amba-pl08x.c 54.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22 23
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
24 25
 *
 * Documentation: ARM DDI 0196G == PL080
26
 * Documentation: ARM DDI 0218E == PL081
27
 *
28 29
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
 *    will then move to the next LLI entry.
 *
 * Only the former works sanely with scatter lists, so we only implement
 * the DMAC flow control method.  However, peripherals which use the LBREQ
 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
 * these hardware restrictions prevents them from using scatter DMA.
73 74 75 76 77 78 79 80 81 82 83
 *
 * Global TODO:
 * - Break out common code from arch/arm/mach-s3c64xx and share
 */
#include <linux/device.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/dmapool.h>
#include <linux/dmaengine.h>
84
#include <linux/amba/bus.h>
85 86 87 88 89 90 91 92 93
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>

#include <asm/hardware/pl080.h>

#define DRIVER_NAME	"pl08xdmac"

/**
94
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
95
 * @channels: the number of channels available in this variant
96
 * @dualmaster: whether this version supports dual AHB masters or not.
97 98 99 100 101 102 103 104
 */
struct vendor_data {
	u8 channels;
	bool dualmaster;
};

/*
 * PL08X private data structures
105
 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
106 107
 * start & end do not - their bus bit info is in cctl.  Also note that these
 * are fixed 32-bit quantities.
108
 */
109
struct pl08x_lli {
110 111
	u32 src;
	u32 dst;
112
	u32 lli;
113 114 115 116 117 118 119 120 121 122 123 124 125 126
	u32 cctl;
};

/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
 * @pool_ctr: counter of LLIs in the pool
127 128
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
 * @mem_buses: set to indicate memory transfers on AHB2.
129 130 131 132 133 134 135
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
136
	const struct vendor_data *vd;
137 138 139 140
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
	int pool_ctr;
141 142
	u8 lli_buses;
	u8 mem_buses;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	spinlock_t lock;
};

/*
 * PL08X specific defines
 */

/*
 * Memory boundaries: the manual for PL08x says that the controller
 * cannot read past a 1KiB boundary, so these defines are used to
 * create transfer LLIs that do not cross such boundaries.
 */
#define PL08X_BOUNDARY_SHIFT		(10)	/* 1KB 0x400 */
#define PL08X_BOUNDARY_SIZE		(1 << PL08X_BOUNDARY_SHIFT)

/* Minimum period between work queue runs */
#define PL08X_WQ_PERIODMIN	20

/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE	0x2000

164
/* Maximum times we call dma_pool_alloc on this pool without freeing */
165
#define PL08X_MAX_ALLOCS	0x40
166
#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
167 168 169 170 171 172 173
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
	return container_of(chan, struct pl08x_dma_chan, chan);
}

174 175 176 177 178
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct pl08x_txd, tx);
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

	val = readl(ch->base + PL080_CH_CONFIG);
	return val & PL080_CONFIG_ACTIVE;
}

/*
 * Set the initial DMA register values i.e. those for the first LLI
194
 * The next LLI pointer and the configuration interrupt bit have
195 196
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
197
 */
198 199
static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
	struct pl08x_txd *txd)
200
{
201
	struct pl08x_driver_data *pl08x = plchan->host;
202
	struct pl08x_phy_chan *phychan = plchan->phychan;
203
	struct pl08x_lli *lli = &txd->llis_va[0];
204
	u32 val;
205 206

	plchan->at = txd;
207

208 209 210
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
211

212 213
	dev_vdbg(&pl08x->adev->dev,
		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
214 215
		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
216
		txd->ccfg);
217 218 219 220 221

	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
	writel(lli->lli, phychan->base + PL080_CH_LLI);
	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
222
	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
223 224 225 226

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
227
		cpu_relax();
228

229 230
	/* Do not access config register until channel shows as inactive */
	val = readl(phychan->base + PL080_CH_CONFIG);
231
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
232
		val = readl(phychan->base + PL080_CH_CONFIG);
233

234
	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
235 236 237 238 239 240 241
}

/*
 * Overall DMAC remains enabled always.
 *
 * Disabling individual channels could lose data.
 *
242 243
 * Disable the peripheral DMA after disabling the DMAC in order to allow
 * the DMAC FIFO to drain, and hence allow the channel to show inactive
244 245 246 247 248 249 250 251 252 253 254 255
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Set the HALT bit and wait for the FIFO to drain */
	val = readl(ch->base + PL080_CH_CONFIG);
	val |= PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);

	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(ch))
256
		cpu_relax();
257 258 259 260 261 262 263 264 265 266 267 268 269
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);
}


270 271 272 273 274 275 276 277
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
278
{
279
	u32 val = readl(ch->base + PL080_CH_CONFIG);
280

