nv50_display.c 62.1 KB
Newer Older
1
	/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 * Copyright 2011 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

25
#include <linux/dma-mapping.h>
26

27 28
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
29

30 31 32
#include "nouveau_drm.h"
#include "nouveau_dma.h"
#include "nouveau_gem.h"
33 34 35
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
36
#include "nouveau_fence.h"
37
#include "nv50_display.h"
38

39
#include <core/client.h>
40
#include <core/gpuobj.h>
41
#include <core/class.h>
42 43 44 45

#include <subdev/timer.h>
#include <subdev/bar.h>
#include <subdev/fb.h>
46
#include <subdev/i2c.h>
47

48 49
#define EVO_DMA_NR 9

50
#define EVO_MASTER  (0x00)
51
#define EVO_FLIP(c) (0x01 + (c))
52 53
#define EVO_OVLY(c) (0x05 + (c))
#define EVO_OIMM(c) (0x09 + (c))
54 55
#define EVO_CURS(c) (0x0d + (c))

56 57
/* offsets in shared sync bo of various structures */
#define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
58 59 60
#define EVO_MAST_NTFY     EVO_SYNC(      0, 0x00)
#define EVO_FLIP_SEM0(c)  EVO_SYNC((c) + 1, 0x00)
#define EVO_FLIP_SEM1(c)  EVO_SYNC((c) + 1, 0x10)
61

62 63 64 65 66 67 68 69 70 71
#define EVO_CORE_HANDLE      (0xd1500000)
#define EVO_CHAN_HANDLE(t,i) (0xd15c0000 | (((t) & 0x00ff) << 8) | (i))
#define EVO_CHAN_OCLASS(t,c) ((nv_hclass(c) & 0xff00) | ((t) & 0x00ff))
#define EVO_PUSH_HANDLE(t,i) (0xd15b0000 | (i) |                               \
			      (((NV50_DISP_##t##_CLASS) & 0x00ff) << 8))

/******************************************************************************
 * EVO channel
 *****************************************************************************/

72
struct nv50_chan {
73 74 75 76 77
	struct nouveau_object *user;
	u32 handle;
};

static int
78 79
nv50_chan_create(struct nouveau_object *core, u32 bclass, u8 head,
		 void *data, u32 size, struct nv50_chan *chan)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
{
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	const u32 oclass = EVO_CHAN_OCLASS(bclass, core);
	const u32 handle = EVO_CHAN_HANDLE(bclass, head);
	int ret;

	ret = nouveau_object_new(client, EVO_CORE_HANDLE, handle,
				 oclass, data, size, &chan->user);
	if (ret)
		return ret;

	chan->handle = handle;
	return 0;
}

static void
96
nv50_chan_destroy(struct nouveau_object *core, struct nv50_chan *chan)
97 98 99 100 101 102 103 104 105 106
{
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	if (chan->handle)
		nouveau_object_del(client, EVO_CORE_HANDLE, chan->handle);
}

/******************************************************************************
 * PIO EVO channel
 *****************************************************************************/

107 108
struct nv50_pioc {
	struct nv50_chan base;
109 110 111
};

static void
112
nv50_pioc_destroy(struct nouveau_object *core, struct nv50_pioc *pioc)
113
{
114
	nv50_chan_destroy(core, &pioc->base);
115 116 117
}

static int
118 119
nv50_pioc_create(struct nouveau_object *core, u32 bclass, u8 head,
		 void *data, u32 size, struct nv50_pioc *pioc)
120
{
121
	return nv50_chan_create(core, bclass, head, data, size, &pioc->base);
122 123 124 125 126 127
}

/******************************************************************************
 * DMA EVO channel
 *****************************************************************************/

128 129
struct nv50_dmac {
	struct nv50_chan base;
130 131
	dma_addr_t handle;
	u32 *ptr;
132 133 134 135 136

	/* Protects against concurrent pushbuf access to this channel, lock is
	 * grabbed by evo_wait (if the pushbuf reservation is successful) and
	 * dropped again by evo_kick. */
	struct mutex lock;
137 138 139
};

static void
140
nv50_dmac_destroy(struct nouveau_object *core, struct nv50_dmac *dmac)
141 142 143 144 145 146
{
	if (dmac->ptr) {
		struct pci_dev *pdev = nv_device(core)->pdev;
		pci_free_consistent(pdev, PAGE_SIZE, dmac->ptr, dmac->handle);
	}

147
	nv50_chan_destroy(core, &dmac->base);
148 149 150
}

static int
151
nv50_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
152 153 154 155
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
156 157 158 159 160 161
	int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
				     NV_DMA_IN_MEMORY_CLASS,
				     &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
162
					.limit = pfb->ram->size - 1,
163 164 165 166 167
					.conf0 = NV50_DMA_CONF0_ENABLE |
					         NV50_DMA_CONF0_PART_256,
				     }, sizeof(struct nv_dma_class), &object);
	if (ret)
		return ret;
168

169 170
	ret = nouveau_object_new(client, parent, NvEvoFB16,
				 NV_DMA_IN_MEMORY_CLASS,
171
				 &(struct nv_dma_class) {
172 173 174
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
175
					.limit = pfb->ram->size - 1,
176 177
					.conf0 = NV50_DMA_CONF0_ENABLE | 0x70 |
					         NV50_DMA_CONF0_PART_256,
178 179 180 181
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
		return ret;

182 183 184 185 186 187
	ret = nouveau_object_new(client, parent, NvEvoFB32,
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
188
					.limit = pfb->ram->size - 1,
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
					.conf0 = NV50_DMA_CONF0_ENABLE | 0x7a |
					         NV50_DMA_CONF0_PART_256,
				 }, sizeof(struct nv_dma_class), &object);
	return ret;
}

static int
nvc0_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
	int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
				     NV_DMA_IN_MEMORY_CLASS,
				     &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
207
					.limit = pfb->ram->size - 1,
208 209
					.conf0 = NVC0_DMA_CONF0_ENABLE,
				     }, sizeof(struct nv_dma_class), &object);
210 211 212
	if (ret)
		return ret;

213
	ret = nouveau_object_new(client, parent, NvEvoFB16,
214 215 216 217
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
218
					.start = 0,
219
					.limit = pfb->ram->size - 1,
220
					.conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe,
221 222
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
223
		return ret;
224

225
	ret = nouveau_object_new(client, parent, NvEvoFB32,
226 227 228 229 230
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
231
					.limit = pfb->ram->size - 1,
232
					.conf0 = NVC0_DMA_CONF0_ENABLE | 0xfe,
233
				 }, sizeof(struct nv_dma_class), &object);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	return ret;
}

static int
nvd0_dmac_create_fbdma(struct nouveau_object *core, u32 parent)
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
	int ret = nouveau_object_new(client, parent, NvEvoVRAM_LP,
				     NV_DMA_IN_MEMORY_CLASS,
				     &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
249
					.limit = pfb->ram->size - 1,
250 251 252
					.conf0 = NVD0_DMA_CONF0_ENABLE |
						 NVD0_DMA_CONF0_PAGE_LP,
				     }, sizeof(struct nv_dma_class), &object);
253
	if (ret)
254
		return ret;
255

256
	ret = nouveau_object_new(client, parent, NvEvoFB32,
257 258 259 260 261
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
262
					.limit = pfb->ram->size - 1,
263
					.conf0 = NVD0_DMA_CONF0_ENABLE | 0xfe |
264 265
						 NVD0_DMA_CONF0_PAGE_LP,
				 }, sizeof(struct nv_dma_class), &object);
266 267 268 269
	return ret;
}

static int
270
nv50_dmac_create(struct nouveau_object *core, u32 bclass, u8 head,
271
		 void *data, u32 size, u64 syncbuf,
272
		 struct nv50_dmac *dmac)
273 274 275 276 277 278 279
{
	struct nouveau_fb *pfb = nouveau_fb(core);
	struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
	struct nouveau_object *object;
	u32 pushbuf = *(u32 *)data;
	int ret;

280 281
	mutex_init(&dmac->lock);

282 283 284 285 286 287 288 289 290 291 292 293 294
	dmac->ptr = pci_alloc_consistent(nv_device(core)->pdev, PAGE_SIZE,
					&dmac->handle);
	if (!dmac->ptr)
		return -ENOMEM;

	ret = nouveau_object_new(client, NVDRM_DEVICE, pushbuf,
				 NV_DMA_FROM_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_PCI_US |
						 NV_DMA_ACCESS_RD,
					.start = dmac->handle + 0x0000,
					.limit = dmac->handle + 0x0fff,
				 }, sizeof(struct nv_dma_class), &object);
295
	if (ret)
296
		return ret;
297

