mv88e6xxx.c 22.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

11
#include <linux/delay.h>
12
#include <linux/if_bridge.h>
13
#include <linux/jiffies.h>
14
#include <linux/list.h>
15
#include <linux/module.h>
16 17
#include <linux/netdevice.h>
#include <linux/phy.h>
18
#include <net/dsa.h>
19 20
#include "mv88e6xxx.h"

21
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
		ret = mdiobus_read(bus, sw_addr, 0);
		if (ret < 0)
			return ret;

		if ((ret & 0x8000) == 0)
			return 0;
	}

	return -ETIMEDOUT;
}

int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_read(bus, addr, reg);

53
	/* Wait for the bus to become free. */
54 55 56 57
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

58
	/* Transmit the read command. */
59 60 61 62
	ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
	if (ret < 0)
		return ret;

63
	/* Wait for the read command to complete. */
64 65 66 67
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

68
	/* Read the data. */
69 70 71 72 73 74 75
	ret = mdiobus_read(bus, sw_addr, 1);
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

76 77
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
78
{
79
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
80 81
	int ret;

82 83 84 85
	if (bus == NULL)
		return -EINVAL;

	ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
86 87 88 89 90 91
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

92 93 94
	return ret;
}

95 96 97 98 99 100 101 102 103 104 105 106
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_reg_read(ds, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

107 108 109 110 111 112 113 114
int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
			  int reg, u16 val)
{
	int ret;

	if (sw_addr == 0)
		return mdiobus_write(bus, addr, reg, val);

115
	/* Wait for the bus to become free. */
116 117 118 119
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

120
	/* Transmit the data to write. */
121 122 123 124
	ret = mdiobus_write(bus, sw_addr, 1, val);
	if (ret < 0)
		return ret;

125
	/* Transmit the write command. */
126 127 128 129
	ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
	if (ret < 0)
		return ret;

130
	/* Wait for the write command to complete. */
131 132 133 134 135 136 137
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

138 139 140
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
				u16 val)
141
{
142
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
143

144 145 146
	if (bus == NULL)
		return -EINVAL;

147 148 149
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

150 151 152 153 154 155 156 157
	return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

158
	mutex_lock(&ps->smi_mutex);
159
	ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
160 161 162 163 164 165 166
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_config_prio(struct dsa_switch *ds)
{
167
	/* Configure the IP ToS mapping registers. */
168 169 170 171 172 173 174 175 176
	REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
	REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
	REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
	REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
	REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
	REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
	REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
	REG_WRITE(REG_GLOBAL, 0x17, 0xffff);

177
	/* Configure the IEEE 802.1p priority mapping register. */
178 179 180 181 182
	REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);

	return 0;
}

183 184 185 186 187 188 189 190 191
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
	REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);

	return 0;
}

192 193 194 195 196 197 198 199
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

200
		/* Write the MAC address byte. */
201 202
		REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);

203
		/* Wait for the write to complete. */
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		for (j = 0; j < 16; j++) {
			ret = REG_READ(REG_GLOBAL2, 0x0d);
			if ((ret & 0x8000) == 0)
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
{
	if (addr >= 0)
		return mv88e6xxx_reg_read(ds, addr, regnum);
	return 0xffff;
}

int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
{
	if (addr >= 0)
		return mv88e6xxx_reg_write(ds, addr, regnum, val);
	return 0;
}

230 231 232 233
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
234
	unsigned long timeout;
235 236 237 238

	ret = REG_READ(REG_GLOBAL, 0x04);
	REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);

239 240
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
241
		ret = REG_READ(REG_GLOBAL, 0x00);
242
		usleep_range(1000, 2000);
243 244
		if ((ret & 0xc000) != 0xc000)
			return 0;
245 246 247 248 249 250 251 252
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
253
	unsigned long timeout;
254 255 256 257

	ret = REG_READ(REG_GLOBAL, 0x04);
	REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);

258 259
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
260
		ret = REG_READ(REG_GLOBAL, 0x00);
261
		usleep_range(1000, 2000);
262 263
		if ((ret & 0xc000) == 0xc000)
			return 0;
264 265 266 267 268 269 270 271 272 273 274
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
275
		struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
276

277 278 279
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
280 281 282 283 284 285 286 287 288 289 290 291
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
292
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
293 294 295 296
	int ret;

	mutex_lock(&ps->ppu_mutex);

297
	/* If the PHY polling unit is enabled, disable it so that
298 299 300 301 302
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
303 304 305 306 307 308
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
309
	} else {
310 311
		del_timer(&ps->ppu_timer);
		ret = 0;
312 313 314 315 316 317 318
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
319
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
320

321
	/* Schedule a timer to re-enable the PHY polling unit. */
322 323 324 325 326 327
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
328
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
329 330 331 332 333 334 335 336 337 338 339 340 341 342