281 282
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
283 284

	writel(val, ch->base + PL080_CH_CONFIG);
285 286 287

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
	struct pl08x_phy_chan *ch;
	struct pl08x_txd *txd;
	unsigned long flags;
314
	size_t bytes = 0;
315 316 317 318 319 320

	spin_lock_irqsave(&plchan->lock, flags);
	ch = plchan->phychan;
	txd = plchan->at;

	/*
321 322
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
323 324
	 */
	if (ch && txd) {
325
		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
326

327
		/* First get the remaining bytes in the active transfer */
328 329 330
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

		if (clli) {
331 332 333 334 335 336
			struct pl08x_lli *llis_va = txd->llis_va;
			dma_addr_t llis_bus = txd->llis_bus;
			int index;

			BUG_ON(clli < llis_bus || clli >= llis_bus +
				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
337

338 339 340 341 342 343 344 345
			/*
			 * Locate the next LLI - as this is an array,
			 * it's simple maths to find.
			 */
			index = (clli - llis_bus) / sizeof(struct pl08x_lli);

			for (; index < MAX_NUM_TSFR_LLIS; index++) {
				bytes += get_bytes_in_cctl(llis_va[index].cctl);
346 347

				/*
348
				 * A LLI pointer of 0 terminates the LLI list
349
				 */
350 351
				if (!llis_va[index].lli)
					break;
352 353 354 355 356
			}
		}
	}

	/* Sum up all queued transactions */
357
	if (!list_empty(&plchan->pend_list)) {
358
		struct pl08x_txd *txdi;
359
		list_for_each_entry(txdi, &plchan->pend_list, node) {
360 361 362 363 364 365 366 367 368 369 370
			bytes += txdi->len;
		}
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
371 372 373 374
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

		if (!ch->serving) {
			ch->serving = virt_chan;
			ch->signal = -1;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

	return ch;
}

static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
	unsigned long flags;

412 413
	spin_lock_irqsave(&ch->lock, flags);

414
	/* Stop the channel and clear its interrupts */
415
	pl08x_terminate_phy_chan(pl08x, ch);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

	/* Mark it as free */
	ch->serving = NULL;
	spin_unlock_irqrestore(&ch->lock, flags);
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
443
				  size_t tsize)
444 445 446
{
	u32 retbits = cctl;

447
	/* Remove all src, dst and transfer size bits */
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

487 488 489 490 491 492 493 494
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_driver_data *pl08x;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
};

495
/*
496 497 498
 * Autoselect a master bus to use for the transfer this prefers the
 * destination bus if both available if fixed address on one bus the
 * other will be chosen
499
 */
500 501
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
502 503
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
504 505
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
506
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
507 508
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
509
	} else {
510 511 512 513 514 515 516 517 518 519 520 521
		if (bd->dstbus.buswidth == 4) {
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
		} else if (bd->srcbus.buswidth == 4) {
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
		} else if (bd->dstbus.buswidth == 2) {
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
		} else if (bd->srcbus.buswidth == 2) {
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
522
		} else {
523 524 525
			/* bd->srcbus.buswidth == 1 */
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
526 527 528 529 530
		}
	}
}

/*
531
 * Fills in one LLI for a certain transfer descriptor and advance the counter
532
 */
533 534
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
	int num_llis, int len, u32 cctl)
535
{
536 537
	struct pl08x_lli *llis_va = bd->txd->llis_va;
	dma_addr_t llis_bus = bd->txd->llis_bus;
538 539 540

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

541
	llis_va[num_llis].cctl = cctl;
542 543
	llis_va[num_llis].src = bd->srcbus.addr;
	llis_va[num_llis].dst = bd->dstbus.addr;
544
	llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
545
	if (bd->pl08x->lli_buses & PL08X_AHB2)
546
		llis_va[num_llis].lli |= PL080_LLI_LM_AHB2;
547 548

	if (cctl & PL080_CONTROL_SRC_INCR)
549
		bd->srcbus.addr += len;
550
	if (cctl & PL080_CONTROL_DST_INCR)
551
		bd->dstbus.addr += len;
552

553
	BUG_ON(bd->remainder < len);
554

555
	bd->remainder -= len;
556 557 558
}

/*
559 560
 * Return number of bytes to fill to boundary, or len.
 * This calculation works for any value of addr.
561
 */
562
static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
563
{
564 565
	size_t boundary_len = PL08X_BOUNDARY_SIZE -
			(addr & (PL08X_BOUNDARY_SIZE - 1));
566

567
	return min(boundary_len, len);
568 569 570 571 572 573 574 575 576 577 578
}

/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
579
	struct pl08x_lli_build_data bd;
580 581
	int num_llis = 0;
	u32 cctl;
582 583
	size_t max_bytes_per_lli;
	size_t total_bytes = 0;
584
	struct pl08x_lli *llis_va;
585 586 587 588 589 590 591 592 593 594