298
	ret = nv50_chan_create(core, bclass, head, data, size, &dmac->base);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	if (ret)
		return ret;

	ret = nouveau_object_new(client, dmac->base.handle, NvEvoSync,
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = syncbuf + 0x0000,
					.limit = syncbuf + 0x0fff,
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
		return ret;

	ret = nouveau_object_new(client, dmac->base.handle, NvEvoVRAM,
314 315 316 317 318
				 NV_DMA_IN_MEMORY_CLASS,
				 &(struct nv_dma_class) {
					.flags = NV_DMA_TARGET_VRAM |
						 NV_DMA_ACCESS_RDWR,
					.start = 0,
319
					.limit = pfb->ram->size - 1,
320 321
				 }, sizeof(struct nv_dma_class), &object);
	if (ret)
322 323 324 325 326 327 328 329 330
		return ret;

	if (nv_device(core)->card_type < NV_C0)
		ret = nv50_dmac_create_fbdma(core, dmac->base.handle);
	else
	if (nv_device(core)->card_type < NV_D0)
		ret = nvc0_dmac_create_fbdma(core, dmac->base.handle);
	else
		ret = nvd0_dmac_create_fbdma(core, dmac->base.handle);
331 332 333
	return ret;
}

334 335
struct nv50_mast {
	struct nv50_dmac base;
336 337
};

338 339
struct nv50_curs {
	struct nv50_pioc base;
340 341
};

342 343
struct nv50_sync {
	struct nv50_dmac base;
344 345
	u32 addr;
	u32 data;
346 347
};

348 349
struct nv50_ovly {
	struct nv50_dmac base;
350
};
351

352 353
struct nv50_oimm {
	struct nv50_pioc base;
354 355
};

356
struct nv50_head {
357
	struct nouveau_crtc base;
358 359 360 361
	struct nv50_curs curs;
	struct nv50_sync sync;
	struct nv50_ovly ovly;
	struct nv50_oimm oimm;
362 363
};

364 365 366 367 368 369 370
#define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c))
#define nv50_curs(c) (&nv50_head(c)->curs)
#define nv50_sync(c) (&nv50_head(c)->sync)
#define nv50_ovly(c) (&nv50_head(c)->ovly)
#define nv50_oimm(c) (&nv50_head(c)->oimm)
#define nv50_chan(c) (&(c)->base.base)
#define nv50_vers(c) nv_mclass(nv50_chan(c)->user)
371

372
struct nv50_disp {
373
	struct nouveau_object *core;
374
	struct nv50_mast mast;
375 376 377 378

	u32 modeset;

	struct nouveau_bo *sync;
379 380
};

381 382
static struct nv50_disp *
nv50_disp(struct drm_device *dev)
383
{
384
	return nouveau_display(dev)->priv;
385 386
}

387
#define nv50_mast(d) (&nv50_disp(d)->mast)
388

389
static struct drm_crtc *
390
nv50_display_crtc_get(struct drm_encoder *encoder)
391 392 393 394 395 396 397
{
	return nouveau_encoder(encoder)->crtc;
}

/******************************************************************************
 * EVO channel helpers
 *****************************************************************************/
398
static u32 *
399
evo_wait(void *evoc, int nr)
400
{
401
	struct nv50_dmac *dmac = evoc;
402
	u32 put = nv_ro32(dmac->base.user, 0x0000) / 4;
403

404
	mutex_lock(&dmac->lock);
405
	if (put + nr >= (PAGE_SIZE / 4) - 8) {
406
		dmac->ptr[put] = 0x20000000;
407

408 409
		nv_wo32(dmac->base.user, 0x0000, 0x00000000);
		if (!nv_wait(dmac->base.user, 0x0004, ~0, 0x00000000)) {
410
			mutex_unlock(&dmac->lock);
411
			NV_ERROR(dmac->base.user, "channel stalled\n");
412 413 414 415 416 417
			return NULL;
		}

		put = 0;
	}

418
	return dmac->ptr + put;
419 420 421
}

static void
422
evo_kick(u32 *push, void *evoc)
423
{
424
	struct nv50_dmac *dmac = evoc;
425
	nv_wo32(dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
426
	mutex_unlock(&dmac->lock);
427 428 429 430 431
}

#define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
#define evo_data(p,d)   *((p)++) = (d)

432 433 434
static bool
evo_sync_wait(void *data)
{
435 436 437 438
	if (nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000)
		return true;
	usleep_range(1, 2);
	return false;
439 440 441
}

static int
442
evo_sync(struct drm_device *dev)
443
{
444
	struct nouveau_device *device = nouveau_dev(dev);
445 446
	struct nv50_disp *disp = nv50_disp(dev);
	struct nv50_mast *mast = nv50_mast(dev);
447
	u32 *push = evo_wait(mast, 8);
448
	if (push) {
449
		nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
450
		evo_mthd(push, 0x0084, 1);
451
		evo_data(push, 0x80000000 | EVO_MAST_NTFY);
452 453 454
		evo_mthd(push, 0x0080, 2);
		evo_data(push, 0x00000000);
		evo_data(push, 0x00000000);
455
		evo_kick(push, mast);
456
		if (nv_wait_cb(device, evo_sync_wait, disp->sync))
457 458 459 460 461 462 463
			return 0;
	}

	return -EBUSY;
}

/******************************************************************************
464
 * Page flipping channel
465 466
 *****************************************************************************/
struct nouveau_bo *
467
nv50_display_crtc_sema(struct drm_device *dev, int crtc)
468
{
469
	return nv50_disp(dev)->sync;
470 471
}

472 473 474 475 476 477 478 479 480 481
struct nv50_display_flip {
	struct nv50_disp *disp;
	struct nv50_sync *chan;
};

static bool
nv50_display_flip_wait(void *data)
{
	struct nv50_display_flip *flip = data;
	if (nouveau_bo_rd32(flip->disp->sync, flip->chan->addr / 4) ==
482
					      flip->chan->data)
483 484 485 486 487
		return true;
	usleep_range(1, 2);
	return false;
}

488
void
489
nv50_display_flip_stop(struct drm_crtc *crtc)
490
{
491 492 493 494 495
	struct nouveau_device *device = nouveau_dev(crtc->dev);
	struct nv50_display_flip flip = {
		.disp = nv50_disp(crtc->dev),
		.chan = nv50_sync(crtc),
	};
496 497
	u32 *push;

498
	push = evo_wait(flip.chan, 8);
499 500 501 502 503 504 505 506 507
	if (push) {
		evo_mthd(push, 0x0084, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0094, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x00c0, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0080, 1);
		evo_data(push, 0x00000000);
508
		evo_kick(push, flip.chan);
509
	}
510 511

	nv_wait_cb(device, nv50_display_flip_wait, &flip);
512 513 514
}

int
515
nv50_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
516 517 518 519
		       struct nouveau_channel *chan, u32 swap_interval)
{
	struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
520
	struct nv50_sync *sync = nv50_sync(crtc);
521
	int head = nv_crtc->index, ret;
522 523 524 525 526
	u32 *push;

	swap_interval <<= 4;
	if (swap_interval == 0)
		swap_interval |= 0x100;
527 528
	if (chan == NULL)
		evo_sync(crtc->dev);
529

530
	push = evo_wait(sync, 128);
531 532 533
	if (unlikely(push == NULL))
		return -EBUSY;

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	if (chan && nv_mclass(chan->object) < NV84_CHANNEL_IND_CLASS) {
		ret = RING_SPACE(chan, 8);
		if (ret)
			return ret;

		BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 2);
		OUT_RING  (chan, NvEvoSema0 + head);
		OUT_RING  (chan, sync->addr ^ 0x10);
		BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_RELEASE, 1);
		OUT_RING  (chan, sync->data + 1);
		BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_OFFSET, 2);
		OUT_RING  (chan, sync->addr);
		OUT_RING  (chan, sync->data);
	} else
	if (chan && nv_mclass(chan->object) < NVC0_CHANNEL_IND_CLASS) {
		u64 addr = nv84_fence_crtc(chan, head) + sync->addr;
		ret = RING_SPACE(chan, 12);
		if (ret)
			return ret;

		BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 1);
		OUT_RING  (chan, chan->vram);
		BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
		OUT_RING  (chan, upper_32_bits(addr ^ 0x10));
		OUT_RING  (chan, lower_32_bits(addr ^ 0x10));
		OUT_RING  (chan, sync->data + 1);
		OUT_RING  (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG);
		BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
		OUT_RING  (chan, upper_32_bits(addr));
		OUT_RING  (chan, lower_32_bits(addr));
		OUT_RING  (chan, sync->data);
		OUT_RING  (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL);
	} else
	if (chan) {
		u64 addr = nv84_fence_crtc(chan, head) + sync->addr;
		ret = RING_SPACE(chan, 10);
		if (ret)
			return ret;

		BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
		OUT_RING  (chan, upper_32_bits(addr ^ 0x10));
		OUT_RING  (chan, lower_32_bits(addr ^ 0x10));
		OUT_RING  (chan, sync->data + 1);
		OUT_RING  (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG |
				 NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD);
		BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
		OUT_RING  (chan, upper_32_bits(addr));
		OUT_RING  (chan, lower_32_bits(addr));
		OUT_RING  (chan, sync->data);
		OUT_RING  (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL |
				 NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD);
	}
586

587 588 589
	if (chan) {
		sync->addr ^= 0x10;
		sync->data++;
590 591 592 593 594 595 596 597 598 599 600 601 602
		FIRE_RING (chan);
	}

	/* queue the flip */
	evo_mthd(push, 0x0100, 1);
	evo_data(push, 0xfffe0000);
	evo_mthd(push, 0x0084, 1);
	evo_data(push, swap_interval);
	if (!(swap_interval & 0x00000100)) {
		evo_mthd(push, 0x00e0, 1);
		evo_data(push, 0x40000000);
	}
	evo_mthd(push, 0x0088, 4);
603 604 605
	evo_data(push, sync->addr);
	evo_data(push, sync->data++);
	evo_data(push, sync->data);
606 607 608 609 610 611 612 613 614
	evo_data(push, NvEvoSync);
	evo_mthd(push, 0x00a0, 2);
	evo_data(push, 0x00000000);
	evo_data(push, 0x00000000);
	evo_mthd(push, 0x00c0, 1);
	evo_data(push, nv_fb->r_dma);
	evo_mthd(push, 0x0110, 2);
	evo_data(push, 0x00000000);
	evo_data(push, 0x00000000);
615
	if (nv50_vers(sync) < NVD0_DISP_SYNC_CLASS) {
616 617 618 619 620 621 622 623 624 625 626 627 628 629
		evo_mthd(push, 0x0800, 5);
		evo_data(push, nv_fb->nvbo->bo.offset >> 8);
		evo_data(push, 0);
		evo_data(push, (fb->height << 16) | fb->width);
		evo_data(push, nv_fb->r_pitch);
		evo_data(push, nv_fb->r_format);
	} else {
		evo_mthd(push, 0x0400, 5);
		evo_data(push, nv_fb->nvbo->bo.offset >> 8);
		evo_data(push, 0);
		evo_data(push, (fb->height << 16) | fb->width);
		evo_data(push, nv_fb->r_pitch);
		evo_data(push, nv_fb->r_format);
	}
630 631
	evo_mthd(push, 0x0080, 1);
	evo_data(push, 0x00000000);
632
	evo_kick(push, sync);
633 634 635
	return 0;
}

636 637 638 639
/******************************************************************************
 * CRTC
 *****************************************************************************/
static int
640
nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
641
{
642
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
643 644 645
	struct nouveau_connector *nv_connector;
	struct drm_connector *connector;
	u32 *push, mode = 0x00;
646

647
	nv_connector = nouveau_crtc_connector_get(nv_crtc);
648 649 650 651 652 653 654 655 656 657 658 659 660
	connector = &nv_connector->base;
	if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
		if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
			mode = DITHERING_MODE_DYNAMIC2X2;
	} else {
		mode = nv_connector->dithering_mode;
	}

	if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
		if (connector->display_info.bpc >= 8)
			mode |= DITHERING_DEPTH_8BPC;
	} else {
		mode |= nv_connector->dithering_depth;
661 662
	}

663
	push = evo_wait(mast, 4);
664
	if (push) {
665
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
666 667 668
			evo_mthd(push, 0x08a0 + (nv_crtc->index * 0x0400), 1);
			evo_data(push, mode);
		} else
669
		if (nv50_vers(mast) < NVE0_DISP_MAST_CLASS) {
670 671 672 673 674 675 676
			evo_mthd(push, 0x0490 + (nv_crtc->index * 0x0300), 1);
			evo_data(push, mode);
		} else {
			evo_mthd(push, 0x04a0 + (nv_crtc->index * 0x0300), 1);
			evo_data(push, mode);
		}

677 678 679 680
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
681
		evo_kick(push, mast);
682 683 684 685 686 687
	}

	return 0;
}

static int
688
nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
689
{
690
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
691
	struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
692
	struct drm_crtc *crtc = &nv_crtc->base;
B
Ben Skeggs 已提交
693
	struct nouveau_connector *nv_connector;
694 695
	int mode = DRM_MODE_SCALE_NONE;
	u32 oX, oY, *push;
B
Ben Skeggs 已提交
696

697 698 699
	/* start off at the resolution we programmed the crtc for, this
	 * effectively handles NONE/FULL scaling
	 */
B
Ben Skeggs 已提交
700
	nv_connector = nouveau_crtc_connector_get(nv_crtc);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	if (nv_connector && nv_connector->native_mode)
		mode = nv_connector->scaling_mode;

	if (mode != DRM_MODE_SCALE_NONE)
		omode = nv_connector->native_mode;
	else
		omode = umode;

	oX = omode->hdisplay;
	oY = omode->vdisplay;
	if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
		oY *= 2;

	/* add overscan compensation if necessary, will keep the aspect
	 * ratio the same as the backend mode unless overridden by the
	 * user setting both hborder and vborder properties.
	 */
	if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
			     (nv_connector->underscan == UNDERSCAN_AUTO &&
			      nv_connector->edid &&
			      drm_detect_hdmi_monitor(nv_connector->edid)))) {
		u32 bX = nv_connector->underscan_hborder;
		u32 bY = nv_connector->underscan_vborder;
		u32 aspect = (oY << 19) / oX;

		if (bX) {
			oX -= (bX * 2);
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
		} else {
			oX -= (oX >> 4) + 32;
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
		}
	}

	/* handle CENTER/ASPECT scaling, taking into account the areas
	 * removed already for overscan compensation
	 */
	switch (mode) {
	case DRM_MODE_SCALE_CENTER:
		oX = min((u32)umode->hdisplay, oX);
		oY = min((u32)umode->vdisplay, oY);
		/* fall-through */
	case DRM_MODE_SCALE_ASPECT:
		if (oY < oX) {
			u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
			oX = ((oY * aspect) + (aspect / 2)) >> 19;
		} else {
			u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
			oY = ((oX * aspect) + (aspect / 2)) >> 19;
B
Ben Skeggs 已提交
752
		}
753 754 755
		break;
	default:
		break;
B
Ben Skeggs 已提交
756
	}
757

758
	push = evo_wait(mast, 8);
759
	if (push) {
760
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
			/*XXX: SCALE_CTRL_ACTIVE??? */
			evo_mthd(push, 0x08d8 + (nv_crtc->index * 0x400), 2);
			evo_data(push, (oY << 16) | oX);
			evo_data(push, (oY << 16) | oX);
			evo_mthd(push, 0x08a4 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x08c8 + (nv_crtc->index * 0x400), 1);
			evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
		} else {
			evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
			evo_data(push, (oY << 16) | oX);
			evo_data(push, (oY << 16) | oX);
			evo_data(push, (oY << 16) | oX);
			evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
			evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
		}

		evo_kick(push, mast);

782
		if (update) {
783 784
			nv50_display_flip_stop(crtc);
			nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
785 786 787 788 789 790
		}
	}

	return 0;
}

791
static int
792
nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
793
{
794
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
795 796 797 798 799 800 801 802 803
	u32 *push, hue, vib;
	int adj;

	adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
	vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;
	hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;

	push = evo_wait(mast, 16);
	if (push) {
804
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
			evo_mthd(push, 0x08a8 + (nv_crtc->index * 0x400), 1);
			evo_data(push, (hue << 20) | (vib << 8));
		} else {
			evo_mthd(push, 0x0498 + (nv_crtc->index * 0x300), 1);
			evo_data(push, (hue << 20) | (vib << 8));
		}

		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
		evo_kick(push, mast);
	}

	return 0;
}

822
static int
823
nv50_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
824 825 826
		    int x, int y, bool update)
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
827
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
828 829
	u32 *push;

830
	push = evo_wait(mast, 16);
831
	if (push) {
832
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
833 834 835 836 837 838 839 840
			evo_mthd(push, 0x0860 + (nv_crtc->index * 0x400), 1);
			evo_data(push, nvfb->nvbo->bo.offset >> 8);
			evo_mthd(push, 0x0868 + (nv_crtc->index * 0x400), 3);
			evo_data(push, (fb->height << 16) | fb->width);
			evo_data(push, nvfb->r_pitch);
			evo_data(push, nvfb->r_format);
			evo_mthd(push, 0x08c0 + (nv_crtc->index * 0x400), 1);
			evo_data(push, (y << 16) | x);
841
			if (nv50_vers(mast) > NV50_DISP_MAST_CLASS) {
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
				evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
				evo_data(push, nvfb->r_dma);
			}
		} else {
			evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
			evo_data(push, nvfb->nvbo->bo.offset >> 8);
			evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
			evo_data(push, (fb->height << 16) | fb->width);
			evo_data(push, nvfb->r_pitch);
			evo_data(push, nvfb->r_format);
			evo_data(push, nvfb->r_dma);
			evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
			evo_data(push, (y << 16) | x);
		}

