dma-iommu.c 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * A fairly generic DMA-API to IOMMU-API glue layer.
 *
 * Copyright (C) 2014-2015 ARM Ltd.
 *
 * based in part on arch/arm/mm/dma-mapping.c:
 * Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/device.h>
#include <linux/dma-iommu.h>
24
#include <linux/gfp.h>
25 26 27
#include <linux/huge_mm.h>
#include <linux/iommu.h>
#include <linux/iova.h>
28
#include <linux/irq.h>
29
#include <linux/mm.h>
30
#include <linux/pci.h>
31 32
#include <linux/scatterlist.h>
#include <linux/vmalloc.h>
33

34 35 36 37 38 39
struct iommu_dma_msi_page {
	struct list_head	list;
	dma_addr_t		iova;
	phys_addr_t		phys;
};

R
Robin Murphy 已提交
40 41 42 43 44
enum iommu_dma_cookie_type {
	IOMMU_DMA_IOVA_COOKIE,
	IOMMU_DMA_MSI_COOKIE,
};

45
struct iommu_dma_cookie {
R
Robin Murphy 已提交
46 47 48 49 50 51 52 53 54
	enum iommu_dma_cookie_type	type;
	union {
		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
		struct iova_domain	iovad;
		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
		dma_addr_t		msi_iova;
	};
	struct list_head		msi_page_list;
	spinlock_t			msi_lock;
55 56
};

R
Robin Murphy 已提交
57 58 59 60 61 62 63
static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
{
	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
		return cookie->iovad.granule;
	return PAGE_SIZE;
}

64 65
static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain)
{
R
Robin Murphy 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
	struct iommu_dma_cookie *cookie = domain->iova_cookie;

	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
		return &cookie->iovad;
	return NULL;
}

static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
{
	struct iommu_dma_cookie *cookie;

	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
	if (cookie) {
		spin_lock_init(&cookie->msi_lock);
		INIT_LIST_HEAD(&cookie->msi_page_list);
		cookie->type = type;
	}
	return cookie;
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98
int iommu_dma_init(void)
{
	return iova_cache_get();
}

/**
 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
 * @domain: IOMMU domain to prepare for DMA-API usage
 *
 * IOMMU drivers should normally call this from their domain_alloc
 * callback when domain->type == IOMMU_DOMAIN_DMA.
 */
int iommu_get_dma_cookie(struct iommu_domain *domain)
R
Robin Murphy 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
{
	if (domain->iova_cookie)
		return -EEXIST;

	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
	if (!domain->iova_cookie)
		return -ENOMEM;

	return 0;
}
EXPORT_SYMBOL(iommu_get_dma_cookie);

/**
 * iommu_get_msi_cookie - Acquire just MSI remapping resources
 * @domain: IOMMU domain to prepare
 * @base: Start address of IOVA region for MSI mappings
 *
 * Users who manage their own IOVA allocation and do not want DMA API support,
 * but would still like to take advantage of automatic MSI remapping, can use
 * this to initialise their own domain appropriately. Users should reserve a
 * contiguous IOVA region, starting at @base, large enough to accommodate the
 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
 * used by the devices attached to @domain.
 */
int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
124
{
125
	struct iommu_dma_cookie *cookie;
126

R
Robin Murphy 已提交
127 128 129
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

130 131 132
	if (domain->iova_cookie)
		return -EEXIST;

R
Robin Murphy 已提交
133
	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
134 135
	if (!cookie)
		return -ENOMEM;
136

R
Robin Murphy 已提交
137
	cookie->msi_iova = base;
138 139
	domain->iova_cookie = cookie;
	return 0;
140
}
R
Robin Murphy 已提交
141
EXPORT_SYMBOL(iommu_get_msi_cookie);
142 143 144

/**
 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
R
Robin Murphy 已提交
145 146
 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
 *          iommu_get_msi_cookie()
147 148 149 150 151
 *
 * IOMMU drivers should normally call this from their domain_free callback.
 */
void iommu_put_dma_cookie(struct iommu_domain *domain)
{
152 153
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iommu_dma_msi_page *msi, *tmp;
154