	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
				      &txd->llis_bus);
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

	pl08x->pool_ctr++;

595 596
	/* Get the default CCTL */
	cctl = txd->cctl;
597

598 599
	bd.txd = txd;
	bd.pl08x = pl08x;
600 601
	bd.srcbus.addr = txd->src_addr;
	bd.dstbus.addr = txd->dst_addr;
602

603
	/* Find maximum width of the source bus */
604
	bd.srcbus.maxwidth =
605 606 607 608
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
609
	bd.dstbus.maxwidth =
610 611 612 613
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

	/* Set up the bus widths to the maximum */
614 615
	bd.srcbus.buswidth = bd.srcbus.maxwidth;
	bd.dstbus.buswidth = bd.dstbus.maxwidth;
616 617
	dev_vdbg(&pl08x->adev->dev,
		 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
618
		 __func__, bd.srcbus.buswidth, bd.dstbus.buswidth);
619 620 621 622 623


	/*
	 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
	 */
624
	max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
625 626
		PL080_CONTROL_TRANSFER_SIZE_MASK;
	dev_vdbg(&pl08x->adev->dev,
627
		 "%s max bytes per lli = %zu\n",
628 629 630
		 __func__, max_bytes_per_lli);

	/* We need to count this down to zero */
631
	bd.remainder = txd->len;
632
	dev_vdbg(&pl08x->adev->dev,
633
		 "%s remainder = %zu\n",
634
		 __func__, bd.remainder);
635 636 637 638 639 640

	/*
	 * Choose bus to align to
	 * - prefers destination bus if both available
	 * - if fixed address on one bus chooses other
	 */
641
	pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
642 643

	if (txd->len < mbus->buswidth) {
644
		/* Less than a bus width available - send as single bytes */
645
		while (bd.remainder) {
646 647
			dev_vdbg(&pl08x->adev->dev,
				 "%s single byte LLIs for a transfer of "
648
				 "less than a bus width (remain 0x%08x)\n",
649
				 __func__, bd.remainder);
650
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
651
			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
652 653 654
			total_bytes++;
		}
	} else {
655
		/* Make one byte LLIs until master bus is aligned */
656 657 658
		while ((mbus->addr) % (mbus->buswidth)) {
			dev_vdbg(&pl08x->adev->dev,
				"%s adjustment lli for less than bus width "
659
				 "(remain 0x%08x)\n",
660
				 __func__, bd.remainder);
661
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
662
			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
663 664 665 666
			total_bytes++;
		}

		/*
667
		 * Master now aligned
668 669 670 671 672 673 674 675 676 677 678 679 680 681
		 * - if slave is not then we must set its width down
		 */
		if (sbus->addr % sbus->buswidth) {
			dev_dbg(&pl08x->adev->dev,
				"%s set down bus width to one byte\n",
				 __func__);

			sbus->buswidth = 1;
		}

		/*
		 * Make largest possible LLIs until less than one bus
		 * width left
		 */
682
		while (bd.remainder > (mbus->buswidth - 1)) {
683
			size_t lli_len, target_len, tsize, odd_bytes;
684 685 686 687 688

			/*
			 * If enough left try to send max possible,
			 * otherwise try to send the remainder
			 */
689
			target_len = min(bd.remainder, max_bytes_per_lli);
690 691

			/*
692 693 694
			 * Set bus lengths for incrementing buses to the
			 * number of bytes which fill to next memory boundary,
			 * limiting on the target length calculated above.
695 696
			 */
			if (cctl & PL080_CONTROL_SRC_INCR)
697 698
				bd.srcbus.fill_bytes =
					pl08x_pre_boundary(bd.srcbus.addr,
699
						target_len);
700
			else
701
				bd.srcbus.fill_bytes = target_len;
702 703

			if (cctl & PL080_CONTROL_DST_INCR)
704 705
				bd.dstbus.fill_bytes =
					pl08x_pre_boundary(bd.dstbus.addr,
706
						target_len);
707
			else
708
				bd.dstbus.fill_bytes = target_len;
709

710
			/* Find the nearest */
711 712
			lli_len	= min(bd.srcbus.fill_bytes,
				      bd.dstbus.fill_bytes);
713

714
			BUG_ON(lli_len > bd.remainder);
715 716 717

			if (lli_len <= 0) {
				dev_err(&pl08x->adev->dev,
718
					"%s lli_len is %zu, <= 0\n",
719 720 721 722 723 724
						__func__, lli_len);
				return 0;
			}

			if (lli_len == target_len) {
				/*
725 726
				 * Can send what we wanted.
				 * Maintain alignment
727 728 729 730 731 732 733
				 */
				lli_len	= (lli_len/mbus->buswidth) *
							mbus->buswidth;
				odd_bytes = 0;
			} else {
				/*
				 * So now we know how many bytes to transfer
734 735 736 737 738 739
				 * to get to the nearest boundary.  The next
				 * LLI will past the boundary.  However, we
				 * may be working to a boundary on the slave
				 * bus.  We need to ensure the master stays
				 * aligned, and that we are working in
				 * multiples of the bus widths.
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
				 */
				odd_bytes = lli_len % mbus->buswidth;
				lli_len -= odd_bytes;