857 858 859 860
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
861
		evo_kick(push, mast);
862 863
	}

864
	nv_crtc->fb.tile_flags = nvfb->r_dma;
865 866 867 868
	return 0;
}

static void
869
nv50_crtc_cursor_show(struct nouveau_crtc *nv_crtc)
870
{
871
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
872
	u32 *push = evo_wait(mast, 16);
873
	if (push) {
874
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
875 876 877 878
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
		} else
879
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
880 881 882 883 884 885
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
			evo_data(push, NvEvoVRAM);
		} else {
886 887 888 889
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
890
			evo_data(push, NvEvoVRAM);
891 892 893 894 895 896
		}
		evo_kick(push, mast);
	}
}

static void
897
nv50_crtc_cursor_hide(struct nouveau_crtc *nv_crtc)
898
{
899
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
900 901
	u32 *push = evo_wait(mast, 16);
	if (push) {
902
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
903 904 905
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x05000000);
		} else
906
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
907 908 909 910
			evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x05000000);
			evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
911 912 913 914 915 916
		} else {
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x05000000);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
		}
917 918 919
		evo_kick(push, mast);
	}
}
920

921
static void
922
nv50_crtc_cursor_show_hide(struct nouveau_crtc *nv_crtc, bool show, bool update)
923
{
924
	struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
925 926

	if (show)
927
		nv50_crtc_cursor_show(nv_crtc);
928
	else
929
		nv50_crtc_cursor_hide(nv_crtc);
930 931 932 933

	if (update) {
		u32 *push = evo_wait(mast, 2);
		if (push) {
934 935
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
936
			evo_kick(push, mast);
937 938 939 940 941
		}
	}
}

static void
942
nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
943 944 945 946
{
}

static void
947
nv50_crtc_prepare(struct drm_crtc *crtc)
948 949
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
950
	struct nv50_mast *mast = nv50_mast(crtc->dev);
951 952
	u32 *push;

953
	nv50_display_flip_stop(crtc);
954

955
	push = evo_wait(mast, 2);
956
	if (push) {
957
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
958 959 960 961 962
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x40000000);
		} else
963
		if (nv50_vers(mast) <  NVD0_DISP_MAST_CLASS) {
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x40000000);
			evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
		} else {
			evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x03000000);
			evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
		}

		evo_kick(push, mast);
980 981
	}

982
	nv50_crtc_cursor_show_hide(nv_crtc, false, false);
983 984 985
}

static void
986
nv50_crtc_commit(struct drm_crtc *crtc)
987 988
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
989
	struct nv50_mast *mast = nv50_mast(crtc->dev);
990 991
	u32 *push;

992
	push = evo_wait(mast, 32);
993
	if (push) {
994
		if (nv50_vers(mast) < NV84_DISP_MAST_CLASS) {
995 996 997 998 999 1000
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, NvEvoVRAM_LP);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0xc0000000);
			evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
		} else
1001
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
			evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
			evo_data(push, nv_crtc->fb.tile_flags);
			evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0xc0000000);
			evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
			evo_data(push, NvEvoVRAM);
		} else {
			evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
			evo_data(push, nv_crtc->fb.tile_flags);
			evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
			evo_data(push, 0x83000000);
			evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
			evo_data(push, 0x00000000);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
			evo_data(push, NvEvoVRAM);
			evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0xffffff00);
		}

		evo_kick(push, mast);
1024 1025
	}

1026 1027
	nv50_crtc_cursor_show_hide(nv_crtc, nv_crtc->cursor.visible, true);
	nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
1028 1029 1030
}

static bool
1031
nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
1032 1033 1034 1035 1036 1037
		     struct drm_display_mode *adjusted_mode)
{
	return true;
}

static int
1038
nv50_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
	int ret;

	ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
	if (ret)
		return ret;

	if (old_fb) {
		nvfb = nouveau_framebuffer(old_fb);
		nouveau_bo_unpin(nvfb->nvbo);
	}

	return 0;
}

static int
1056
nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
1057 1058 1059
		   struct drm_display_mode *mode, int x, int y,
		   struct drm_framebuffer *old_fb)
{
1060
	struct nv50_mast *mast = nv50_mast(crtc->dev);
1061 1062
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct nouveau_connector *nv_connector;
1063 1064 1065 1066 1067
	u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
	u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
	u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
	u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
	u32 vblan2e = 0, vblan2s = 1;
1068
	u32 *push;
1069 1070
	int ret;

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	hactive = mode->htotal;
	hsynce  = mode->hsync_end - mode->hsync_start - 1;
	hbackp  = mode->htotal - mode->hsync_end;
	hblanke = hsynce + hbackp;
	hfrontp = mode->hsync_start - mode->hdisplay;
	hblanks = mode->htotal - hfrontp - 1;

	vactive = mode->vtotal * vscan / ilace;
	vsynce  = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
	vbackp  = (mode->vtotal - mode->vsync_end) * vscan / ilace;
	vblanke = vsynce + vbackp;
	vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
	vblanks = vactive - vfrontp - 1;
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vblan2e = vactive + vsynce + vbackp;
		vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
		vactive = (vactive * 2) + 1;
	}

1090
	ret = nv50_crtc_swap_fbs(crtc, old_fb);
1091 1092 1093
	if (ret)
		return ret;

1094
	push = evo_wait(mast, 64);
1095
	if (push) {
1096
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
			evo_mthd(push, 0x0804 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x00800000 | mode->clock);
			evo_data(push, (ilace == 2) ? 2 : 0);
			evo_mthd(push, 0x0810 + (nv_crtc->index * 0x400), 6);
			evo_data(push, 0x00000000);
			evo_data(push, (vactive << 16) | hactive);
			evo_data(push, ( vsynce << 16) | hsynce);
			evo_data(push, (vblanke << 16) | hblanke);
			evo_data(push, (vblanks << 16) | hblanks);
			evo_data(push, (vblan2e << 16) | vblan2s);
			evo_mthd(push, 0x082c + (nv_crtc->index * 0x400), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0900 + (nv_crtc->index * 0x400), 2);
			evo_data(push, 0x00000311);
			evo_data(push, 0x00000100);
		} else {
			evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
			evo_data(push, 0x00000000);
			evo_data(push, (vactive << 16) | hactive);
			evo_data(push, ( vsynce << 16) | hsynce);
			evo_data(push, (vblanke << 16) | hblanke);
			evo_data(push, (vblanks << 16) | hblanks);
			evo_data(push, (vblan2e << 16) | vblan2s);
			evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000); /* ??? */
			evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
			evo_data(push, mode->clock * 1000);
			evo_data(push, 0x00200000); /* ??? */
			evo_data(push, mode->clock * 1000);
			evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
			evo_data(push, 0x00000311);
			evo_data(push, 0x00000100);
		}

		evo_kick(push, mast);
1132 1133 1134
	}

	nv_connector = nouveau_crtc_connector_get(nv_crtc);
1135 1136 1137 1138
	nv50_crtc_set_dither(nv_crtc, false);
	nv50_crtc_set_scale(nv_crtc, false);
	nv50_crtc_set_color_vibrance(nv_crtc, false);
	nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
1139 1140 1141 1142
	return 0;
}

static int
1143
nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
1144 1145
			struct drm_framebuffer *old_fb)
{
1146
	struct nouveau_drm *drm = nouveau_drm(crtc->dev);
1147 1148 1149
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	int ret;

1150
	if (!crtc->fb) {
1151
		NV_DEBUG(drm, "No FB bound\n");
1152 1153 1154
		return 0;
	}

1155
	ret = nv50_crtc_swap_fbs(crtc, old_fb);
1156 1157 1158
	if (ret)
		return ret;

