-
由 Douglas Anderson 提交于
We've seen in-field reports showing _lots_ (18 in one case, 41 in another) of tasks all sitting there blocked on: mutex_lock+0x4c/0x68 dm_bufio_shrink_count+0x38/0x78 shrink_slab.part.54.constprop.65+0x100/0x464 shrink_zone+0xa8/0x198 In the two cases analyzed, we see one task that looks like this: Workqueue: kverityd verity_prefetch_io __switch_to+0x9c/0xa8 __schedule+0x440/0x6d8 schedule+0x94/0xb4 schedule_timeout+0x204/0x27c schedule_timeout_uninterruptible+0x44/0x50 wait_iff_congested+0x9c/0x1f0 shrink_inactive_list+0x3a0/0x4cc shrink_lruvec+0x418/0x5cc shrink_zone+0x88/0x198 try_to_free_pages+0x51c/0x588 __alloc_pages_nodemask+0x648/0xa88 __get_free_pages+0x34/0x7c alloc_buffer+0xa4/0x144 __bufio_new+0x84/0x278 dm_bufio_prefetch+0x9c/0x154 verity_prefetch_io+0xe8/0x10c process_one_work+0x240/0x424 worker_thread+0x2fc/0x424 kthread+0x10c/0x114 ...and that looks to be the one holding the mutex. The problem has been reproduced on fairly easily: 0. Be running Chrome OS w/ verity enabled on the root filesystem 1. Pick test patch: http://crosreview.com/412360 2. Install launchBalloons.sh and balloon.arm from http://crbug.com/468342 ...that's just a memory stress test app. 3. On a 4GB rk3399 machine, run nice ./launchBalloons.sh 4 900 100000 ...that tries to eat 4 * 900 MB of memory and keep accessing. 4. Login to the Chrome web browser and restore many tabs With that, I've seen printouts like: DOUG: long bufio 90758 ms ...and stack trace always show's we're in dm_bufio_prefetch(). The problem is that we try to allocate memory with GFP_NOIO while we're holding the dm_bufio lock. Instead we should be using GFP_NOWAIT. Using GFP_NOIO can cause us to sleep while holding the lock and that causes the above problems. The current behavior explained by David Rientjes: It will still try reclaim initially because __GFP_WAIT (or __GFP_KSWAPD_RECLAIM) is set by GFP_NOIO. This is the cause of contention on dm_bufio_lock() that the thread holds. You want to pass GFP_NOWAIT instead of GFP_NOIO to alloc_buffer() when holding a mutex that can be contended by a concurrent slab shrinker (if count_objects didn't use a trylock, this pattern would trivially deadlock). This change significantly increases responsiveness of the system while in this state. It makes a real difference because it unblocks kswapd. In the bug report analyzed, kswapd was hung: kswapd0 D ffffffc000204fd8 0 72 2 0x00000000 Call trace: [<ffffffc000204fd8>] __switch_to+0x9c/0xa8 [<ffffffc00090b794>] __schedule+0x440/0x6d8 [<ffffffc00090bac0>] schedule+0x94/0xb4 [<ffffffc00090be44>] schedule_preempt_disabled+0x28/0x44 [<ffffffc00090d900>] __mutex_lock_slowpath+0x120/0x1ac [<ffffffc00090d9d8>] mutex_lock+0x4c/0x68 [<ffffffc000708e7c>] dm_bufio_shrink_count+0x38/0x78 [<ffffffc00030b268>] shrink_slab.part.54.constprop.65+0x100/0x464 [<ffffffc00030dbd8>] shrink_zone+0xa8/0x198 [<ffffffc00030e578>] balance_pgdat+0x328/0x508 [<ffffffc00030eb7c>] kswapd+0x424/0x51c [<ffffffc00023f06c>] kthread+0x10c/0x114 [<ffffffc000203dd0>] ret_from_fork+0x10/0x40 By unblocking kswapd memory pressure should be reduced. Suggested-by: NDavid Rientjes <rientjes@google.com> Reviewed-by: NGuenter Roeck <linux@roeck-us.net> Signed-off-by: NDouglas Anderson <dianders@chromium.org> Signed-off-by: NMike Snitzer <snitzer@redhat.com>
9ea61cac