			}

			if (lli_len) {
				/*
				 * Check against minimum bus alignment:
				 * Calculate actual transfer size in relation
				 * to bus width an get a maximum remainder of
				 * the smallest bus width - 1
				 */
				/* FIXME: use round_down()? */
				tsize = lli_len / min(mbus->buswidth,
						      sbus->buswidth);
				lli_len	= tsize * min(mbus->buswidth,
						      sbus->buswidth);

				if (target_len != lli_len) {
					dev_vdbg(&pl08x->adev->dev,
761
					"%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
762 763 764 765
					__func__, target_len, lli_len, txd->len);
				}

				cctl = pl08x_cctl_bits(cctl,
766 767
						       bd.srcbus.buswidth,
						       bd.dstbus.buswidth,
768 769 770
						       tsize);

				dev_vdbg(&pl08x->adev->dev,
771
					"%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
772 773 774
					__func__, lli_len, bd.remainder);
				pl08x_fill_lli_for_desc(&bd, num_llis++,
					lli_len, cctl);
775 776 777 778 779 780
				total_bytes += lli_len;
			}


			if (odd_bytes) {
				/*
781 782
				 * Creep past the boundary, maintaining
				 * master alignment
783 784 785
				 */
				int j;
				for (j = 0; (j < mbus->buswidth)
786
						&& (bd.remainder); j++) {
787 788
					cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
					dev_vdbg(&pl08x->adev->dev,
789
						"%s align with boundary, single byte (remain 0x%08zx)\n",
790 791 792
						__func__, bd.remainder);
					pl08x_fill_lli_for_desc(&bd,
						num_llis++, 1, cctl);
793 794 795 796 797 798 799 800
					total_bytes++;
				}
			}
		}

		/*
		 * Send any odd bytes
		 */
801
		while (bd.remainder) {
802 803
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
			dev_vdbg(&pl08x->adev->dev,
804
				"%s align with boundary, single odd byte (remain %zu)\n",
805 806
				__func__, bd.remainder);
			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
807 808 809 810 811
			total_bytes++;
		}
	}
	if (total_bytes != txd->len) {
		dev_err(&pl08x->adev->dev,
812
			"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
813 814 815 816 817 818 819 820 821 822
			__func__, total_bytes, txd->len);
		return 0;
	}

	if (num_llis >= MAX_NUM_TSFR_LLIS) {
		dev_err(&pl08x->adev->dev,
			"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
			__func__, (u32) MAX_NUM_TSFR_LLIS);
		return 0;
	}
823 824

	llis_va = txd->llis_va;
825
	/* The final LLI terminates the LLI. */
826
	llis_va[num_llis - 1].lli = 0;
827
	/* The final LLI element shall also fire an interrupt. */
828
	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
829 830 831 832 833 834 835

#ifdef VERBOSE_DEBUG
	{
		int i;

		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
836
				 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
837 838 839 840 841
				 i,
				 &llis_va[i],
				 llis_va[i].src,
				 llis_va[i].dst,
				 llis_va[i].cctl,
842
				 llis_va[i].lli
843 844 845 846 847 848 849 850 851 852 853 854 855
				);
		}
	}
#endif

	return num_llis;
}

/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
	/* Free the LLI */
856
	dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
857 858 859 860 861 862 863 864 865 866 867 868

	pl08x->pool_ctr--;

	kfree(txd);
}

static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
	struct pl08x_txd *txdi = NULL;
	struct pl08x_txd *next;

869
	if (!list_empty(&plchan->pend_list)) {
870
		list_for_each_entry_safe(txdi,
871
					 next, &plchan->pend_list, node) {
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
			list_del(&txdi->node);
			pl08x_free_txd(pl08x, txdi);
		}
	}
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}

/*
 * This should be called with the channel plchan->lock held
 */
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
			    struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
	int ret;

	/* Check if we already have a channel */
	if (plchan->phychan)
		return 0;

	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		/* No physical channel available, cope with it */
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		return -EBUSY;
	}