1159 1160 1161
	nv50_display_flip_stop(crtc);
	nv50_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
	nv50_display_flip_next(crtc, crtc->fb, NULL, 1);
1162 1163 1164 1165
	return 0;
}

static int
1166
nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
1167 1168 1169 1170
			       struct drm_framebuffer *fb, int x, int y,
			       enum mode_set_atomic state)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1171 1172
	nv50_display_flip_stop(crtc);
	nv50_crtc_set_image(nv_crtc, fb, x, y, true);
1173 1174 1175 1176
	return 0;
}

static void
1177
nv50_crtc_lut_load(struct drm_crtc *crtc)
1178
{
1179
	struct nv50_disp *disp = nv50_disp(crtc->dev);
1180 1181 1182 1183 1184
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
	int i;

	for (i = 0; i < 256; i++) {
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		u16 r = nv_crtc->lut.r[i] >> 2;
		u16 g = nv_crtc->lut.g[i] >> 2;
		u16 b = nv_crtc->lut.b[i] >> 2;

		if (nv_mclass(disp->core) < NVD0_DISP_CLASS) {
			writew(r + 0x0000, lut + (i * 0x08) + 0);
			writew(g + 0x0000, lut + (i * 0x08) + 2);
			writew(b + 0x0000, lut + (i * 0x08) + 4);
		} else {
			writew(r + 0x6000, lut + (i * 0x20) + 0);
			writew(g + 0x6000, lut + (i * 0x20) + 2);
			writew(b + 0x6000, lut + (i * 0x20) + 4);
		}
1198 1199 1200 1201
	}
}

static int
1202
nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
		     uint32_t handle, uint32_t width, uint32_t height)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_gem_object *gem;
	struct nouveau_bo *nvbo;
	bool visible = (handle != 0);
	int i, ret = 0;

	if (visible) {
		if (width != 64 || height != 64)
			return -EINVAL;

		gem = drm_gem_object_lookup(dev, file_priv, handle);
		if (unlikely(!gem))
			return -ENOENT;
		nvbo = nouveau_gem_object(gem);

		ret = nouveau_bo_map(nvbo);
		if (ret == 0) {
			for (i = 0; i < 64 * 64; i++) {
				u32 v = nouveau_bo_rd32(nvbo, i);
				nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
			}
			nouveau_bo_unmap(nvbo);
		}

		drm_gem_object_unreference_unlocked(gem);
	}

	if (visible != nv_crtc->cursor.visible) {
1234
		nv50_crtc_cursor_show_hide(nv_crtc, visible, true);
1235 1236 1237 1238 1239 1240 1241
		nv_crtc->cursor.visible = visible;
	}

	return ret;
}

static int
1242
nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1243
{
1244 1245
	struct nv50_curs *curs = nv50_curs(crtc);
	struct nv50_chan *chan = nv50_chan(curs);
1246 1247
	nv_wo32(chan->user, 0x0084, (y << 16) | (x & 0xffff));
	nv_wo32(chan->user, 0x0080, 0x00000000);
1248 1249 1250 1251
	return 0;
}

static void
1252
nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		    uint32_t start, uint32_t size)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 end = max(start + size, (u32)256);
	u32 i;

	for (i = start; i < end; i++) {
		nv_crtc->lut.r[i] = r[i];
		nv_crtc->lut.g[i] = g[i];
		nv_crtc->lut.b[i] = b[i];
	}

1265
	nv50_crtc_lut_load(crtc);
1266 1267 1268
}

static void
1269
nv50_crtc_destroy(struct drm_crtc *crtc)
1270 1271
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
1272 1273 1274 1275 1276 1277
	struct nv50_disp *disp = nv50_disp(crtc->dev);
	struct nv50_head *head = nv50_head(crtc);
	nv50_dmac_destroy(disp->core, &head->ovly.base);
	nv50_pioc_destroy(disp->core, &head->oimm.base);
	nv50_dmac_destroy(disp->core, &head->sync.base);
	nv50_pioc_destroy(disp->core, &head->curs.base);
1278
	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
1279 1280
	if (nv_crtc->cursor.nvbo)
		nouveau_bo_unpin(nv_crtc->cursor.nvbo);
1281 1282
	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	nouveau_bo_unmap(nv_crtc->lut.nvbo);
1283 1284
	if (nv_crtc->lut.nvbo)
		nouveau_bo_unpin(nv_crtc->lut.nvbo);
1285 1286 1287 1288 1289
	nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
	drm_crtc_cleanup(crtc);
	kfree(crtc);
}

1290 1291 1292 1293 1294 1295 1296 1297 1298
static const struct drm_crtc_helper_funcs nv50_crtc_hfunc = {
	.dpms = nv50_crtc_dpms,
	.prepare = nv50_crtc_prepare,
	.commit = nv50_crtc_commit,
	.mode_fixup = nv50_crtc_mode_fixup,
	.mode_set = nv50_crtc_mode_set,
	.mode_set_base = nv50_crtc_mode_set_base,
	.mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
	.load_lut = nv50_crtc_lut_load,
1299 1300
};

1301 1302 1303 1304
static const struct drm_crtc_funcs nv50_crtc_func = {
	.cursor_set = nv50_crtc_cursor_set,
	.cursor_move = nv50_crtc_cursor_move,
	.gamma_set = nv50_crtc_gamma_set,
1305
	.set_config = drm_crtc_helper_set_config,
1306
	.destroy = nv50_crtc_destroy,
1307
	.page_flip = nouveau_crtc_page_flip,
1308 1309
};

1310
static void
1311
nv50_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
1312 1313 1314 1315
{
}

static void
1316
nv50_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
1317 1318 1319
{
}

1320
static int
1321
nv50_crtc_create(struct drm_device *dev, struct nouveau_object *core, int index)
1322
{
1323 1324
	struct nv50_disp *disp = nv50_disp(dev);
	struct nv50_head *head;
1325 1326 1327
	struct drm_crtc *crtc;
	int ret, i;

1328 1329
	head = kzalloc(sizeof(*head), GFP_KERNEL);
	if (!head)
1330 1331
		return -ENOMEM;

1332
	head->base.index = index;
1333 1334 1335
	head->base.set_dither = nv50_crtc_set_dither;
	head->base.set_scale = nv50_crtc_set_scale;
	head->base.set_color_vibrance = nv50_crtc_set_color_vibrance;
1336 1337
	head->base.color_vibrance = 50;
	head->base.vibrant_hue = 0;
1338 1339
	head->base.cursor.set_offset = nv50_cursor_set_offset;
	head->base.cursor.set_pos = nv50_cursor_set_pos;
1340
	for (i = 0; i < 256; i++) {
1341 1342 1343
		head->base.lut.r[i] = i << 8;
		head->base.lut.g[i] = i << 8;
		head->base.lut.b[i] = i << 8;
1344 1345
	}

1346
	crtc = &head->base.base;
1347 1348
	drm_crtc_init(dev, crtc, &nv50_crtc_func);
	drm_crtc_helper_add(crtc, &nv50_crtc_hfunc);
1349 1350
	drm_mode_crtc_set_gamma_size(crtc, 256);

1351 1352 1353 1354
	ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
			     0, 0x0000, NULL, &head->base.lut.nvbo);
	if (!ret) {
		ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM);
1355
		if (!ret) {
1356
			ret = nouveau_bo_map(head->base.lut.nvbo);
1357 1358 1359
			if (ret)
				nouveau_bo_unpin(head->base.lut.nvbo);
		}
1360 1361 1362 1363 1364 1365 1366
		if (ret)
			nouveau_bo_ref(NULL, &head->base.lut.nvbo);
	}

	if (ret)
		goto out;

1367
	nv50_crtc_lut_load(crtc);
1368 1369

	/* allocate cursor resources */
1370
	ret = nv50_pioc_create(disp->core, NV50_DISP_CURS_CLASS, index,
1371 1372 1373 1374 1375 1376 1377
			      &(struct nv50_display_curs_class) {
					.head = index,
			      }, sizeof(struct nv50_display_curs_class),
			      &head->curs.base);
	if (ret)
		goto out;

1378
	ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
1379
			     0, 0x0000, NULL, &head->base.cursor.nvbo);
1380
	if (!ret) {
1381
		ret = nouveau_bo_pin(head->base.cursor.nvbo, TTM_PL_FLAG_VRAM);
1382
		if (!ret) {
1383
			ret = nouveau_bo_map(head->base.cursor.nvbo);
1384 1385 1386
			if (ret)
				nouveau_bo_unpin(head->base.lut.nvbo);
		}
1387
		if (ret)
1388
			nouveau_bo_ref(NULL, &head->base.cursor.nvbo);
1389 1390 1391 1392 1393
	}

	if (ret)
		goto out;

1394
	/* allocate page flip / sync resources */
1395
	ret = nv50_dmac_create(disp->core, NV50_DISP_SYNC_CLASS, index,
1396 1397 1398 1399 1400 1401 1402 1403
			      &(struct nv50_display_sync_class) {
					.pushbuf = EVO_PUSH_HANDLE(SYNC, index),
					.head = index,
			      }, sizeof(struct nv50_display_sync_class),
			      disp->sync->bo.offset, &head->sync.base);
	if (ret)
		goto out;

1404 1405
	head->sync.addr = EVO_FLIP_SEM0(index);
	head->sync.data = 0x00000000;
1406

1407
	/* allocate overlay resources */
1408
	ret = nv50_pioc_create(disp->core, NV50_DISP_OIMM_CLASS, index,
1409 1410 1411 1412
			      &(struct nv50_display_oimm_class) {
					.head = index,
			      }, sizeof(struct nv50_display_oimm_class),
			      &head->oimm.base);
1413 1414 1415
	if (ret)
		goto out;

