-
由 Kan Liang 提交于
The counter value of a perf task may leak to another RDPMC task. For example, a perf stat task as below is running on CPU 0. perf stat -e 'branches,cycles' -- taskset -c 0 ./workload In the meantime, an RDPMC task, which is also running on CPU 0, may read the GP counters periodically. (The RDPMC task creates a fixed event, but read four GP counters.) $./rdpmc_read_all_counters index 0x0 value 0x8001e5970f99 index 0x1 value 0x8005d750edb6 index 0x2 value 0x0 index 0x3 value 0x0 index 0x0 value 0x8002358e48a5 index 0x1 value 0x8006bd1e3bc9 index 0x2 value 0x0 index 0x3 value 0x0 It is a potential security issue. Once the attacker knows what the other thread is counting. The PerfMon counter can be used as a side-channel to attack cryptosystems. The counter value of the perf stat task leaks to the RDPMC task because perf never clears the counter when it's stopped. Three methods were considered to address the issue. - Unconditionally reset the counter in x86_pmu_del(). It can bring extra overhead even when there is no RDPMC task running. - Only reset the un-assigned dirty counters when the RDPMC task is scheduled in via sched_task(). It fails for the below case. Thread A Thread B clone(CLONE_THREAD) ---> set_affine(0) set_affine(1) while (!event-enabled) ; event = perf_event_open() mmap(event) ioctl(event, IOC_ENABLE); ---> RDPMC Counters are still leaked to the thread B. - Only reset the un-assigned dirty counters before updating the CR4.PCE bit. The method is implemented here. The dirty counter is a counter, on which the assigned event has been deleted, but the counter is not reset. To track the dirty counters, add a 'dirty' variable in the struct cpu_hw_events. The security issue can only be found with an RDPMC task. To enable the RDMPC, the CR4.PCE bit has to be updated. Add a perf_clear_dirty_counters() right before updating the CR4.PCE bit to clear the existing dirty counters. Only the current un-assigned dirty counters are reset, because the RDPMC assigned dirty counters will be updated soon. After applying the patch, $ ./rdpmc_read_all_counters index 0x0 value 0x0 index 0x1 value 0x0 index 0x2 value 0x0 index 0x3 value 0x0 index 0x0 value 0x0 index 0x1 value 0x0 index 0x2 value 0x0 index 0x3 value 0x0 Performance The performance of a context switch only be impacted when there are two or more perf users and one of the users must be an RDPMC user. In other cases, there is no performance impact. The worst-case occurs when there are two users: the RDPMC user only uses one counter; while the other user uses all available counters. When the RDPMC task is scheduled in, all the counters, other than the RDPMC assigned one, have to be reset. Test results for the worst-case, using a modified lat_ctx as measured on an Ice Lake platform, which has 8 GP and 3 FP counters (ignoring SLOTS). lat_ctx -s 128K -N 1000 processes 2 Without the patch: The context switch time is 4.97 us With the patch: The context switch time is 5.16 us There is ~4% performance drop for the context switching time in the worst-case. Suggested-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NKan Liang <kan.liang@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1623693582-187370-1-git-send-email-kan.liang@linux.intel.com
5471eea5