155
	if (!cookie)
156 157
		return;

R
Robin Murphy 已提交
158
	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
159 160 161 162 163 164 165
		put_iova_domain(&cookie->iovad);

	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
		list_del(&msi->list);
		kfree(msi);
	}
	kfree(cookie);
166 167 168 169
	domain->iova_cookie = NULL;
}
EXPORT_SYMBOL(iommu_put_dma_cookie);

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
static void iova_reserve_pci_windows(struct pci_dev *dev,
		struct iova_domain *iovad)
{
	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
	struct resource_entry *window;
	unsigned long lo, hi;

	resource_list_for_each_entry(window, &bridge->windows) {
		if (resource_type(window->res) != IORESOURCE_MEM &&
		    resource_type(window->res) != IORESOURCE_IO)
			continue;

		lo = iova_pfn(iovad, window->res->start - window->offset);
		hi = iova_pfn(iovad, window->res->end - window->offset);
		reserve_iova(iovad, lo, hi);
	}
}

188 189 190 191 192
/**
 * iommu_dma_init_domain - Initialise a DMA mapping domain
 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
 * @base: IOVA at which the mappable address space starts
 * @size: Size of IOVA space
193
 * @dev: Device the domain is being initialised for
194 195 196 197 198 199
 *
 * @base and @size should be exact multiples of IOMMU page granularity to
 * avoid rounding surprises. If necessary, we reserve the page at address 0
 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
 * any change which could make prior IOVAs invalid will fail.
 */
200 201
int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
		u64 size, struct device *dev)
202
{
R
Robin Murphy 已提交
203 204
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
205 206
	unsigned long order, base_pfn, end_pfn;

R
Robin Murphy 已提交
207 208
	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
		return -EINVAL;
209 210

	/* Use the smallest supported page size for IOVA granularity */
211
	order = __ffs(domain->pgsize_bitmap);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	base_pfn = max_t(unsigned long, 1, base >> order);
	end_pfn = (base + size - 1) >> order;

	/* Check the domain allows at least some access to the device... */
	if (domain->geometry.force_aperture) {
		if (base > domain->geometry.aperture_end ||
		    base + size <= domain->geometry.aperture_start) {
			pr_warn("specified DMA range outside IOMMU capability\n");
			return -EFAULT;
		}
		/* ...then finally give it a kicking to make sure it fits */
		base_pfn = max_t(unsigned long, base_pfn,
				domain->geometry.aperture_start >> order);
		end_pfn = min_t(unsigned long, end_pfn,
				domain->geometry.aperture_end >> order);
	}

	/* All we can safely do with an existing domain is enlarge it */
	if (iovad->start_pfn) {
		if (1UL << order != iovad->granule ||
		    base_pfn != iovad->start_pfn ||
		    end_pfn < iovad->dma_32bit_pfn) {
			pr_warn("Incompatible range for DMA domain\n");
			return -EFAULT;
		}
		iovad->dma_32bit_pfn = end_pfn;
	} else {
		init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
240 241
		if (dev && dev_is_pci(dev))
			iova_reserve_pci_windows(to_pci_dev(dev), iovad);
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	}
	return 0;
}
EXPORT_SYMBOL(iommu_dma_init_domain);

/**
 * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
 * @dir: Direction of DMA transfer
 * @coherent: Is the DMA master cache-coherent?
 *
 * Return: corresponding IOMMU API page protection flags
 */
int dma_direction_to_prot(enum dma_data_direction dir, bool coherent)
{
	int prot = coherent ? IOMMU_CACHE : 0;

	switch (dir) {
	case DMA_BIDIRECTIONAL:
		return prot | IOMMU_READ | IOMMU_WRITE;
	case DMA_TO_DEVICE:
		return prot | IOMMU_READ;
	case DMA_FROM_DEVICE:
		return prot | IOMMU_WRITE;
	default:
		return 0;
	}
}

270
static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size,
271 272
		dma_addr_t dma_limit)
{
273
	struct iova_domain *iovad = cookie_iovad(domain);
274 275 276
	unsigned long shift = iova_shift(iovad);
	unsigned long length = iova_align(iovad, size) >> shift;

