nouveau_dmem.c 22.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/*
 * Copyright 2018 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */
#include "nouveau_dmem.h"
#include "nouveau_drv.h"
#include "nouveau_chan.h"
#include "nouveau_dma.h"
#include "nouveau_mem.h"
#include "nouveau_bo.h"

#include <nvif/class.h>
#include <nvif/object.h>
#include <nvif/if500b.h>
#include <nvif/if900b.h>

#include <linux/sched/mm.h>
#include <linux/hmm.h>

/*
 * FIXME: this is ugly right now we are using TTM to allocate vram and we pin
 * it in vram while in use. We likely want to overhaul memory management for
 * nouveau to be more page like (not necessarily with system page size but a
 * bigger page size) at lowest level and have some shim layer on top that would
 * provide the same functionality as TTM.
 */
#define DMEM_CHUNK_SIZE (2UL << 20)
#define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT)

struct nouveau_migrate;

49 50 51 52 53 54
enum nouveau_aper {
	NOUVEAU_APER_VIRT,
	NOUVEAU_APER_VRAM,
	NOUVEAU_APER_HOST,
};

55
typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages,
56 57
				      enum nouveau_aper, u64 dst_addr,
				      enum nouveau_aper, u64 src_addr);
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

struct nouveau_dmem_chunk {
	struct list_head list;
	struct nouveau_bo *bo;
	struct nouveau_drm *drm;
	unsigned long pfn_first;
	unsigned long callocated;
	unsigned long bitmap[BITS_TO_LONGS(DMEM_CHUNK_NPAGES)];
	spinlock_t lock;
};

struct nouveau_dmem_migrate {
	nouveau_migrate_copy_t copy_func;
	struct nouveau_channel *chan;
};

struct nouveau_dmem {
	struct hmm_devmem *devmem;
	struct nouveau_dmem_migrate migrate;
	struct list_head chunk_free;
	struct list_head chunk_full;
	struct list_head chunk_empty;
	struct mutex mutex;
};

struct nouveau_migrate_hmem {
	struct scatterlist *sg;
	struct nouveau_mem mem;
	unsigned long npages;
	struct nvif_vma vma;
};

struct nouveau_dmem_fault {
	struct nouveau_drm *drm;
	struct nouveau_fence *fence;
	struct nouveau_migrate_hmem hmem;
};

struct nouveau_migrate {
	struct vm_area_struct *vma;
	struct nouveau_drm *drm;
	struct nouveau_fence *fence;
	unsigned long npages;
	struct nouveau_migrate_hmem hmem;
};

static void
nouveau_migrate_hmem_fini(struct nouveau_drm *drm,
			  struct nouveau_migrate_hmem *hmem)
{
	struct nvif_vmm *vmm = &drm->client.vmm.vmm;

	nouveau_mem_fini(&hmem->mem);
	nvif_vmm_put(vmm, &hmem->vma);

	if (hmem->sg) {
		dma_unmap_sg_attrs(drm->dev->dev, hmem->sg,
				   hmem->npages, DMA_BIDIRECTIONAL,
				   DMA_ATTR_SKIP_CPU_SYNC);
		kfree(hmem->sg);
		hmem->sg = NULL;
	}
}

static int
nouveau_migrate_hmem_init(struct nouveau_drm *drm,
			  struct nouveau_migrate_hmem *hmem,
			  unsigned long npages,
			  const unsigned long *pfns)
{
	struct nvif_vmm *vmm = &drm->client.vmm.vmm;
	unsigned long i;
	int ret;

	hmem->sg = kzalloc(npages * sizeof(*hmem->sg), GFP_KERNEL);
	if (hmem->sg == NULL)
		return -ENOMEM;

	for (i = 0, hmem->npages = 0; hmem->npages < npages; ++i) {
		struct page *page;

		if (!pfns[i] || pfns[i] == MIGRATE_PFN_ERROR)
			continue;

		page = migrate_pfn_to_page(pfns[i]);
		if (page == NULL) {
			ret = -EINVAL;
			goto error;
		}