1416
	ret = nv50_dmac_create(disp->core, NV50_DISP_OVLY_CLASS, index,
1417 1418 1419 1420 1421 1422 1423
			      &(struct nv50_display_ovly_class) {
					.pushbuf = EVO_PUSH_HANDLE(OVLY, index),
					.head = index,
			      }, sizeof(struct nv50_display_ovly_class),
			      disp->sync->bo.offset, &head->ovly.base);
	if (ret)
		goto out;
1424 1425 1426

out:
	if (ret)
1427
		nv50_crtc_destroy(crtc);
1428 1429 1430
	return ret;
}

1431 1432 1433
/******************************************************************************
 * DAC
 *****************************************************************************/
B
Ben Skeggs 已提交
1434
static void
1435
nv50_dac_dpms(struct drm_encoder *encoder, int mode)
B
Ben Skeggs 已提交
1436 1437
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1438
	struct nv50_disp *disp = nv50_disp(encoder->dev);
B
Ben Skeggs 已提交
1439 1440 1441
	int or = nv_encoder->or;
	u32 dpms_ctrl;

1442
	dpms_ctrl = 0x00000000;
B
Ben Skeggs 已提交
1443 1444 1445 1446 1447
	if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
		dpms_ctrl |= 0x00000001;
	if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
		dpms_ctrl |= 0x00000004;

1448
	nv_call(disp->core, NV50_DISP_DAC_PWR + or, dpms_ctrl);
B
Ben Skeggs 已提交
1449 1450 1451
}

static bool
1452
nv50_dac_mode_fixup(struct drm_encoder *encoder,
1453
		    const struct drm_display_mode *mode,
B
Ben Skeggs 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

static void
1472
nv50_dac_commit(struct drm_encoder *encoder)
B
Ben Skeggs 已提交
1473 1474 1475 1476
{
}

static void
1477
nv50_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
B
Ben Skeggs 已提交
1478 1479
		  struct drm_display_mode *adjusted_mode)
{
1480
	struct nv50_mast *mast = nv50_mast(encoder->dev);
B
Ben Skeggs 已提交
1481 1482
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1483
	u32 *push;
B
Ben Skeggs 已提交
1484

1485
	nv50_dac_dpms(encoder, DRM_MODE_DPMS_ON);
B
Ben Skeggs 已提交
1486

1487
	push = evo_wait(mast, 8);
B
Ben Skeggs 已提交
1488
	if (push) {
1489
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
			u32 syncs = 0x00000000;

			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				syncs |= 0x00000001;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				syncs |= 0x00000002;

			evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2);
			evo_data(push, 1 << nv_crtc->index);
			evo_data(push, syncs);
		} else {
			u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
			u32 syncs = 0x00000001;

			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				syncs |= 0x00000008;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				syncs |= 0x00000010;

			if (mode->flags & DRM_MODE_FLAG_INTERLACE)
				magic |= 0x00000001;

			evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
			evo_data(push, syncs);
			evo_data(push, magic);
			evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1);
			evo_data(push, 1 << nv_crtc->index);
		}

		evo_kick(push, mast);
B
Ben Skeggs 已提交
1520 1521 1522 1523 1524 1525
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
1526
nv50_dac_disconnect(struct drm_encoder *encoder)
B
Ben Skeggs 已提交
1527 1528
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1529
	struct nv50_mast *mast = nv50_mast(encoder->dev);
1530
	const int or = nv_encoder->or;
B
Ben Skeggs 已提交
1531 1532 1533
	u32 *push;

	if (nv_encoder->crtc) {
1534
		nv50_crtc_prepare(nv_encoder->crtc);
B
Ben Skeggs 已提交
1535

1536
		push = evo_wait(mast, 4);
B
Ben Skeggs 已提交
1537
		if (push) {
1538
			if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1539 1540 1541 1542 1543 1544 1545
				evo_mthd(push, 0x0400 + (or * 0x080), 1);
				evo_data(push, 0x00000000);
			} else {
				evo_mthd(push, 0x0180 + (or * 0x020), 1);
				evo_data(push, 0x00000000);
			}
			evo_kick(push, mast);
B
Ben Skeggs 已提交
1546 1547
		}
	}
1548 1549

	nv_encoder->crtc = NULL;
B
Ben Skeggs 已提交
1550 1551
}

1552
static enum drm_connector_status
1553
nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
1554
{
1555
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1556
	int ret, or = nouveau_encoder(encoder)->or;
1557 1558 1559
	u32 load = nouveau_drm(encoder->dev)->vbios.dactestval;
	if (load == 0)
		load = 340;
B
Ben Skeggs 已提交
1560

1561 1562 1563
	ret = nv_exec(disp->core, NV50_DISP_DAC_LOAD + or, &load, sizeof(load));
	if (ret || load != 7)
		return connector_status_disconnected;
B
Ben Skeggs 已提交
1564

1565
	return connector_status_connected;
1566 1567
}

B
Ben Skeggs 已提交
1568
static void
1569
nv50_dac_destroy(struct drm_encoder *encoder)
B
Ben Skeggs 已提交
1570 1571 1572 1573 1574
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

1575 1576 1577 1578 1579 1580 1581 1582 1583
static const struct drm_encoder_helper_funcs nv50_dac_hfunc = {
	.dpms = nv50_dac_dpms,
	.mode_fixup = nv50_dac_mode_fixup,
	.prepare = nv50_dac_disconnect,
	.commit = nv50_dac_commit,
	.mode_set = nv50_dac_mode_set,
	.disable = nv50_dac_disconnect,
	.get_crtc = nv50_display_crtc_get,
	.detect = nv50_dac_detect
B
Ben Skeggs 已提交
1584 1585
};

1586 1587
static const struct drm_encoder_funcs nv50_dac_func = {
	.destroy = nv50_dac_destroy,
B
Ben Skeggs 已提交
1588 1589 1590
};

static int
1591
nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
B
Ben Skeggs 已提交
1592
{
1593 1594
	struct nouveau_drm *drm = nouveau_drm(connector->dev);
	struct nouveau_i2c *i2c = nouveau_i2c(drm->device);
B
Ben Skeggs 已提交
1595 1596
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;
1597
	int type = DRM_MODE_ENCODER_DAC;
B
Ben Skeggs 已提交
1598 1599 1600 1601 1602 1603

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;
1604
	nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index);
B
Ben Skeggs 已提交
1605 1606 1607 1608

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
1609
	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type);
1610
	drm_encoder_helper_add(encoder, &nv50_dac_hfunc);
B
Ben Skeggs 已提交
1611 1612 1613 1614

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
1615

1616 1617 1618 1619
/******************************************************************************
 * Audio
 *****************************************************************************/
static void
1620
nv50_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1621 1622 1623
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;
1624
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1625 1626 1627 1628 1629 1630 1631

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (!drm_detect_monitor_audio(nv_connector->edid))
		return;

	drm_edid_to_eld(&nv_connector->base, nv_connector->edid);

1632 1633 1634
	nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or,
			    nv_connector->base.eld,
			    nv_connector->base.eld[2] * 4);
1635 1636 1637
}

static void
1638
nv50_audio_disconnect(struct drm_encoder *encoder)
1639 1640
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1641
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1642

1643
	nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or, NULL, 0);
1644 1645 1646 1647 1648 1649
}

/******************************************************************************
 * HDMI
 *****************************************************************************/
static void
1650
nv50_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1651
{
1652 1653 1654
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
	struct nouveau_connector *nv_connector;
1655
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1656
	const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	u32 rekey = 56; /* binary driver, and tegra constant */
	u32 max_ac_packet;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (!drm_detect_hdmi_monitor(nv_connector->edid))
		return;

	max_ac_packet  = mode->htotal - mode->hdisplay;
	max_ac_packet -= rekey;
	max_ac_packet -= 18; /* constant from tegra */
	max_ac_packet /= 32;

1669 1670 1671
	nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff,
			    NV84_DISP_SOR_HDMI_PWR_STATE_ON |
			    (max_ac_packet << 16) | rekey);
B
Ben Skeggs 已提交
1672

1673
	nv50_audio_mode_set(encoder, mode);
1674 1675 1676
}

static void
1677
nv50_hdmi_disconnect(struct drm_encoder *encoder)
1678
{
1679 1680
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1681
	struct nv50_disp *disp = nv50_disp(encoder->dev);
1682
	const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
1683

1684
	nv50_audio_disconnect(encoder);
1685

1686
	nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff, 0x00000000);
1687 1688
}