277 278
	if (domain->geometry.force_aperture)
		dma_limit = min(dma_limit, domain->geometry.aperture_end);
279 280 281 282 283 284 285 286 287 288
	/*
	 * Enforce size-alignment to be safe - there could perhaps be an
	 * attribute to control this per-device, or at least per-domain...
	 */
	return alloc_iova(iovad, length, dma_limit >> shift, true);
}

/* The IOVA allocator knows what we mapped, so just unmap whatever that was */
static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
{
289
	struct iova_domain *iovad = cookie_iovad(domain);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
	unsigned long shift = iova_shift(iovad);
	unsigned long pfn = dma_addr >> shift;
	struct iova *iova = find_iova(iovad, pfn);
	size_t size;

	if (WARN_ON(!iova))
		return;

	size = iova_size(iova) << shift;
	size -= iommu_unmap(domain, pfn << shift, size);
	/* ...and if we can't, then something is horribly, horribly wrong */
	WARN_ON(size > 0);
	__free_iova(iovad, iova);
}

static void __iommu_dma_free_pages(struct page **pages, int count)
{
	while (count--)
		__free_page(pages[count]);
	kvfree(pages);
}

312 313
static struct page **__iommu_dma_alloc_pages(unsigned int count,
		unsigned long order_mask, gfp_t gfp)
314 315 316
{
	struct page **pages;
	unsigned int i = 0, array_size = count * sizeof(*pages);
317 318 319 320

	order_mask &= (2U << MAX_ORDER) - 1;
	if (!order_mask)
		return NULL;
321 322 323 324 325 326 327 328 329 330 331 332 333

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, GFP_KERNEL);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

	/* IOMMU can map any pages, so himem can also be used here */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

	while (count) {
		struct page *page = NULL;
334
		unsigned int order_size;
335 336 337 338

		/*
		 * Higher-order allocations are a convenience rather
		 * than a necessity, hence using __GFP_NORETRY until
339
		 * falling back to minimum-order allocations.
340
		 */
341 342 343 344 345 346 347
		for (order_mask &= (2U << __fls(count)) - 1;
		     order_mask; order_mask &= ~order_size) {
			unsigned int order = __fls(order_mask);

			order_size = 1U << order;
			page = alloc_pages((order_mask - order_size) ?
					   gfp | __GFP_NORETRY : gfp, order);
348 349
			if (!page)
				continue;
350 351 352
			if (!order)
				break;
			if (!PageCompound(page)) {
353 354
				split_page(page, order);
				break;
355 356
			} else if (!split_huge_page(page)) {
				break;
357
			}
358
			__free_pages(page, order);
359 360 361 362 363
		}
		if (!page) {
			__iommu_dma_free_pages(pages, i);
			return NULL;
		}
364 365
		count -= order_size;
		while (order_size--)
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
			pages[i++] = page++;
	}
	return pages;
}

/**
 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
 * @dev: Device which owns this buffer
 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
 * @size: Size of buffer in bytes
 * @handle: DMA address of buffer
 *
 * Frees both the pages associated with the buffer, and the array
 * describing them
 */
void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
		dma_addr_t *handle)
{
	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
	*handle = DMA_ERROR_CODE;
}

/**
 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
 * @dev: Device to allocate memory for. Must be a real device
 *	 attached to an iommu_dma_domain
 * @size: Size of buffer in bytes
 * @gfp: Allocation flags
395
 * @attrs: DMA attributes for this allocation
396 397 398 399 400 401 402 403 404 405 406
 * @prot: IOMMU mapping flags
 * @handle: Out argument for allocated DMA handle
 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
 *		given VA/PA are visible to the given non-coherent device.
 *
 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
 * but an IOMMU which supports smaller pages might not map the whole thing.
 *
 * Return: Array of struct page pointers describing the buffer,
 *	   or NULL on failure.
 */
407
struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
408
		unsigned long attrs, int prot, dma_addr_t *handle,
409 410 411
		void (*flush_page)(struct device *, const void *, phys_addr_t))
{
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
412
	struct iova_domain *iovad = cookie_iovad(domain);
413 414 415 416
	struct iova *iova;
	struct page **pages;
	struct sg_table sgt;
	dma_addr_t dma_addr;
417
	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
418 419 420