		sg_set_page(&hmem->sg[hmem->npages], page, PAGE_SIZE, 0);
		hmem->npages++;
	}
	sg_mark_end(&hmem->sg[hmem->npages - 1]);

	i = dma_map_sg_attrs(drm->dev->dev, hmem->sg, hmem->npages,
			     DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC);
	if (i != hmem->npages) {
		ret = -ENOMEM;
		goto error;
	}

	ret = nouveau_mem_sgl(&hmem->mem, &drm->client,
			      hmem->npages, hmem->sg);
	if (ret)
		goto error;

	ret = nvif_vmm_get(vmm, LAZY, false, hmem->mem.mem.page,
			   0, hmem->mem.mem.size, &hmem->vma);
	if (ret)
		goto error;

	ret = nouveau_mem_map(&hmem->mem, vmm, &hmem->vma);
	if (ret)
		goto error;

	return 0;

error:
	nouveau_migrate_hmem_fini(drm, hmem);
	return ret;
}


static void
nouveau_dmem_free(struct hmm_devmem *devmem, struct page *page)
{
	struct nouveau_dmem_chunk *chunk;
	struct nouveau_drm *drm;
	unsigned long idx;

	chunk = (void *)hmm_devmem_page_get_drvdata(page);
	idx = page_to_pfn(page) - chunk->pfn_first;
	drm = chunk->drm;

	/*
	 * FIXME:
	 *
	 * This is really a bad example, we need to overhaul nouveau memory
	 * management to be more page focus and allow lighter locking scheme
	 * to be use in the process.
	 */
	spin_lock(&chunk->lock);
	clear_bit(idx, chunk->bitmap);
	WARN_ON(!chunk->callocated);
	chunk->callocated--;
	/*
	 * FIXME when chunk->callocated reach 0 we should add the chunk to
	 * a reclaim list so that it can be freed in case of memory pressure.
	 */
	spin_unlock(&chunk->lock);
}

static void
nouveau_dmem_fault_alloc_and_copy(struct vm_area_struct *vma,
				  const unsigned long *src_pfns,
				  unsigned long *dst_pfns,
				  unsigned long start,
				  unsigned long end,
				  void *private)
{
	struct nouveau_dmem_fault *fault = private;
	struct nouveau_drm *drm = fault->drm;
	unsigned long addr, i, c, npages = 0;
	nouveau_migrate_copy_t copy;
	int ret;


	/* First allocate new memory */
	for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
		struct page *dpage, *spage;

		dst_pfns[i] = 0;
		spage = migrate_pfn_to_page(src_pfns[i]);
		if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
			continue;

		dpage = hmm_vma_alloc_locked_page(vma, addr);
		if (!dpage) {
			dst_pfns[i] = MIGRATE_PFN_ERROR;
			continue;
		}

		dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) |
			      MIGRATE_PFN_LOCKED;
		npages++;
	}

	/* Create scatter list FIXME: get rid of scatter list */
	ret = nouveau_migrate_hmem_init(drm, &fault->hmem, npages, dst_pfns);
	if (ret)
		goto error;

	/* Copy things over */
	copy = drm->dmem->migrate.copy_func;
	for (addr = start, i = c = 0; addr < end; addr += PAGE_SIZE, i++) {
		struct nouveau_dmem_chunk *chunk;
		struct page *spage, *dpage;
		u64 src_addr, dst_addr;

		dpage = migrate_pfn_to_page(dst_pfns[i]);
		if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR)
			continue;

		dst_addr = fault->hmem.vma.addr + (c << PAGE_SHIFT);
		c++;

		spage = migrate_pfn_to_page(src_pfns[i]);
		if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) {
			dst_pfns[i] = MIGRATE_PFN_ERROR;
			__free_page(dpage);
			continue;
		}

		chunk = (void *)hmm_devmem_page_get_drvdata(spage);
		src_addr = page_to_pfn(spage) - chunk->pfn_first;
274
		src_addr = (src_addr << PAGE_SHIFT) + chunk->bo->bo.offset;
275