	/*
	 * OK we have a physical channel: for memcpy() this is all we
	 * need, but for slaves the physical signals may be muxed!
	 * Can the platform allow us to use this channel?
	 */
	if (plchan->slave &&
	    ch->signal < 0 &&
	    pl08x->pd->get_signal) {
		ret = pl08x->pd->get_signal(plchan);
		if (ret < 0) {
			dev_dbg(&pl08x->adev->dev,
				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
				ch->id, plchan->name);
			/* Release physical channel & return */
			pl08x_put_phy_channel(pl08x, ch);
			return -EBUSY;
		}
		ch->signal = ret;
929 930 931 932 933 934

		/* Assign the flow control signal to this channel */
		if (txd->direction == DMA_TO_DEVICE)
			txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
		else if (txd->direction == DMA_FROM_DEVICE)
			txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
935 936 937 938 939 940 941
	}

	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
		 ch->id,
		 ch->signal,
		 plchan->name);

942
	plchan->phychan_hold++;
943 944 945 946 947
	plchan->phychan = ch;

	return 0;
}

948 949 950 951 952 953 954 955 956 957 958 959
static void release_phy_channel(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
		pl08x->pd->put_signal(plchan);
		plchan->phychan->signal = -1;
	}
	pl08x_put_phy_channel(pl08x, plchan->phychan);
	plchan->phychan = NULL;
}

960 961 962
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
963
	struct pl08x_txd *txd = to_pl08x_txd(tx);
964 965 966
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
967

968 969 970 971
	plchan->chan.cookie += 1;
	if (plchan->chan.cookie < 0)
		plchan->chan.cookie = 1;
	tx->cookie = plchan->chan.cookie;
972 973 974 975 976 977 978 979 980 981 982 983 984

	/* Put this onto the pending list */
	list_add_tail(&txd->node, &plchan->pend_list);

	/*
	 * If there was no physical channel available for this memcpy,
	 * stack the request up and indicate that the channel is waiting
	 * for a free physical channel.
	 */
	if (!plchan->slave && !plchan->phychan) {
		/* Do this memcpy whenever there is a channel ready */
		plchan->state = PL08X_CHAN_WAITING;
		plchan->waiting = txd;
985 986
	} else {
		plchan->phychan_hold--;
987 988
	}

989
	spin_unlock_irqrestore(&plchan->lock, flags);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002

	return tx->cookie;
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
1003 1004 1005
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
 */
static enum dma_status
pl08x_dma_tx_status(struct dma_chan *chan,
		    dma_cookie_t cookie,
		    struct dma_tx_state *txstate)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	enum dma_status ret;
	u32 bytesleft = 0;

1018
	last_used = plchan->chan.cookie;
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	last_complete = plchan->lc;

	ret = dma_async_is_complete(cookie, last_complete, last_used);
	if (ret == DMA_SUCCESS) {
		dma_set_tx_state(txstate, last_complete, last_used, 0);
		return ret;
	}

	/*
	 * This cookie not complete yet
	 */
1030
	last_used = plchan->chan.cookie;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	last_complete = plchan->lc;

	/* Get number of bytes left in the active transactions and queue */
	bytesleft = pl08x_getbytes_chan(plchan);

	dma_set_tx_state(txstate, last_complete, last_used,
			 bytesleft);

	if (plchan->state == PL08X_CHAN_PAUSED)
		return DMA_PAUSED;

	/* Whether waiting or running, we're in progress */
	return DMA_IN_PROGRESS;
}

/* PrimeCell DMA extension */
struct burst_table {
	int burstwords;
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
		.reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 128,
		.reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 64,
		.reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 32,
		.reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 16,
		.reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 8,
		.reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 4,
		.reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 1,
		.reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
};

1095 1096
static int dma_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
1097 1098 1099 1100 1101
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_channel_data *cd = plchan->cd;
	enum dma_slave_buswidth addr_width;
1102
	dma_addr_t addr;
1103 1104
	u32 maxburst;
	u32 cctl = 0;
1105
	int i;
1106 1107 1108

	if (!plchan->slave)
		return -EINVAL;
1109 1110 1111 1112

	/* Transfer direction */
	plchan->runtime_direction = config->direction;
	if (config->direction == DMA_TO_DEVICE) {
1113
		addr = config->dst_addr;
1114 1115 1116
		addr_width = config->dst_addr_width;
		maxburst = config->dst_maxburst;
	} else if (config->direction == DMA_FROM_DEVICE) {
1117
		addr = config->src_addr;
1118 1119 1120 1121 1122
		addr_width = config->src_addr_width;
		maxburst = config->src_maxburst;
	} else {
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien transfer direction\n");
1123
		return -EINVAL;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	}

	switch (addr_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
			(PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
			(PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
			(PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
		break;
	default:
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien address width\n");
1142
		return -EINVAL;
1143 1144 1145 1146
	}

