-
由 Archit Taneja 提交于
Add support for the de-interlacer block in VPE. For de-interlacer to work, we need to enable 2 more sets of VPE input ports which fetch data from the 'last' and 'last to last' fields of the interlaced video. Apart from that, we need to enable the Motion vector output and input ports, and also allocate DMA buffers for them. We need to make sure that two most recent fields in the source queue are available and in the 'READY' state. Once a mem2mem context gets access to the VPE HW(in device_run), it extracts the addresses of the 3 buffers, and provides it to the data descriptors for the 3 sets of input ports((LUMA1, CHROMA1), (LUMA2, CHROMA2), and (LUMA3, CHROMA3)) respectively for the 3 consecutive fields. The motion vector and output port descriptors are configured and the list is submitted to VPDMA. Once the transaction is done, the v4l2 buffer corresponding to the oldest field(the 3rd one) is changed to the state 'DONE', and the buffers corresponding to 1st and 2nd fields become the 2nd and 3rd field for the next de-interlace operation. This way, for each deinterlace operation, we have the 3 most recent fields. After each transaction, we also swap the motion vector buffers, the new input motion vector buffer contains the resultant motion information of all the previous frames, and the new output motion vector buffer will be used to hold the updated motion vector to capture the motion changes in the next field. The motion vector buffers are allocated using the DMA allocation API. The de-interlacer is removed from bypass mode, it requires some extra default configurations which are now added. The chrominance upsampler coefficients are added for interlaced frames. Some VPDMA parameters like frame start event and line mode are configured for the 2 extra sets of input ports. Signed-off-by: NArchit Taneja <archit@ti.com> Acked-by: NHans Verkuil <hans.verkuil@cisco.com> Signed-off-by: NKamil Debski <k.debski@samsung.com> Signed-off-by: NMauro Carvalho Chehab <m.chehab@samsung.com>
585e6f01