276
		ret = copy(drm, 1, NOUVEAU_APER_VIRT, dst_addr,
277
				   NOUVEAU_APER_VRAM, src_addr);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		if (ret) {
			dst_pfns[i] = MIGRATE_PFN_ERROR;
			__free_page(dpage);
			continue;
		}
	}

	nouveau_fence_new(drm->dmem->migrate.chan, false, &fault->fence);

	return;

error:
	for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) {
		struct page *page;

		if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR)
			continue;

		page = migrate_pfn_to_page(dst_pfns[i]);
		dst_pfns[i] = MIGRATE_PFN_ERROR;
		if (page == NULL)
			continue;

		__free_page(page);
	}
}

void nouveau_dmem_fault_finalize_and_map(struct vm_area_struct *vma,
					 const unsigned long *src_pfns,
					 const unsigned long *dst_pfns,
					 unsigned long start,
					 unsigned long end,
					 void *private)
{
	struct nouveau_dmem_fault *fault = private;
	struct nouveau_drm *drm = fault->drm;

	if (fault->fence) {
		nouveau_fence_wait(fault->fence, true, false);
		nouveau_fence_unref(&fault->fence);
	} else {
		/*
		 * FIXME wait for channel to be IDLE before calling finalizing
		 * the hmem object below (nouveau_migrate_hmem_fini()).
		 */
	}
	nouveau_migrate_hmem_fini(drm, &fault->hmem);
}

static const struct migrate_vma_ops nouveau_dmem_fault_migrate_ops = {
	.alloc_and_copy		= nouveau_dmem_fault_alloc_and_copy,
	.finalize_and_map	= nouveau_dmem_fault_finalize_and_map,
};

static int
nouveau_dmem_fault(struct hmm_devmem *devmem,
		   struct vm_area_struct *vma,
		   unsigned long addr,
		   const struct page *page,
		   unsigned int flags,
		   pmd_t *pmdp)
{
	struct drm_device *drm_dev = dev_get_drvdata(devmem->device);
	unsigned long src[1] = {0}, dst[1] = {0};
	struct nouveau_dmem_fault fault = {0};
	int ret;



	/*
	 * FIXME what we really want is to find some heuristic to migrate more
	 * than just one page on CPU fault. When such fault happens it is very
	 * likely that more surrounding page will CPU fault too.
	 */
	fault.drm = nouveau_drm(drm_dev);
	ret = migrate_vma(&nouveau_dmem_fault_migrate_ops, vma, addr,
			  addr + PAGE_SIZE, src, dst, &fault);
	if (ret)
		return VM_FAULT_SIGBUS;

	if (dst[0] == MIGRATE_PFN_ERROR)
		return VM_FAULT_SIGBUS;

	return 0;
}

static const struct hmm_devmem_ops
nouveau_dmem_devmem_ops = {
	.free = nouveau_dmem_free,
	.fault = nouveau_dmem_fault,
};

static int
nouveau_dmem_chunk_alloc(struct nouveau_drm *drm)
{
	struct nouveau_dmem_chunk *chunk;
	int ret;

	if (drm->dmem == NULL)
		return -EINVAL;

	mutex_lock(&drm->dmem->mutex);
	chunk = list_first_entry_or_null(&drm->dmem->chunk_empty,
					 struct nouveau_dmem_chunk,
					 list);
	if (chunk == NULL) {
		mutex_unlock(&drm->dmem->mutex);
		return -ENOMEM;
	}

	list_del(&chunk->list);
	mutex_unlock(&drm->dmem->mutex);

	ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0,
			     TTM_PL_FLAG_VRAM, 0, 0, NULL, NULL,
			     &chunk->bo);
	if (ret)
		goto out;

	ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
	if (ret) {
		nouveau_bo_ref(NULL, &chunk->bo);
		goto out;
	}

	bitmap_zero(chunk->bitmap, DMEM_CHUNK_NPAGES);
	spin_lock_init(&chunk->lock);

out:
	mutex_lock(&drm->dmem->mutex);
	if (chunk->bo)
		list_add(&chunk->list, &drm->dmem->chunk_empty);
	else
		list_add_tail(&chunk->list, &drm->dmem->chunk_empty);
	mutex_unlock(&drm->dmem->mutex);

	return ret;
}

static struct nouveau_dmem_chunk *
nouveau_dmem_chunk_first_free_locked(struct nouveau_drm *drm)
{
	struct nouveau_dmem_chunk *chunk;

	chunk = list_first_entry_or_null(&drm->dmem->chunk_free,
					 struct nouveau_dmem_chunk,
					 list);
	if (chunk)
		return chunk;

	chunk = list_first_entry_or_null(&drm->dmem->chunk_empty,
					 struct nouveau_dmem_chunk,
					 list);
	if (chunk->bo)
		return chunk;

	return NULL;
}

static int
nouveau_dmem_pages_alloc(struct nouveau_drm *drm,
			 unsigned long npages,
			 unsigned long *pages)
{
	struct nouveau_dmem_chunk *chunk;
	unsigned long c;
	int ret;

	memset(pages, 0xff, npages * sizeof(*pages));

	mutex_lock(&drm->dmem->mutex);
	for (c = 0; c < npages;) {
		unsigned long i;

		chunk = nouveau_dmem_chunk_first_free_locked(drm);
		if (chunk == NULL) {
			mutex_unlock(&drm->dmem->mutex);
			ret = nouveau_dmem_chunk_alloc(drm);
			if (ret) {
				if (c)
					break;
				return ret;
			}
			continue;
		}

		spin_lock(&chunk->lock);
		i = find_first_zero_bit(chunk->bitmap, DMEM_CHUNK_NPAGES);
		while (i < DMEM_CHUNK_NPAGES && c < npages) {
			pages[c] = chunk->pfn_first + i;
			set_bit(i, chunk->bitmap);
			chunk->callocated++;
			c++;

			i = find_next_zero_bit(chunk->bitmap,
					DMEM_CHUNK_NPAGES, i);
		}
		spin_unlock(&chunk->lock);
	}
	mutex_unlock(&drm->dmem->mutex);

	return 0;
}

static struct page *
nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm)
{
	unsigned long pfns[1];
	struct page *page;
	int ret;

	/* FIXME stop all the miss-match API ... */
	ret = nouveau_dmem_pages_alloc(drm, 1, pfns);
	if (ret)
		return NULL;

	page = pfn_to_page(pfns[0]);
	get_page(page);
	lock_page(page);
	return page;
}

static void
nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page)
{
	unlock_page(page);
	put_page(page);
}

void
nouveau_dmem_resume(struct nouveau_drm *drm)
{
	struct nouveau_dmem_chunk *chunk;
	int ret;

	if (drm->dmem == NULL)
		return;

	mutex_lock(&drm->dmem->mutex);
	list_for_each_entry (chunk, &drm->dmem->chunk_free, list) {
		ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
		/* FIXME handle pin failure */
		WARN_ON(ret);
	}
	list_for_each_entry (chunk, &drm->dmem->chunk_full, list) {
		ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
		/* FIXME handle pin failure */
		WARN_ON(ret);
	}
	list_for_each_entry (chunk, &drm->dmem->chunk_empty, list) {
		ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
		/* FIXME handle pin failure */
		WARN_ON(ret);
	}
	mutex_unlock(&drm->dmem->mutex);
}

void
nouveau_dmem_suspend(struct nouveau_drm *drm)
{
	struct nouveau_dmem_chunk *chunk;

	if (drm->dmem == NULL)
		return;

	mutex_lock(&drm->dmem->mutex);
	list_for_each_entry (chunk, &drm->dmem->chunk_free, list) {
		nouveau_bo_unpin(chunk->bo);
	}
	list_for_each_entry (chunk, &drm->dmem->chunk_full, list) {
		nouveau_bo_unpin(chunk->bo);
	}
	list_for_each_entry (chunk, &drm->dmem->chunk_empty, list) {
		nouveau_bo_unpin(chunk->bo);
	}
	mutex_unlock(&drm->dmem->mutex);
}

void
nouveau_dmem_fini(struct nouveau_drm *drm)
{
	struct nouveau_dmem_chunk *chunk, *tmp;

	if (drm->dmem == NULL)
		return;

	mutex_lock(&drm->dmem->mutex);

