-
由 Lyude Paul 提交于
Sigh, this is mostly my fault for not giving commit cd82d82c ("drm/dp_mst: Add branch bandwidth validation to MST atomic check") enough scrutiny during review. The way we're checking bandwidth limitations here is mostly wrong: For starters, drm_dp_mst_atomic_check_bw_limit() determines the pbn_limit of a branch by simply scanning each port on the current branch device, then uses the last non-zero full_pbn value that it finds. It then counts the sum of the PBN used on each branch device for that level, and compares against the full_pbn value it found before. This is wrong because ports can and will have different PBN limitations on many hubs, especially since a number of DisplayPort hubs out there will be clever and only use the smallest link rate required for each downstream sink - potentially giving every port a different full_pbn value depending on what link rate it's trained at. This means with our current code, which max PBN value we end up with is not well defined. Additionally, we also need to remember when checking bandwidth limitations that the top-most device in any MST topology is a branch device, not a port. This means that the first level of a topology doesn't technically have a full_pbn value that needs to be checked. Instead, we should assume that so long as our VCPI allocations fit we're within the bandwidth limitations of the primary MSTB. We do however, want to check full_pbn on every port including those of the primary MSTB. However, it's important to keep in mind that this value represents the minimum link rate /between a port's sink or mstb, and the mstb itself/. A quick diagram to explain: MSTB #1 / \ / \ Port #1 Port #2 full_pbn for Port #1 → | | ← full_pbn for Port #2 Sink #1 MSTB #2 | etc... Note that in the above diagram, the combined PBN from all VCPI allocations on said hub should not exceed the full_pbn value of port #2, and the display configuration on sink #1 should not exceed the full_pbn value of port #1. However, port #1 and port #2 can otherwise consume as much bandwidth as they want so long as their VCPI allocations still fit. And finally - our current bandwidth checking code also makes the mistake of not checking whether something is an end device or not before trying to traverse down it. So, let's fix it by rewriting our bandwidth checking helpers. We split the function into one part for handling branches which simply adds up the total PBN on each branch and returns it, and one for checking each port to ensure we're not going over its PBN limit. Phew. This should fix regressions seen, where we erroneously reject display configurations due to thinking they're going over our bandwidth limits when they're not. Changes since v1: * Took an even closer look at how PBN limitations are supposed to be handled, and did some experimenting with Sean Paul. Ended up rewriting these helpers again, but this time they should actually be correct! Changes since v2: * Small indenting fix * Fix pbn_used check in drm_dp_mst_atomic_check_port_bw_limit() Signed-off-by: NLyude Paul <lyude@redhat.com> Fixes: cd82d82c ("drm/dp_mst: Add branch bandwidth validation to MST atomic check") Cc: Sean Paul <seanpaul@google.com> Acked-by: NAlex Deucher <alexander.deucher@amd.com> Reviewed-by: NMikita Lipski <mikita.lipski@amd.com> Tested-by: NHans de Goede <hdegoede@redhat.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200309210131.1497545-1-lyude@redhat.com
047d4cd2