	/*
	 * Now decide on a maxburst:
1147 1148 1149
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
1150
	 */
1151
	if (plchan->cd->single || maxburst == 0) {
1152 1153 1154
		cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
	} else {
1155
		for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1156 1157 1158 1159 1160
			if (burst_sizes[i].burstwords <= maxburst)
				break;
		cctl |= burst_sizes[i].reg;
	}

1161 1162
	plchan->runtime_addr = addr;

1163 1164 1165 1166 1167
	/* Modify the default channel data to fit PrimeCell request */
	cd->cctl = cctl;

	dev_dbg(&pl08x->adev->dev,
		"configured channel %s (%s) for %s, data width %d, "
1168
		"maxburst %d words, LE, CCTL=0x%08x\n",
1169 1170 1171 1172
		dma_chan_name(chan), plchan->name,
		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
		addr_width,
		maxburst,
1173
		cctl);
1174 1175

	return 0;
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
1188 1189 1190
	/* Something is already active, or we're waiting for a channel... */
	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
		spin_unlock_irqrestore(&plchan->lock, flags);
1191
		return;
1192
	}
1193 1194

	/* Take the first element in the queue and execute it */
1195
	if (!list_empty(&plchan->pend_list)) {
1196 1197
		struct pl08x_txd *next;

1198
		next = list_first_entry(&plchan->pend_list,
1199 1200 1201 1202 1203
					struct pl08x_txd,
					node);
		list_del(&next->node);
		plchan->state = PL08X_CHAN_RUNNING;

1204
		pl08x_start_txd(plchan, next);
1205 1206 1207 1208 1209 1210 1211 1212 1213
	}

	spin_unlock_irqrestore(&plchan->lock, flags);
}

static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
					struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
1214 1215
	unsigned long flags;
	int num_llis, ret;
1216 1217

	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1218 1219
	if (!num_llis) {
		kfree(txd);
1220
		return -EINVAL;
1221
	}
1222

1223
	spin_lock_irqsave(&plchan->lock, flags);
1224 1225 1226 1227 1228 1229 1230 1231

	/*
	 * See if we already have a physical channel allocated,
	 * else this is the time to try to get one.
	 */
	ret = prep_phy_channel(plchan, txd);
	if (ret) {
		/*
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
		 * No physical channel was available.
		 *
		 * memcpy transfers can be sorted out at submission time.
		 *
		 * Slave transfers may have been denied due to platform
		 * channel muxing restrictions.  Since there is no guarantee
		 * that this will ever be resolved, and the signal must be
		 * acquired AFTER acquiring the physical channel, we will let
		 * them be NACK:ed with -EBUSY here. The drivers can retry
		 * the prep() call if they are eager on doing this using DMA.
1242 1243 1244
		 */
		if (plchan->slave) {
			pl08x_free_txd_list(pl08x, plchan);
1245
			pl08x_free_txd(pl08x, txd);
1246
			spin_unlock_irqrestore(&plchan->lock, flags);
1247 1248 1249 1250
			return -EBUSY;
		}
	} else
		/*
1251 1252 1253 1254
		 * Else we're all set, paused and ready to roll, status
		 * will switch to PL08X_CHAN_RUNNING when we call
		 * issue_pending(). If there is something running on the
		 * channel already we don't change its state.
1255 1256 1257 1258
		 */
		if (plchan->state == PL08X_CHAN_IDLE)
			plchan->state = PL08X_CHAN_PAUSED;

1259
	spin_unlock_irqrestore(&plchan->lock, flags);
1260 1261 1262 1263

	return 0;
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

1281 1282
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
	unsigned long flags)
1283 1284 1285 1286 1287
{
	struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);

	if (txd) {
		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1288
		txd->tx.flags = flags;
1289 1290
		txd->tx.tx_submit = pl08x_tx_submit;
		INIT_LIST_HEAD(&txd->node);
1291 1292 1293 1294

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1295 1296 1297 1298
	}
	return txd;
}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
	int ret;

1311
	txd = pl08x_get_txd(plchan, flags);
1312 1313 1314 1315 1316 1317 1318
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

	txd->direction = DMA_NONE;
1319 1320
	txd->src_addr = src;
	txd->dst_addr = dest;
1321
	txd->len = len;
1322 1323

	/* Set platform data for m2m */
1324
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1325 1326
	txd->cctl = pl08x->pd->memcpy_channel.cctl &
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1327

1328
	/* Both to be incremented or the code will break */
1329
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1330 1331

	if (pl08x->vd->dualmaster)
1332 1333
		txd->cctl |= pl08x_select_bus(pl08x,
					pl08x->mem_buses, pl08x->mem_buses);
1334 1335 1336 1337 1338 1339 1340 1341

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

1342
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1343 1344 1345 1346 1347 1348 1349
		struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_data_direction direction,
		unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1350
	u8 src_buses, dst_buses;
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	int ret;