	WARN_ON(!list_empty(&drm->dmem->chunk_free));
	WARN_ON(!list_empty(&drm->dmem->chunk_full));

	list_for_each_entry_safe (chunk, tmp, &drm->dmem->chunk_empty, list) {
		if (chunk->bo) {
			nouveau_bo_unpin(chunk->bo);
			nouveau_bo_ref(NULL, &chunk->bo);
		}
		list_del(&chunk->list);
		kfree(chunk);
	}

	mutex_unlock(&drm->dmem->mutex);
}

static int
nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages,
583 584
		    enum nouveau_aper dst_aper, u64 dst_addr,
		    enum nouveau_aper src_aper, u64 src_addr)
585 586
{
	struct nouveau_channel *chan = drm->dmem->migrate.chan;
587 588 589 590 591
	u32 launch_dma = (1 << 9) /* MULTI_LINE_ENABLE. */ |
			 (1 << 8) /* DST_MEMORY_LAYOUT_PITCH. */ |
			 (1 << 7) /* SRC_MEMORY_LAYOUT_PITCH. */ |
			 (1 << 2) /* FLUSH_ENABLE_TRUE. */ |
			 (2 << 0) /* DATA_TRANSFER_TYPE_NON_PIPELINED. */;
592 593
	int ret;

594
	ret = RING_SPACE(chan, 13);
595 596 597
	if (ret)
		return ret;

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	if (src_aper != NOUVEAU_APER_VIRT) {
		switch (src_aper) {
		case NOUVEAU_APER_VRAM:
			BEGIN_IMC0(chan, NvSubCopy, 0x0260, 0);
			break;
		case NOUVEAU_APER_HOST:
			BEGIN_IMC0(chan, NvSubCopy, 0x0260, 1);
			break;
		default:
			return -EINVAL;
		}
		launch_dma |= 0x00001000; /* SRC_TYPE_PHYSICAL. */
	}

	if (dst_aper != NOUVEAU_APER_VIRT) {
		switch (dst_aper) {
		case NOUVEAU_APER_VRAM:
			BEGIN_IMC0(chan, NvSubCopy, 0x0264, 0);
			break;
		case NOUVEAU_APER_HOST:
			BEGIN_IMC0(chan, NvSubCopy, 0x0264, 1);
			break;
		default:
			return -EINVAL;
		}
		launch_dma |= 0x00002000; /* DST_TYPE_PHYSICAL. */
	}

626 627 628 629 630 631 632 633 634
	BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
	OUT_RING  (chan, upper_32_bits(src_addr));
	OUT_RING  (chan, lower_32_bits(src_addr));
	OUT_RING  (chan, upper_32_bits(dst_addr));
	OUT_RING  (chan, lower_32_bits(dst_addr));
	OUT_RING  (chan, PAGE_SIZE);
	OUT_RING  (chan, PAGE_SIZE);
	OUT_RING  (chan, PAGE_SIZE);
	OUT_RING  (chan, npages);
635 636
	BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
	OUT_RING  (chan, launch_dma);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
	return 0;
}

static int
nouveau_dmem_migrate_init(struct nouveau_drm *drm)
{
	switch (drm->ttm.copy.oclass) {
	case PASCAL_DMA_COPY_A:
	case PASCAL_DMA_COPY_B:
	case  VOLTA_DMA_COPY_A:
	case TURING_DMA_COPY_A:
		drm->dmem->migrate.copy_func = nvc0b5_migrate_copy;
		drm->dmem->migrate.chan = drm->ttm.chan;
		return 0;
	default:
		break;
	}
	return -ENODEV;
}

void
nouveau_dmem_init(struct nouveau_drm *drm)
{
	struct device *device = drm->dev->dev;
	unsigned long i, size;
	int ret;

	/* This only make sense on PASCAL or newer */
	if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL)
		return;

	if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL)))
		return;

	mutex_init(&drm->dmem->mutex);
	INIT_LIST_HEAD(&drm->dmem->chunk_free);
	INIT_LIST_HEAD(&drm->dmem->chunk_full);
	INIT_LIST_HEAD(&drm->dmem->chunk_empty);

	size = ALIGN(drm->client.device.info.ram_user, DMEM_CHUNK_SIZE);

