if (!is_huge) {
if (hop4_new) {
curr_pte = (hop4_addr & PTE_PHYS_ADDR_MASK) |
PAGE_PRESENT_MASK;
ctx->hdev->asic_funcs->write_pte(ctx->hdev,
hop3_pte_addr, curr_pte);
get_pte(ctx, hop3_addr);
}
get_pte(ctx, hop4_addr);
} else {
get_pte(ctx, hop3_addr);
}
/* flush all writes from all cores to reach PCI */
mb();
hdev->asic_funcs->read_pte(hdev,
is_huge ? hop3_pte_addr : hop4_pte_addr);
return 0;
err:
if (hop4_new)
free_hop(ctx, hop4_addr);
if (hop3_new)
free_hop(ctx, hop3_addr);
if (hop2_new)
free_hop(ctx, hop2_addr);
if (hop1_new)
free_hop(ctx, hop1_addr);
return rc;
}
/*
* hl_mmu_map - maps a virtual addr to physical addr
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @phys_addr: phys addr to map to
* @page_size: physical page size
*
* This function does the following:
* - Check that the virt addr is not mapped
* - Allocate pgts as necessary in order to map the virt addr to the phys
* - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
*
* Because this function changes the page tables in the device and because it
* changes the MMU hash, it must be protected by a lock.
* However, because it maps only a single page, the lock should be implemented
* in a higher level in order to protect the entire mapping of the memory area
*/
int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size)
{
struct hl_device *hdev = ctx->hdev;
u64 real_virt_addr;
u32 real_page_size, npages;
int i, rc, mapped_cnt = 0;
if (!hdev->mmu_enable)
return 0;
/*
* The H/W handles mapping of 4KB/2MB page. Hence if the host page size
* is bigger, we break it to sub-pages and map them separately.
*/
if ((page_size % PAGE_SIZE_2MB) == 0) {
real_page_size = PAGE_SIZE_2MB;
} else if ((page_size % PAGE_SIZE_4KB) == 0) {
real_page_size = PAGE_SIZE_4KB;
} else {
dev_err(hdev->dev,
"page size of %u is not 4KB nor 2MB aligned, can't map\n",
page_size);
return -EFAULT;
}
npages = page_size / real_page_size;
real_virt_addr = virt_addr;
for (i = 0 ; i < npages ; i++) {
rc = _hl_mmu_map(ctx, real_virt_addr, phys_addr,
real_page_size);
if (rc)
goto err;
real_virt_addr += real_page_size;
mapped_cnt++;
}
return 0;
err:
real_virt_addr = virt_addr;
for (i = 0 ; i < mapped_cnt ; i++) {
if (_hl_mmu_unmap(ctx, real_virt_addr))
dev_warn_ratelimited(hdev->dev,
"failed to unmap va: 0x%llx\n", real_virt_addr);
real_virt_addr += real_page_size;
}
return rc;
}
/*
* hl_mmu_swap_out - marks all mapping of the given ctx as swapped out
*
* @ctx: pointer to the context structure
*
*/
void hl_mmu_swap_out(struct hl_ctx *ctx)
{
}
/*
* hl_mmu_swap_in - marks all mapping of the given ctx as swapped in
*
* @ctx: pointer to the context structure
*
*/
void hl_mmu_swap_in(struct hl_ctx *ctx)
{
}
......@@ -162,6 +162,108 @@ union hl_wait_cs_args {
struct hl_wait_cs_out out;
};
/* Opcode to alloc device memory */
#define HL_MEM_OP_ALLOC 0
/* Opcode to free previously allocated device memory */
#define HL_MEM_OP_FREE 1
/* Opcode to map host memory */
#define HL_MEM_OP_MAP 2
/* Opcode to unmap previously mapped host memory */
#define HL_MEM_OP_UNMAP 3
/* Memory flags */
#define HL_MEM_CONTIGUOUS 0x1
#define HL_MEM_SHARED 0x2
#define HL_MEM_USERPTR 0x4
struct hl_mem_in {
union {
/* HL_MEM_OP_ALLOC- allocate device memory */
struct {
/* Size to alloc */
__u32 mem_size;
__u32 pad;
} alloc;
/* HL_MEM_OP_FREE - free device memory */
struct {
/* Handle returned from HL_MEM_OP_ALLOC */
__u64 handle;
} free;
/* HL_MEM_OP_MAP - map device memory */
struct {
/*
* Requested virtual address of mapped memory.
* KMD will try to map the requested region to this
* hint address, as long as the address is valid and
* not already mapped. The user should check the
* returned address of the IOCTL to make sure he got
* the hint address. Passing 0 here means that KMD
* will choose the address itself.
*/
__u64 hint_addr;
/* Handle returned from HL_MEM_OP_ALLOC */
__u64 handle;
} map_device;
/* HL_MEM_OP_MAP - map host memory */
struct {
/* Address of allocated host memory */
__u64 host_virt_addr;
/*
* Requested virtual address of mapped memory.
* KMD will try to map the requested region to this
* hint address, as long as the address is valid and
* not already mapped. The user should check the
* returned address of the IOCTL to make sure he got
* the hint address. Passing 0 here means that KMD
* will choose the address itself.
*/
__u64 hint_addr;
/* Size of allocated host memory */
__u32 mem_size;
__u32 pad;
} map_host;
/* HL_MEM_OP_UNMAP - unmap host memory */
struct {
/* Virtual address returned from HL_MEM_OP_MAP */
__u64 device_virt_addr;
} unmap;
};
/* HL_MEM_OP_* */
__u32 op;
/* HL_MEM_* flags */
__u32 flags;
/* Context ID - Currently not in use */
__u32 ctx_id;
__u32 pad;
};
struct hl_mem_out {
union {
/*
* Used for HL_MEM_OP_MAP as the virtual address that was
* assigned in the device VA space.
* A value of 0 means the requested operation failed.
*/
__u64 device_virt_addr;
/*
* Used for HL_MEM_OP_ALLOC. This is the assigned
* handle for the allocated memory
*/
__u64 handle;
};
};
union hl_mem_args {
struct hl_mem_in in;
struct hl_mem_out out;
};
/*
* Command Buffer
* - Request a Command Buffer
......@@ -245,7 +347,25 @@ union hl_wait_cs_args {
#define HL_IOCTL_WAIT_CS \
_IOWR('H', 0x04, union hl_wait_cs_args)
/*
* Memory
* - Map host memory to device MMU
* - Unmap host memory from device MMU
*
* This IOCTL allows the user to map host memory to the device MMU
*
* For host memory, the IOCTL doesn't allocate memory. The user is supposed
* to allocate the memory in user-space (malloc/new). The driver pins the
* physical pages (up to the allowed limit by the OS), assigns a virtual
* address in the device VA space and initializes the device MMU.
*
* There is an option for the user to specify the requested virtual address.
*
*/
#define HL_IOCTL_MEMORY \
_IOWR('H', 0x05, union hl_mem_args)
#define HL_COMMAND_START 0x02
#define HL_COMMAND_END 0x05
#define HL_COMMAND_END 0x06
#endif /* HABANALABS_H_ */
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册