-
由 David Sterba 提交于
Currently the code assumes that there's an implied barrier by the sequence of code preceding the wakeup, namely the mutex unlock. As Nikolay pointed out: I think this is wrong (not your code) but the original assumption that the RELEASE semantics provided by mutex_unlock is sufficient. According to memory-barriers.txt: Section 'LOCK ACQUISITION FUNCTIONS' states: (2) RELEASE operation implication: Memory operations issued before the RELEASE will be completed before the RELEASE operation has completed. Memory operations issued after the RELEASE *may* be completed before the RELEASE operation has completed. (I've bolded the may portion) The example given there: As an example, consider the following: *A = a; *B = b; ACQUIRE *C = c; *D = d; RELEASE *E = e; *F = f; The following sequence of events is acceptable: ACQUIRE, {*F,*A}, *E, {*C,*D}, *B, RELEASE So if we assume that *C is modifying the flag which the waitqueue is checking, and *E is the actual wakeup, then those accesses can be re-ordered... IMHO this code should be considered broken... --- To be on the safe side, add the barriers. The synchronization logic around log using the mutexes and several other threads does not make it easy to reason for/against the barrier. CC: Nikolay Borisov <nborisov@suse.com> Link: https://lkml.kernel.org/r/6ee068d8-1a69-3728-00d1-d86293d43c9f@suse.comReviewed-by: NNikolay Borisov <nborisov@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
3d3a2e61