	/* Initialize migration dma helpers before registering memory */
	ret = nouveau_dmem_migrate_init(drm);
	if (ret) {
		kfree(drm->dmem);
		drm->dmem = NULL;
		return;
	}

	/*
	 * FIXME we need some kind of policy to decide how much VRAM we
	 * want to register with HMM. For now just register everything
	 * and latter if we want to do thing like over commit then we
	 * could revisit this.
	 */
	drm->dmem->devmem = hmm_devmem_add(&nouveau_dmem_devmem_ops,
					   device, size);
	if (drm->dmem->devmem == NULL) {
		kfree(drm->dmem);
		drm->dmem = NULL;
		return;
	}

	for (i = 0; i < (size / DMEM_CHUNK_SIZE); ++i) {
		struct nouveau_dmem_chunk *chunk;
		struct page *page;
		unsigned long j;

		chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
		if (chunk == NULL) {
			nouveau_dmem_fini(drm);
			return;
		}

		chunk->drm = drm;
		chunk->pfn_first = drm->dmem->devmem->pfn_first;
		chunk->pfn_first += (i * DMEM_CHUNK_NPAGES);
		list_add_tail(&chunk->list, &drm->dmem->chunk_empty);

		page = pfn_to_page(chunk->pfn_first);
		for (j = 0; j < DMEM_CHUNK_NPAGES; ++j, ++page) {
			hmm_devmem_page_set_drvdata(page, (long)chunk);
		}
	}

	NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", size >> 20);
}

static void
nouveau_dmem_migrate_alloc_and_copy(struct vm_area_struct *vma,
				    const unsigned long *src_pfns,
				    unsigned long *dst_pfns,
				    unsigned long start,
				    unsigned long end,
				    void *private)
{
	struct nouveau_migrate *migrate = private;
	struct nouveau_drm *drm = migrate->drm;
	unsigned long addr, i, c, npages = 0;
	nouveau_migrate_copy_t copy;
	int ret;

	/* First allocate new memory */
	for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
		struct page *dpage, *spage;

		dst_pfns[i] = 0;
		spage = migrate_pfn_to_page(src_pfns[i]);
		if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
			continue;

		dpage = nouveau_dmem_page_alloc_locked(drm);
		if (!dpage)
			continue;

		dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) |
			      MIGRATE_PFN_LOCKED |
			      MIGRATE_PFN_DEVICE;
		npages++;
	}

	if (!npages)
		return;

	/* Create scatter list FIXME: get rid of scatter list */
	ret = nouveau_migrate_hmem_init(drm, &migrate->hmem, npages, src_pfns);
	if (ret)
		goto error;

	/* Copy things over */
	copy = drm->dmem->migrate.copy_func;
	for (addr = start, i = c = 0; addr < end; addr += PAGE_SIZE, i++) {
		struct nouveau_dmem_chunk *chunk;
		struct page *spage, *dpage;
		u64 src_addr, dst_addr;

		dpage = migrate_pfn_to_page(dst_pfns[i]);
		if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR)
			continue;

		chunk = (void *)hmm_devmem_page_get_drvdata(dpage);
		dst_addr = page_to_pfn(dpage) - chunk->pfn_first;
779
		dst_addr = (dst_addr << PAGE_SHIFT) + chunk->bo->bo.offset;
780 781 782 783 784 785 786 787 788 789 790

		spage = migrate_pfn_to_page(src_pfns[i]);
		if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) {
			nouveau_dmem_page_free_locked(drm, dpage);
			dst_pfns[i] = 0;
			continue;
		}

		src_addr = migrate->hmem.vma.addr + (c << PAGE_SHIFT);
		c++;