	*handle = DMA_ERROR_CODE;

421 422 423 424 425 426 427
	min_size = alloc_sizes & -alloc_sizes;
	if (min_size < PAGE_SIZE) {
		min_size = PAGE_SIZE;
		alloc_sizes |= PAGE_SIZE;
	} else {
		size = ALIGN(size, min_size);
	}
428
	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
429 430 431 432
		alloc_sizes = min_size;

	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
433 434 435
	if (!pages)
		return NULL;

436
	iova = __alloc_iova(domain, size, dev->coherent_dma_mask);
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	if (!iova)
		goto out_free_pages;

	size = iova_align(iovad, size);
	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
		goto out_free_iova;

	if (!(prot & IOMMU_CACHE)) {
		struct sg_mapping_iter miter;
		/*
		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
		 * sufficient here, so skip it by using the "wrong" direction.
		 */
		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
		while (sg_miter_next(&miter))
			flush_page(dev, miter.addr, page_to_phys(miter.page));
		sg_miter_stop(&miter);
	}

	dma_addr = iova_dma_addr(iovad, iova);
	if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
			< size)
		goto out_free_sg;

	*handle = dma_addr;
	sg_free_table(&sgt);
	return pages;

out_free_sg:
	sg_free_table(&sgt);
out_free_iova:
	__free_iova(iovad, iova);
out_free_pages:
	__iommu_dma_free_pages(pages, count);
	return NULL;
}

/**
 * iommu_dma_mmap - Map a buffer into provided user VMA
 * @pages: Array representing buffer from iommu_dma_alloc()
 * @size: Size of buffer in bytes
 * @vma: VMA describing requested userspace mapping
 *
 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
 * for verifying the correct size and protection of @vma beforehand.
 */

int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
{
	unsigned long uaddr = vma->vm_start;
	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	int ret = -ENXIO;

	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
		ret = vm_insert_page(vma, uaddr, pages[i]);
		if (ret)
			break;
		uaddr += PAGE_SIZE;
	}
	return ret;
}

499 500
static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
		size_t size, int prot)
501 502 503
{
	dma_addr_t dma_addr;
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
504
	struct iova_domain *iovad = cookie_iovad(domain);
505 506
	size_t iova_off = iova_offset(iovad, phys);
	size_t len = iova_align(iovad, size + iova_off);
507
	struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev));
508 509 510 511 512 513 514 515 516 517 518 519

	if (!iova)
		return DMA_ERROR_CODE;

	dma_addr = iova_dma_addr(iovad, iova);
	if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
		__free_iova(iovad, iova);
		return DMA_ERROR_CODE;
	}
	return dma_addr + iova_off;
}

520 521 522 523 524 525
dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
		unsigned long offset, size_t size, int prot)
{
	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
}

526
void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
527
		enum dma_data_direction dir, unsigned long attrs)
528 529 530 531 532 533
{
	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
}

/*
 * Prepare a successfully-mapped scatterlist to give back to the caller.
534 535 536 537
 *
 * At this point the segments are already laid out by iommu_dma_map_sg() to
 * avoid individually crossing any boundaries, so we merely need to check a
 * segment's start address to avoid concatenating across one.
538 539 540 541
 */
static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
		dma_addr_t dma_addr)
{
542 543 544 545
	struct scatterlist *s, *cur = sg;
	unsigned long seg_mask = dma_get_seg_boundary(dev);
	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
	int i, count = 0;
546 547

	for_each_sg(sg, s, nents, i) {
548 549
		/* Restore this segment's original unaligned fields first */
		unsigned int s_iova_off = sg_dma_address(s);
550
		unsigned int s_length = sg_dma_len(s);
551
		unsigned int s_iova_len = s->length;
552

553
		s->offset += s_iova_off;
554
		s->length = s_length;
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
		sg_dma_address(s) = DMA_ERROR_CODE;
		sg_dma_len(s) = 0;