1689 1690 1691
/******************************************************************************
 * SOR
 *****************************************************************************/
1692
static void
1693
nv50_sor_dpms(struct drm_encoder *encoder, int mode)
1694 1695 1696
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
1697
	struct nv50_disp *disp = nv50_disp(dev);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	struct drm_encoder *partner;
	int or = nv_encoder->or;

	nv_encoder->last_dpms = mode;

	list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
		struct nouveau_encoder *nv_partner = nouveau_encoder(partner);

		if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
			continue;

		if (nv_partner != nv_encoder &&
1710
		    nv_partner->dcb->or == nv_encoder->dcb->or) {
1711 1712 1713 1714 1715 1716
			if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
				return;
			break;
		}
	}

1717
	nv_call(disp->core, NV50_DISP_SOR_PWR + or, (mode == DRM_MODE_DPMS_ON));
1718 1719 1720
}

static bool
1721
nv50_sor_mode_fixup(struct drm_encoder *encoder,
1722
		    const struct drm_display_mode *mode,
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

1740
static void
1741
nv50_sor_disconnect(struct drm_encoder *encoder)
1742 1743
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1744
	struct nv50_mast *mast = nv50_mast(encoder->dev);
1745
	const int or = nv_encoder->or;
1746 1747 1748
	u32 *push;

	if (nv_encoder->crtc) {
1749
		nv50_crtc_prepare(nv_encoder->crtc);
1750

1751
		push = evo_wait(mast, 4);
1752
		if (push) {
1753
			if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
1754 1755 1756 1757 1758 1759 1760
				evo_mthd(push, 0x0600 + (or * 0x40), 1);
				evo_data(push, 0x00000000);
			} else {
				evo_mthd(push, 0x0200 + (or * 0x20), 1);
				evo_data(push, 0x00000000);
			}
			evo_kick(push, mast);
1761 1762
		}

1763
		nv50_hdmi_disconnect(encoder);
1764
	}
1765 1766 1767

	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
	nv_encoder->crtc = NULL;
1768 1769
}

1770
static void
1771
nv50_sor_commit(struct drm_encoder *encoder)
1772 1773 1774 1775
{
}

static void
1776
nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
1777
		  struct drm_display_mode *mode)
1778
{
1779 1780
	struct nv50_disp *disp = nv50_disp(encoder->dev);
	struct nv50_mast *mast = nv50_mast(encoder->dev);
1781
	struct drm_device *dev = encoder->dev;
1782
	struct nouveau_drm *drm = nouveau_drm(dev);
1783 1784
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1785
	struct nouveau_connector *nv_connector;
1786
	struct nvbios *bios = &drm->vbios;
1787 1788 1789 1790
	u32 *push, lvds = 0;
	u8 owner = 1 << nv_crtc->index;
	u8 proto = 0xf;
	u8 depth = 0x0;
1791

1792 1793
	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	switch (nv_encoder->dcb->type) {
1794
	case DCB_OUTPUT_TMDS:
1795 1796
		if (nv_encoder->dcb->sorconf.link & 1) {
			if (mode->clock < 165000)
1797
				proto = 0x1;
1798
			else
1799
				proto = 0x5;
1800
		} else {
1801
			proto = 0x2;
1802 1803
		}

1804
		nv50_hdmi_mode_set(encoder, mode);
1805
		break;
1806
	case DCB_OUTPUT_LVDS:
1807 1808
		proto = 0x0;

1809 1810
		if (bios->fp_no_ddc) {
			if (bios->fp.dual_link)
1811
				lvds |= 0x0100;
1812
			if (bios->fp.if_is_24bit)
1813
				lvds |= 0x0200;
1814
		} else {
1815
			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1816
				if (((u8 *)nv_connector->edid)[121] == 2)
1817
					lvds |= 0x0100;
1818 1819
			} else
			if (mode->clock >= bios->fp.duallink_transition_clk) {
1820
				lvds |= 0x0100;
1821
			}
1822

1823
			if (lvds & 0x0100) {
1824
				if (bios->fp.strapless_is_24bit & 2)
1825
					lvds |= 0x0200;
1826 1827
			} else {
				if (bios->fp.strapless_is_24bit & 1)
1828
					lvds |= 0x0200;
1829 1830 1831
			}

			if (nv_connector->base.display_info.bpc == 8)
1832
				lvds |= 0x0200;
1833
		}
1834

1835
		nv_call(disp->core, NV50_DISP_SOR_LVDS_SCRIPT + nv_encoder->or, lvds);
1836
		break;
1837
	case DCB_OUTPUT_DP:
1838
		if (nv_connector->base.display_info.bpc == 6) {
1839
			nv_encoder->dp.datarate = mode->clock * 18 / 8;
1840
			depth = 0x2;
1841 1842
		} else
		if (nv_connector->base.display_info.bpc == 8) {
1843
			nv_encoder->dp.datarate = mode->clock * 24 / 8;
1844
			depth = 0x5;
1845 1846 1847
		} else {
			nv_encoder->dp.datarate = mode->clock * 30 / 8;
			depth = 0x6;
1848
		}
1849 1850

		if (nv_encoder->dcb->sorconf.link & 1)
1851
			proto = 0x8;
1852
		else
1853
			proto = 0x9;
1854
		break;
1855 1856 1857 1858
	default:
		BUG_ON(1);
		break;
	}
1859

1860
	nv50_sor_dpms(encoder, DRM_MODE_DPMS_ON);
1861

1862
	push = evo_wait(nv50_mast(dev), 8);
1863
	if (push) {
1864
		if (nv50_vers(mast) < NVD0_DISP_CLASS) {
1865 1866 1867 1868 1869
			u32 ctrl = (depth << 16) | (proto << 8) | owner;
			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				ctrl |= 0x00001000;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				ctrl |= 0x00002000;
1870
			evo_mthd(push, 0x0600 + (nv_encoder->or * 0x040), 1);
1871
			evo_data(push, ctrl);
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
		} else {
			u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
			u32 syncs = 0x00000001;

			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				syncs |= 0x00000008;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				syncs |= 0x00000010;

			if (mode->flags & DRM_MODE_FLAG_INTERLACE)
				magic |= 0x00000001;

			evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
			evo_data(push, syncs | (depth << 6));
			evo_data(push, magic);
			evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 1);
			evo_data(push, owner | (proto << 8));
		}

		evo_kick(push, mast);
1892 1893 1894 1895 1896 1897
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
1898
nv50_sor_destroy(struct drm_encoder *encoder)
1899 1900 1901 1902 1903
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

1904 1905 1906
static const struct drm_encoder_helper_funcs nv50_sor_hfunc = {
	.dpms = nv50_sor_dpms,
	.mode_fixup = nv50_sor_mode_fixup,
1907
	.prepare = nv50_sor_disconnect,
1908 1909 1910 1911
	.commit = nv50_sor_commit,
	.mode_set = nv50_sor_mode_set,
	.disable = nv50_sor_disconnect,
	.get_crtc = nv50_display_crtc_get,
1912 1913
};

1914 1915
static const struct drm_encoder_funcs nv50_sor_func = {
	.destroy = nv50_sor_destroy,
1916 1917 1918
};

static int
1919
nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1920
{
1921 1922
	struct nouveau_drm *drm = nouveau_drm(connector->dev);
	struct nouveau_i2c *i2c = nouveau_i2c(drm->device);
1923 1924
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	int type;

	switch (dcbe->type) {
	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
	case DCB_OUTPUT_TMDS:
	case DCB_OUTPUT_DP:
	default:
		type = DRM_MODE_ENCODER_TMDS;
		break;
	}
1935 1936 1937 1938 1939 1940

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;
1941
	nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index);
1942 1943 1944 1945 1946
	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
1947
	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type);
1948
	drm_encoder_helper_add(encoder, &nv50_sor_hfunc);
1949 1950 1951 1952