791
		ret = copy(drm, 1, NOUVEAU_APER_VRAM, dst_addr,
792
				   NOUVEAU_APER_VIRT, src_addr);
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
		if (ret) {
			nouveau_dmem_page_free_locked(drm, dpage);
			dst_pfns[i] = 0;
			continue;
		}
	}

	nouveau_fence_new(drm->dmem->migrate.chan, false, &migrate->fence);

	return;

error:
	for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) {
		struct page *page;

		if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR)
			continue;

		page = migrate_pfn_to_page(dst_pfns[i]);
		dst_pfns[i] = MIGRATE_PFN_ERROR;
		if (page == NULL)
			continue;

		__free_page(page);
	}
}

void nouveau_dmem_migrate_finalize_and_map(struct vm_area_struct *vma,
					   const unsigned long *src_pfns,
					   const unsigned long *dst_pfns,
					   unsigned long start,
					   unsigned long end,
					   void *private)
{
	struct nouveau_migrate *migrate = private;
	struct nouveau_drm *drm = migrate->drm;

	if (migrate->fence) {
		nouveau_fence_wait(migrate->fence, true, false);
		nouveau_fence_unref(&migrate->fence);
	} else {
		/*
		 * FIXME wait for channel to be IDLE before finalizing
		 * the hmem object below (nouveau_migrate_hmem_fini()) ?
		 */
	}
	nouveau_migrate_hmem_fini(drm, &migrate->hmem);

	/*
	 * FIXME optimization: update GPU page table to point to newly
	 * migrated memory.
	 */
}

static const struct migrate_vma_ops nouveau_dmem_migrate_ops = {
	.alloc_and_copy		= nouveau_dmem_migrate_alloc_and_copy,
	.finalize_and_map	= nouveau_dmem_migrate_finalize_and_map,
};

int
nouveau_dmem_migrate_vma(struct nouveau_drm *drm,
			 struct vm_area_struct *vma,
			 unsigned long start,
			 unsigned long end)
{
	unsigned long *src_pfns, *dst_pfns, npages;
	struct nouveau_migrate migrate = {0};
	unsigned long i, c, max;
	int ret = 0;

	npages = (end - start) >> PAGE_SHIFT;
	max = min(SG_MAX_SINGLE_ALLOC, npages);
	src_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL);
	if (src_pfns == NULL)
		return -ENOMEM;
	dst_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL);
	if (dst_pfns == NULL) {
		kfree(src_pfns);
		return -ENOMEM;
	}

	migrate.drm = drm;
	migrate.vma = vma;
	migrate.npages = npages;
	for (i = 0; i < npages; i += c) {
		unsigned long next;

		c = min(SG_MAX_SINGLE_ALLOC, npages);
		next = start + (c << PAGE_SHIFT);
		ret = migrate_vma(&nouveau_dmem_migrate_ops, vma, start,
				  next, src_pfns, dst_pfns, &migrate);
		if (ret)
			goto out;
		start = next;
	}

out:
	kfree(dst_pfns);
	kfree(src_pfns);
	return ret;
}

static inline bool
nouveau_dmem_page(struct nouveau_drm *drm, struct page *page)
{
	if (!is_device_private_page(page))
		return false;

	if (drm->dmem->devmem != page->pgmap->data)
		return false;

	return true;
}

void
nouveau_dmem_convert_pfn(struct nouveau_drm *drm,
			 struct hmm_range *range)
{
	unsigned long i, npages;

	npages = (range->end - range->start) >> PAGE_SHIFT;
	for (i = 0; i < npages; ++i) {
		struct nouveau_dmem_chunk *chunk;
		struct page *page;
		uint64_t addr;

		page = hmm_pfn_to_page(range, range->pfns[i]);
		if (page == NULL)
			continue;

		if (!(range->pfns[i] & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
			continue;
		}

		if (!nouveau_dmem_page(drm, page)) {
			WARN(1, "Some unknown device memory !\n");
			range->pfns[i] = 0;
			continue;
		}

		chunk = (void *)hmm_devmem_page_get_drvdata(page);
		addr = page_to_pfn(page) - chunk->pfn_first;
		addr = (addr + chunk->bo->bo.mem.start) << PAGE_SHIFT;

		range->pfns[i] &= ((1UL << range->pfn_shift) - 1);
		range->pfns[i] |= (addr >> PAGE_SHIFT) << range->pfn_shift;
	}
}