-
由 Guan Jing 提交于
mainline inclusion from mainline-v5.18-rc1 commit e496132e category: feature bugzilla: https://gitee.com/openeuler/kernel/issues/I78WM8 Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?h=v6.4-rc3&id=e496132ebedd870b67f1f6d2428f9bb9d7ae27fd -------------------------------- Commit 7d2b5dd0 ("sched/numa: Allow a floating imbalance between NUMA nodes") allowed an imbalance between NUMA nodes such that communicating tasks would not be pulled apart by the load balancer. This works fine when there is a 1:1 relationship between LLC and node but can be suboptimal for multiple LLCs if independent tasks prematurely use CPUs sharing cache. Zen* has multiple LLCs per node with local memory channels and due to the allowed imbalance, it's far harder to tune some workloads to run optimally than it is on hardware that has 1 LLC per node. This patch allows an imbalance to exist up to the point where LLCs should be balanced between nodes. On a Zen3 machine running STREAM parallelised with OMP to have on instance per LLC the results and without binding, the results are 5.17.0-rc0 5.17.0-rc0 vanilla sched-numaimb-v6 MB/sec copy-16 162596.94 ( 0.00%) 580559.74 ( 257.05%) MB/sec scale-16 136901.28 ( 0.00%) 374450.52 ( 173.52%) MB/sec add-16 157300.70 ( 0.00%) 564113.76 ( 258.62%) MB/sec triad-16 151446.88 ( 0.00%) 564304.24 ( 272.61%) STREAM can use directives to force the spread if the OpenMP is new enough but that doesn't help if an application uses threads and it's not known in advance how many threads will be created. Coremark is a CPU and cache intensive benchmark parallelised with threads. When running with 1 thread per core, the vanilla kernel allows threads to contend on cache. With the patch; 5.17.0-rc0 5.17.0-rc0 vanilla sched-numaimb-v5 Min Score-16 368239.36 ( 0.00%) 389816.06 ( 5.86%) Hmean Score-16 388607.33 ( 0.00%) 427877.08 * 10.11%* Max Score-16 408945.69 ( 0.00%) 481022.17 ( 17.62%) Stddev Score-16 15247.04 ( 0.00%) 24966.82 ( -63.75%) CoeffVar Score-16 3.92 ( 0.00%) 5.82 ( -48.48%) It can also make a big difference for semi-realistic workloads like specjbb which can execute arbitrary numbers of threads without advance knowledge of how they should be placed. Even in cases where the average performance is neutral, the results are more stable. 5.17.0-rc0 5.17.0-rc0 vanilla sched-numaimb-v6 Hmean tput-1 71631.55 ( 0.00%) 73065.57 ( 2.00%) Hmean tput-8 582758.78 ( 0.00%) 556777.23 ( -4.46%) Hmean tput-16 1020372.75 ( 0.00%) 1009995.26 ( -1.02%) Hmean tput-24 1416430.67 ( 0.00%) 1398700.11 ( -1.25%) Hmean tput-32 1687702.72 ( 0.00%) 1671357.04 ( -0.97%) Hmean tput-40 1798094.90 ( 0.00%) 2015616.46 * 12.10%* Hmean tput-48 1972731.77 ( 0.00%) 2333233.72 ( 18.27%) Hmean tput-56 2386872.38 ( 0.00%) 2759483.38 ( 15.61%) Hmean tput-64 2909475.33 ( 0.00%) 2925074.69 ( 0.54%) Hmean tput-72 2585071.36 ( 0.00%) 2962443.97 ( 14.60%) Hmean tput-80 2994387.24 ( 0.00%) 3015980.59 ( 0.72%) Hmean tput-88 3061408.57 ( 0.00%) 3010296.16 ( -1.67%) Hmean tput-96 3052394.82 ( 0.00%) 2784743.41 ( -8.77%) Hmean tput-104 2997814.76 ( 0.00%) 2758184.50 ( -7.99%) Hmean tput-112 2955353.29 ( 0.00%) 2859705.09 ( -3.24%) Hmean tput-120 2889770.71 ( 0.00%) 2764478.46 ( -4.34%) Hmean tput-128 2871713.84 ( 0.00%) 2750136.73 ( -4.23%) Stddev tput-1 5325.93 ( 0.00%) 2002.53 ( 62.40%) Stddev tput-8 6630.54 ( 0.00%) 10905.00 ( -64.47%) Stddev tput-16 25608.58 ( 0.00%) 6851.16 ( 73.25%) Stddev tput-24 12117.69 ( 0.00%) 4227.79 ( 65.11%) Stddev tput-32 27577.16 ( 0.00%) 8761.05 ( 68.23%) Stddev tput-40 59505.86 ( 0.00%) 2048.49 ( 96.56%) Stddev tput-48 168330.30 ( 0.00%) 93058.08 ( 44.72%) Stddev tput-56 219540.39 ( 0.00%) 30687.02 ( 86.02%) Stddev tput-64 121750.35 ( 0.00%) 9617.36 ( 92.10%) Stddev tput-72 223387.05 ( 0.00%) 34081.13 ( 84.74%) Stddev tput-80 128198.46 ( 0.00%) 22565.19 ( 82.40%) Stddev tput-88 136665.36 ( 0.00%) 27905.97 ( 79.58%) Stddev tput-96 111925.81 ( 0.00%) 99615.79 ( 11.00%) Stddev tput-104 146455.96 ( 0.00%) 28861.98 ( 80.29%) Stddev tput-112 88740.49 ( 0.00%) 58288.23 ( 34.32%) Stddev tput-120 186384.86 ( 0.00%) 45812.03 ( 75.42%) Stddev tput-128 78761.09 ( 0.00%) 57418.48 ( 27.10%) Similarly, for embarassingly parallel problems like NPB-ep, there are improvements due to better spreading across LLC when the machine is not fully utilised. vanilla sched-numaimb-v6 Min ep.D 31.79 ( 0.00%) 26.11 ( 17.87%) Amean ep.D 31.86 ( 0.00%) 26.17 * 17.86%* Stddev ep.D 0.07 ( 0.00%) 0.05 ( 24.41%) CoeffVar ep.D 0.22 ( 0.00%) 0.20 ( 7.97%) Max ep.D 31.93 ( 0.00%) 26.21 ( 17.91%) Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NGautham R. Shenoy <gautham.shenoy@amd.com> Tested-by: NK Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20220208094334.16379-3-mgorman@techsingularity.netSigned-off-by: NGuan Jing <guanjing6@huawei.com>
edd5e1ef