	/*
	 * Current implementation ASSUMES only one sg
	 */
	if (sg_len != 1) {
		dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
			__func__);
		BUG();
	}

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
		__func__, sgl->length, plchan->name);

1365
	txd = pl08x_get_txd(plchan, flags);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	if (direction != plchan->runtime_direction)
		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
			"the direction configured for the PrimeCell\n",
			__func__);

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
	txd->direction = direction;
1382 1383
	txd->len = sgl->length;

1384
	txd->cctl = plchan->cd->cctl &
1385 1386
			~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
			  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1387 1388 1389 1390
			  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	txd->cctl |= PL080_CONTROL_PROT_SYS;
1391

1392
	if (direction == DMA_TO_DEVICE) {
1393
		txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1394
		txd->cctl |= PL080_CONTROL_SRC_INCR;
1395
		txd->src_addr = sgl->dma_address;
1396
		if (plchan->runtime_addr)
1397
			txd->dst_addr = plchan->runtime_addr;
1398
		else
1399
			txd->dst_addr = plchan->cd->addr;
1400 1401
		src_buses = pl08x->mem_buses;
		dst_buses = plchan->cd->periph_buses;
1402
	} else if (direction == DMA_FROM_DEVICE) {
1403
		txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1404
		txd->cctl |= PL080_CONTROL_DST_INCR;
1405
		if (plchan->runtime_addr)
1406
			txd->src_addr = plchan->runtime_addr;
1407
		else
1408 1409
			txd->src_addr = plchan->cd->addr;
		txd->dst_addr = sgl->dma_address;
1410 1411
		src_buses = plchan->cd->periph_buses;
		dst_buses = pl08x->mem_buses;
1412 1413 1414 1415 1416 1417
	} else {
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

1418 1419
	txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses);

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
1437 1438
		return dma_set_runtime_config(chan,
					      (struct dma_slave_config *)arg);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->lock, flags);
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
1456
			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1457 1458 1459 1460 1461

			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
1462
			release_phy_channel(plchan);
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		}
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	char *name = chan_id;

	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
1505 1506 1507
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1508 1509 1510 1511 1512 1513 1514
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
	u32 val;

	val = readl(pl08x->base + PL080_CONFIG);
	val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1515
	/* We implicitly clear bit 1 and that means little-endian mode */
1516 1517 1518 1519
	val |= PL080_CONFIG_ENABLE;
	writel(val, pl08x->base + PL080_CONFIG);
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
{
	struct device *dev = txd->tx.chan->device->dev;

	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
			dma_unmap_single(dev, txd->src_addr, txd->len,
				DMA_TO_DEVICE);
		else
			dma_unmap_page(dev, txd->src_addr, txd->len,
				DMA_TO_DEVICE);
	}
	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
			dma_unmap_single(dev, txd->dst_addr, txd->len,
				DMA_FROM_DEVICE);
		else
			dma_unmap_page(dev, txd->dst_addr, txd->len,
				DMA_FROM_DEVICE);
	}
}

1542 1543 1544 1545
static void pl08x_tasklet(unsigned long data)
{
	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
	struct pl08x_driver_data *pl08x = plchan->host;
1546
	struct pl08x_txd *txd;
1547
	unsigned long flags;
1548

1549
	spin_lock_irqsave(&plchan->lock, flags);
1550

1551 1552
	txd = plchan->at;
	plchan->at = NULL;
1553

1554
	if (txd) {
1555
		/* Update last completed */
1556
		plchan->lc = txd->tx.cookie;
1557
	}
1558

1559
	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1560
	if (!list_empty(&plchan->pend_list)) {
1561 1562
		struct pl08x_txd *next;

1563
		next = list_first_entry(&plchan->pend_list,
1564 1565 1566
					struct pl08x_txd,
					node);
		list_del(&next->node);
1567 1568

		pl08x_start_txd(plchan, next);
1569 1570 1571 1572 1573 1574
	} else if (plchan->phychan_hold) {
		/*
		 * This channel is still in use - we have a new txd being
		 * prepared and will soon be queued.  Don't give up the
		 * physical channel.
		 */
1575 1576 1577 1578 1579 1580 1581
	} else {
		struct pl08x_dma_chan *waiting = NULL;

		/*
		 * No more jobs, so free up the physical channel
		 * Free any allocated signal on slave transfers too
		 */
1582
		release_phy_channel(plchan);
1583 1584 1585
		plchan->state = PL08X_CHAN_IDLE;

		/*
1586 1587 1588 1589
		 * And NOW before anyone else can grab that free:d up
		 * physical channel, see if there is some memcpy pending
		 * that seriously needs to start because of being stacked
		 * up while we were choking the physical channels with data.
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		 */
		list_for_each_entry(waiting, &pl08x->memcpy.channels,
				    chan.device_node) {
		  if (waiting->state == PL08X_CHAN_WAITING &&
			    waiting->waiting != NULL) {
				int ret;