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
1953

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
/******************************************************************************
 * PIOR
 *****************************************************************************/

static void
nv50_pior_dpms(struct drm_encoder *encoder, int mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nv50_disp *disp = nv50_disp(encoder->dev);
	u32 mthd = (nv_encoder->dcb->type << 12) | nv_encoder->or;
	u32 ctrl = (mode == DRM_MODE_DPMS_ON);
	nv_call(disp->core, NV50_DISP_PIOR_PWR + mthd, ctrl);
}

static bool
nv50_pior_mode_fixup(struct drm_encoder *encoder,
		     const struct drm_display_mode *mode,
		     struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	adjusted_mode->clock *= 2;
	return true;
}

static void
nv50_pior_commit(struct drm_encoder *encoder)
{
}

static void
nv50_pior_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		   struct drm_display_mode *adjusted_mode)
{
	struct nv50_mast *mast = nv50_mast(encoder->dev);
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
	struct nouveau_connector *nv_connector;
	u8 owner = 1 << nv_crtc->index;
	u8 proto, depth;
	u32 *push;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	switch (nv_connector->base.display_info.bpc) {
	case 10: depth = 0x6; break;
	case  8: depth = 0x5; break;
	case  6: depth = 0x2; break;
	default: depth = 0x0; break;
	}

	switch (nv_encoder->dcb->type) {
	case DCB_OUTPUT_TMDS:
	case DCB_OUTPUT_DP:
		proto = 0x0;
		break;
	default:
		BUG_ON(1);
		break;
	}

	nv50_pior_dpms(encoder, DRM_MODE_DPMS_ON);

	push = evo_wait(mast, 8);
	if (push) {
		if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
			u32 ctrl = (depth << 16) | (proto << 8) | owner;
			if (mode->flags & DRM_MODE_FLAG_NHSYNC)
				ctrl |= 0x00001000;
			if (mode->flags & DRM_MODE_FLAG_NVSYNC)
				ctrl |= 0x00002000;
			evo_mthd(push, 0x0700 + (nv_encoder->or * 0x040), 1);
			evo_data(push, ctrl);
		}

		evo_kick(push, mast);
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
nv50_pior_disconnect(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nv50_mast *mast = nv50_mast(encoder->dev);
	const int or = nv_encoder->or;
	u32 *push;

	if (nv_encoder->crtc) {
		nv50_crtc_prepare(nv_encoder->crtc);

		push = evo_wait(mast, 4);
		if (push) {
			if (nv50_vers(mast) < NVD0_DISP_MAST_CLASS) {
				evo_mthd(push, 0x0700 + (or * 0x040), 1);
				evo_data(push, 0x00000000);
			}
			evo_kick(push, mast);
		}
	}

	nv_encoder->crtc = NULL;
}

static void
nv50_pior_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

static const struct drm_encoder_helper_funcs nv50_pior_hfunc = {
	.dpms = nv50_pior_dpms,
	.mode_fixup = nv50_pior_mode_fixup,
	.prepare = nv50_pior_disconnect,
	.commit = nv50_pior_commit,
	.mode_set = nv50_pior_mode_set,
	.disable = nv50_pior_disconnect,
	.get_crtc = nv50_display_crtc_get,
};

static const struct drm_encoder_funcs nv50_pior_func = {
	.destroy = nv50_pior_destroy,
};

static int
nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
	struct nouveau_drm *drm = nouveau_drm(connector->dev);
	struct nouveau_i2c *i2c = nouveau_i2c(drm->device);
	struct nouveau_i2c_port *ddc = NULL;
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;
	int type;

	switch (dcbe->type) {
	case DCB_OUTPUT_TMDS:
		ddc  = i2c->find_type(i2c, NV_I2C_TYPE_EXTDDC(dcbe->extdev));
		type = DRM_MODE_ENCODER_TMDS;
		break;
	case DCB_OUTPUT_DP:
		ddc  = i2c->find_type(i2c, NV_I2C_TYPE_EXTAUX(dcbe->extdev));
		type = DRM_MODE_ENCODER_TMDS;
		break;
	default:
		return -ENODEV;
	}

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;
	nv_encoder->i2c = ddc;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type);
	drm_encoder_helper_add(encoder, &nv50_pior_hfunc);

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}

2129 2130 2131
/******************************************************************************
 * Init
 *****************************************************************************/
2132
void
2133
nv50_display_fini(struct drm_device *dev)
2134 2135 2136 2137
{
}

int
2138
nv50_display_init(struct drm_device *dev)
2139
{
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	struct nv50_disp *disp = nv50_disp(dev);
	struct drm_crtc *crtc;
	u32 *push;

	push = evo_wait(nv50_mast(dev), 32);
	if (!push)
		return -EBUSY;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		struct nv50_sync *sync = nv50_sync(crtc);
		nouveau_bo_wr32(disp->sync, sync->addr / 4, sync->data);
2151
	}
2152

2153 2154 2155 2156
	evo_mthd(push, 0x0088, 1);
	evo_data(push, NvEvoSync);
	evo_kick(push, nv50_mast(dev));
	return 0;
2157 2158 2159
}

void
2160
nv50_display_destroy(struct drm_device *dev)
2161
{
2162
	struct nv50_disp *disp = nv50_disp(dev);
2163

2164
	nv50_dmac_destroy(disp->core, &disp->mast.base);
2165

2166
	nouveau_bo_unmap(disp->sync);
2167 2168
	if (disp->sync)
		nouveau_bo_unpin(disp->sync);
2169
	nouveau_bo_ref(NULL, &disp->sync);
2170

2171
	nouveau_display(dev)->priv = NULL;
2172 2173 2174 2175
	kfree(disp);
}

int
2176
nv50_display_create(struct drm_device *dev)
2177
{
2178
	static const u16 oclass[] = {
2179
		NVF0_DISP_CLASS,
2180 2181
		NVE0_DISP_CLASS,
		NVD0_DISP_CLASS,
2182 2183 2184 2185 2186
		NVA3_DISP_CLASS,
		NV94_DISP_CLASS,
		NVA0_DISP_CLASS,
		NV84_DISP_CLASS,
		NV50_DISP_CLASS,
2187
	};
2188 2189 2190
	struct nouveau_device *device = nouveau_dev(dev);
	struct nouveau_drm *drm = nouveau_drm(dev);
	struct dcb_table *dcb = &drm->vbios.dcb;
2191
	struct drm_connector *connector, *tmp;
2192
	struct nv50_disp *disp;
2193
	struct dcb_output *dcbe;
2194
	int crtcs, ret, i;
2195 2196 2197 2198

	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
	if (!disp)
		return -ENOMEM;
2199 2200

	nouveau_display(dev)->priv = disp;
2201 2202 2203
	nouveau_display(dev)->dtor = nv50_display_destroy;
	nouveau_display(dev)->init = nv50_display_init;
	nouveau_display(dev)->fini = nv50_display_fini;
2204

2205 2206 2207 2208 2209
	/* small shared memory area we use for notifiers and semaphores */
	ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
			     0, 0x0000, NULL, &disp->sync);
	if (!ret) {
		ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
2210
		if (!ret) {
2211
			ret = nouveau_bo_map(disp->sync);
2212 2213 2214
			if (ret)
				nouveau_bo_unpin(disp->sync);
		}
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
		if (ret)
			nouveau_bo_ref(NULL, &disp->sync);
	}

	if (ret)
		goto out;

	/* attempt to allocate a supported evo display class */
	ret = -ENODEV;
	for (i = 0; ret && i < ARRAY_SIZE(oclass); i++) {
		ret = nouveau_object_new(nv_object(drm), NVDRM_DEVICE,
					 0xd1500000, oclass[i], NULL, 0,
					 &disp->core);
	}

	if (ret)
		goto out;

	/* allocate master evo channel */
2234
	ret = nv50_dmac_create(disp->core, NV50_DISP_MAST_CLASS, 0,
2235 2236 2237 2238 2239 2240 2241
			      &(struct nv50_display_mast_class) {
					.pushbuf = EVO_PUSH_HANDLE(MAST, 0),
			      }, sizeof(struct nv50_display_mast_class),
			      disp->sync->bo.offset, &disp->mast.base);
	if (ret)
		goto out;

2242
	/* create crtc objects to represent the hw heads */
2243 2244 2245 2246 2247
	if (nv_mclass(disp->core) >= NVD0_DISP_CLASS)
		crtcs = nv_rd32(device, 0x022448);
	else
		crtcs = 2;

2248
	for (i = 0; i < crtcs; i++) {
2249
		ret = nv50_crtc_create(dev, disp->core, i);
2250 2251 2252 2253
		if (ret)
			goto out;
	}

2254 2255 2256 2257 2258 2259
	/* create encoder/connector objects based on VBIOS DCB table */
	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
		connector = nouveau_connector_create(dev, dcbe->connector);
		if (IS_ERR(connector))
			continue;

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		if (dcbe->location == DCB_LOC_ON_CHIP) {
			switch (dcbe->type) {
			case DCB_OUTPUT_TMDS:
			case DCB_OUTPUT_LVDS:
			case DCB_OUTPUT_DP:
				ret = nv50_sor_create(connector, dcbe);
				break;
			case DCB_OUTPUT_ANALOG:
				ret = nv50_dac_create(connector, dcbe);
				break;
			default:
				ret = -ENODEV;
				break;
			}
		} else {
			ret = nv50_pior_create(connector, dcbe);
2276 2277
		}

2278 2279 2280 2281
		if (ret) {
			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
				     dcbe->location, dcbe->type,
				     ffs(dcbe->or) - 1, ret);
2282
			ret = 0;
2283 2284 2285 2286 2287 2288 2289 2290
		}
	}

	/* cull any connectors we created that don't have an encoder */
	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
		if (connector->encoder_ids[0])
			continue;

2291
		NV_WARN(drm, "%s has no encoders, removing\n",
2292 2293 2294 2295
			drm_get_connector_name(connector));
		connector->funcs->destroy(connector);
	}

2296 2297
out:
	if (ret)
2298
		nv50_display_destroy(dev);
2299 2300
	return ret;
}