		/*
		 * Now fill in the real DMA data. If...
		 * - there is a valid output segment to append to
		 * - and this segment starts on an IOVA page boundary
		 * - but doesn't fall at a segment boundary
		 * - and wouldn't make the resulting output segment too long
		 */
		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
		    (cur_len + s_length <= max_len)) {
			/* ...then concatenate it with the previous one */
			cur_len += s_length;
		} else {
			/* Otherwise start the next output segment */
			if (i > 0)
				cur = sg_next(cur);
			cur_len = s_length;
			count++;

			sg_dma_address(cur) = dma_addr + s_iova_off;
		}

		sg_dma_len(cur) = cur_len;
		dma_addr += s_iova_len;

		if (s_length + s_iova_off < s_iova_len)
			cur_len = 0;
584
	}
585
	return count;
586 587 588 589 590 591 592 593 594 595 596 597 598
}

/*
 * If mapping failed, then just restore the original list,
 * but making sure the DMA fields are invalidated.
 */
static void __invalidate_sg(struct scatterlist *sg, int nents)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_address(s) != DMA_ERROR_CODE)
599
			s->offset += sg_dma_address(s);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
		if (sg_dma_len(s))
			s->length = sg_dma_len(s);
		sg_dma_address(s) = DMA_ERROR_CODE;
		sg_dma_len(s) = 0;
	}
}

/*
 * The DMA API client is passing in a scatterlist which could describe
 * any old buffer layout, but the IOMMU API requires everything to be
 * aligned to IOMMU pages. Hence the need for this complicated bit of
 * impedance-matching, to be able to hand off a suitably-aligned list,
 * but still preserve the original offsets and sizes for the caller.
 */
int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, int prot)
{
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
618
	struct iova_domain *iovad = cookie_iovad(domain);
619 620 621 622
	struct iova *iova;
	struct scatterlist *s, *prev = NULL;
	dma_addr_t dma_addr;
	size_t iova_len = 0;
623
	unsigned long mask = dma_get_seg_boundary(dev);
624 625 626 627 628 629
	int i;

	/*
	 * Work out how much IOVA space we need, and align the segments to
	 * IOVA granules for the IOMMU driver to handle. With some clever
	 * trickery we can modify the list in-place, but reversibly, by
630
	 * stashing the unaligned parts in the as-yet-unused DMA fields.
631 632
	 */
	for_each_sg(sg, s, nents, i) {
633
		size_t s_iova_off = iova_offset(iovad, s->offset);
634
		size_t s_length = s->length;
635
		size_t pad_len = (mask - iova_len + 1) & mask;
636

637
		sg_dma_address(s) = s_iova_off;
638
		sg_dma_len(s) = s_length;
639 640
		s->offset -= s_iova_off;
		s_length = iova_align(iovad, s_length + s_iova_off);
641 642 643
		s->length = s_length;

		/*
644 645 646 647 648 649 650 651 652 653 654
		 * Due to the alignment of our single IOVA allocation, we can
		 * depend on these assumptions about the segment boundary mask:
		 * - If mask size >= IOVA size, then the IOVA range cannot
		 *   possibly fall across a boundary, so we don't care.
		 * - If mask size < IOVA size, then the IOVA range must start
		 *   exactly on a boundary, therefore we can lay things out
		 *   based purely on segment lengths without needing to know
		 *   the actual addresses beforehand.
		 * - The mask must be a power of 2, so pad_len == 0 if
		 *   iova_len == 0, thus we cannot dereference prev the first
		 *   time through here (i.e. before it has a meaningful value).
655
		 */
656
		if (pad_len && pad_len < s_length - 1) {
657 658 659 660 661 662 663 664
			prev->length += pad_len;
			iova_len += pad_len;
		}

		iova_len += s_length;
		prev = s;
	}

665
	iova = __alloc_iova(domain, iova_len, dma_get_mask(dev));
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	if (!iova)
		goto out_restore_sg;