				/* This should REALLY not fail now */
				ret = prep_phy_channel(waiting,
						       waiting->waiting);
				BUG_ON(ret);
1601
				waiting->phychan_hold--;
1602 1603 1604 1605 1606 1607 1608 1609
				waiting->state = PL08X_CHAN_RUNNING;
				waiting->waiting = NULL;
				pl08x_issue_pending(&waiting->chan);
				break;
			}
		}
	}

1610
	spin_unlock_irqrestore(&plchan->lock, flags);
1611

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	if (txd) {
		dma_async_tx_callback callback = txd->tx.callback;
		void *callback_param = txd->tx.callback_param;

		/* Don't try to unmap buffers on slave channels */
		if (!plchan->slave)
			pl08x_unmap_buffers(txd);

		/* Free the descriptor */
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);

		/* Callback to signal completion */
		if (callback)
			callback(callback_param);
	}
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
	u32 mask = 0;
	u32 val;
	int i;

	val = readl(pl08x->base + PL080_ERR_STATUS);
	if (val) {
1640
		/* An error interrupt (on one or more channels) */
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		dev_err(&pl08x->adev->dev,
			"%s error interrupt, register value 0x%08x\n",
				__func__, val);
		/*
		 * Simply clear ALL PL08X error interrupts,
		 * regardless of channel and cause
		 * FIXME: should be 0x00000003 on PL081 really.
		 */
		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	}
	val = readl(pl08x->base + PL080_INT_STATUS);
	for (i = 0; i < pl08x->vd->channels; i++) {
		if ((1 << i) & val) {
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;

			/* Schedule tasklet on this channel */
			tasklet_schedule(&plchan->tasklet);

			mask |= (1 << i);
		}
	}
1664
	/* Clear only the terminal interrupts on channels we processed */
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	writel(mask, pl08x->base + PL080_TC_CLEAR);

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
					   struct dma_device *dmadev,
					   unsigned int channels,
					   bool slave)
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1683

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
		chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;

		if (slave) {
			chan->slave = true;
			chan->name = pl08x->pd->slave_channels[i].bus_id;
			chan->cd = &pl08x->pd->slave_channels[i];
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1712 1713 1714 1715 1716 1717 1718
		if (chan->cd->circular_buffer) {
			dev_err(&pl08x->adev->dev,
				"channel %s: circular buffers not supported\n",
				chan->name);
			kfree(chan);
			continue;
		}
1719 1720 1721 1722 1723
		dev_info(&pl08x->adev->dev,
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

		chan->chan.device = dmadev;
1724 1725
		chan->chan.cookie = 0;
		chan->lc = 0;
1726 1727

		spin_lock_init(&chan->lock);
1728
		INIT_LIST_HEAD(&chan->pend_list);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		tasklet_init(&chan->tasklet, pl08x_tasklet,
			     (unsigned long) chan);

		list_add_tail(&chan->chan.device_node, &dmadev->channels);
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
				 next, &dmadev->channels, chan.device_node) {
		list_del(&chan->chan.device_node);
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

		seq_printf(s, "%d\t\t%s\n",
			   ch->id, virt_chan ? virt_chan->name : "(none)");

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1798
		seq_printf(s, "%s\t\t%s\n", chan->name,
1799 1800 1801 1802 1803 1804 1805
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1806
		seq_printf(s, "%s\t\t%s\n", chan->name,
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
				   NULL, pl08x,
				   &pl08x_debugfs_operations);
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
{
	struct pl08x_driver_data *pl08x;
1842
	const struct vendor_data *vd = id->data;
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
	pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

1890 1891 1892 1893 1894 1895 1896 1897
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	spin_lock_init(&pl08x->lock);

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

1917
	/* Attach the interrupt handler */
1918 1919 1920 1921
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1922
			  DRIVER_NAME, pl08x);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
	pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
		spin_lock_init(&ch->lock);
		ch->serving = NULL;
		ch->signal = -1;
		dev_info(&adev->dev,
			 "physical channel %d is %s\n", i,
			 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
					      pl08x->pd->num_slave_channels,
					      true);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
1993 1994 1995
	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), amba_rev(adev),
		 (unsigned long long)adev->res.start, adev->irq[0]);
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
	.channels = 8,
	.dualmaster = true,
};

static struct vendor_data vendor_pl081 = {
	.channels = 2,
	.dualmaster = false,
};

static struct amba_id pl08x_ids[] = {
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
		.id	= 0x00280880,
		.mask	= 0x00ffffff,
		.data	= &vendor_pl080,
	},
	{ 0, 0 },
};

static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2065
		       "failed to register as an AMBA device (%d)\n",
2066 2067 2068 2069
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);