	/*
	 * We'll leave any physical concatenation to the IOMMU driver's
	 * implementation - it knows better than we do.
	 */
	dma_addr = iova_dma_addr(iovad, iova);
	if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
		goto out_free_iova;

	return __finalise_sg(dev, sg, nents, dma_addr);

out_free_iova:
	__free_iova(iovad, iova);
out_restore_sg:
	__invalidate_sg(sg, nents);
	return 0;
}

void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
687
		enum dma_data_direction dir, unsigned long attrs)
688 689 690 691 692 693 694 695
{
	/*
	 * The scatterlist segments are mapped into a single
	 * contiguous IOVA allocation, so this is incredibly easy.
	 */
	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
}

696 697 698 699 700 701 702 703 704 705 706 707 708
dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return __iommu_dma_map(dev, phys, size,
			dma_direction_to_prot(dir, false) | IOMMU_MMIO);
}

void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722
int iommu_dma_supported(struct device *dev, u64 mask)
{
	/*
	 * 'Special' IOMMUs which don't have the same addressing capability
	 * as the CPU will have to wait until we have some way to query that
	 * before they'll be able to use this framework.
	 */
	return 1;
}

int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == DMA_ERROR_CODE;
}
723 724 725 726 727 728

static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
		phys_addr_t msi_addr, struct iommu_domain *domain)
{
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iommu_dma_msi_page *msi_page;
R
Robin Murphy 已提交
729
	struct iova_domain *iovad = cookie_iovad(domain);
730 731
	struct iova *iova;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
R
Robin Murphy 已提交
732
	size_t size = cookie_msi_granule(cookie);
733

R
Robin Murphy 已提交
734
	msi_addr &= ~(phys_addr_t)(size - 1);
735 736 737 738 739 740 741 742 743
	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
		if (msi_page->phys == msi_addr)
			return msi_page;

	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
	if (!msi_page)
		return NULL;

	msi_page->phys = msi_addr;
R
Robin Murphy 已提交
744 745 746 747 748 749 750 751 752 753 754
	if (iovad) {
		iova = __alloc_iova(domain, size, dma_get_mask(dev));
		if (!iova)
			goto out_free_page;
		msi_page->iova = iova_dma_addr(iovad, iova);
	} else {
		msi_page->iova = cookie->msi_iova;
		cookie->msi_iova += size;
	}

	if (iommu_map(domain, msi_page->iova, msi_addr, size, prot))
755 756 757 758 759 760 761
		goto out_free_iova;

	INIT_LIST_HEAD(&msi_page->list);
	list_add(&msi_page->list, &cookie->msi_page_list);
	return msi_page;

out_free_iova:
R
Robin Murphy 已提交
762 763 764 765
	if (iovad)
		__free_iova(iovad, iova);
	else
		cookie->msi_iova -= size;
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
out_free_page:
	kfree(msi_page);
	return NULL;
}

void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
{
	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
	struct iommu_dma_cookie *cookie;
	struct iommu_dma_msi_page *msi_page;
	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
	unsigned long flags;

	if (!domain || !domain->iova_cookie)
		return;

	cookie = domain->iova_cookie;

	/*
	 * We disable IRQs to rule out a possible inversion against
	 * irq_desc_lock if, say, someone tries to retarget the affinity
	 * of an MSI from within an IPI handler.
	 */
	spin_lock_irqsave(&cookie->msi_lock, flags);
	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
	spin_unlock_irqrestore(&cookie->msi_lock, flags);

	if (WARN_ON(!msi_page)) {
		/*
		 * We're called from a void callback, so the best we can do is
		 * 'fail' by filling the message with obviously bogus values.
		 * Since we got this far due to an IOMMU being present, it's
		 * not like the existing address would have worked anyway...
		 */
		msg->address_hi = ~0U;
		msg->address_lo = ~0U;
		msg->data = ~0U;
	} else {
		msg->address_hi = upper_32_bits(msi_page->iova);
R
Robin Murphy 已提交
806
		msg->address_lo &= cookie_msi_granule(cookie) - 1;
807 808 809
		msg->address_lo += lower_32_bits(msi_page->iova);
	}
}