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
343 344
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
345 346 347 348 349 350 351 352 353 354 355 356
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
357 358
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
359 360 361 362 363 364
	}

	return ret;
}
#endif

365 366 367 368 369 370
void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
	int i;

	for (i = 0; i < DSA_MAX_PORTS; i++) {
		struct net_device *dev;
371
		int uninitialized_var(port_status);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		int link;
		int speed;
		int duplex;
		int fc;

		dev = ds->ports[i];
		if (dev == NULL)
			continue;

		link = 0;
		if (dev->flags & IFF_UP) {
			port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
			if (port_status < 0)
				continue;

			link = !!(port_status & 0x0800);
		}

		if (!link) {
			if (netif_carrier_ok(dev)) {
392
				netdev_info(dev, "link down\n");
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
				netif_carrier_off(dev);
			}
			continue;
		}

		switch (port_status & 0x0300) {
		case 0x0000:
			speed = 10;
			break;
		case 0x0100:
			speed = 100;
			break;
		case 0x0200:
			speed = 1000;
			break;
		default:
			speed = -1;
			break;
		}
		duplex = (port_status & 0x0400) ? 1 : 0;
		fc = (port_status & 0x8000) ? 1 : 0;

		if (!netif_carrier_ok(dev)) {
416 417 418 419 420
			netdev_info(dev,
				    "link up, %d Mb/s, %s duplex, flow control %sabled\n",
				    speed,
				    duplex ? "full" : "half",
				    fc ? "en" : "dis");
421 422 423 424 425 426 427 428 429 430 431
			netif_carrier_on(dev);
		}
	}
}

static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
432
		ret = REG_READ(REG_GLOBAL, 0x1d);
433 434 435 436 437 438 439 440 441 442 443
		if ((ret & 0x8000) == 0)
			return 0;
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
{
	int ret;

444
	/* Snapshot the hardware statistics counters for this port. */
445 446
	REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);

447
	/* Wait for the snapshotting to complete. */
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	ret = mv88e6xxx_stats_wait(ds);
	if (ret < 0)
		return ret;

	return 0;
}

static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
{
	u32 _val;
	int ret;

	*val = 0;

	ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
	if (ret < 0)
		return;

	ret = mv88e6xxx_stats_wait(ds);
	if (ret < 0)
		return;

	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
	if (ret < 0)
		return;

	_val = ret << 16;

	ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
	if (ret < 0)
		return;

	*val = _val | ret;
}

void mv88e6xxx_get_strings(struct dsa_switch *ds,
			   int nr_stats, struct mv88e6xxx_hw_stat *stats,
			   int port, uint8_t *data)
{
	int i;

	for (i = 0; i < nr_stats; i++) {
		memcpy(data + i * ETH_GSTRING_LEN,
		       stats[i].string, ETH_GSTRING_LEN);
	}
}

void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
				 int nr_stats, struct mv88e6xxx_hw_stat *stats,
				 int port, uint64_t *data)
{
499
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
500 501 502 503 504 505 506 507 508 509 510
	int ret;
	int i;

	mutex_lock(&ps->stats_mutex);

	ret = mv88e6xxx_stats_snapshot(ds, port);
	if (ret < 0) {
		mutex_unlock(&ps->stats_mutex);
		return;
	}

511
	/* Read each of the counters. */
512 513 514
	for (i = 0; i < nr_stats; i++) {
		struct mv88e6xxx_hw_stat *s = stats + i;
		u32 low;
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		u32 high = 0;

		if (s->reg >= 0x100) {
			int ret;

			ret = mv88e6xxx_reg_read(ds, REG_PORT(port),
						 s->reg - 0x100);
			if (ret < 0)
				goto error;
			low = ret;
			if (s->sizeof_stat == 4) {
				ret = mv88e6xxx_reg_read(ds, REG_PORT(port),
							 s->reg - 0x100 + 1);
				if (ret < 0)
					goto error;
				high = ret;
			}
			data[i] = (((u64)high) << 16) | low;
			continue;
		}
535 536 537 538 539 540
		mv88e6xxx_stats_read(ds, s->reg, &low);
		if (s->sizeof_stat == 8)
			mv88e6xxx_stats_read(ds, s->reg + 1, &high);

		data[i] = (((u64)high) << 32) | low;
	}
541
error:
542 543
	mutex_unlock(&ps->stats_mutex);
}
544

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
#ifdef CONFIG_NET_DSA_HWMON

int  mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

	mutex_lock(&ps->phy_mutex);

	ret = mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
	ret = mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (ret < 0)
		goto error;

	ret = mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

	val = mv88e6xxx_phy_read(ds, 0x0, 0x1a);
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
	ret = mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
	mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
	mutex_unlock(&ps->phy_mutex);
	return ret;
}
#endif /* CONFIG_NET_DSA_HWMON */

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

		ret = REG_READ(reg, offset);
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

int mv88e6xxx_phy_wait(struct dsa_switch *ds)
{
	return mv88e6xxx_wait(ds, REG_GLOBAL2, 0x18, 0x8000);
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
	return mv88e6xxx_wait(ds, REG_GLOBAL2, 0x14, 0x0800);
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
	return mv88e6xxx_wait(ds, REG_GLOBAL2, 0x14, 0x8000);
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/* Must be called with SMI lock held */
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

		ret = _mv88e6xxx_reg_read(ds, reg, offset);
		if (ret < 0)
			return ret;
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

/* Must be called with SMI lock held */
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
	return _mv88e6xxx_wait(ds, REG_GLOBAL, 0x0b, ATU_BUSY);
}

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
int mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	REG_WRITE(REG_GLOBAL2, 0x18, 0x9800 | (addr << 5) | regnum);

	ret = mv88e6xxx_phy_wait(ds);
	if (ret < 0)
		return ret;

	return REG_READ(REG_GLOBAL2, 0x19);
}

int mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr, int regnum,
				 u16 val)
{
	REG_WRITE(REG_GLOBAL2, 0x19, val);
	REG_WRITE(REG_GLOBAL2, 0x18, 0x9400 | (addr << 5) | regnum);

	return mv88e6xxx_phy_wait(ds);
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
	int reg;

	reg = mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (reg < 0)
		return -EOPNOTSUPP;

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

	reg = REG_READ(REG_PORT(port), 0);
	e->eee_active = !!(reg & 0x0040);

	return 0;
}

static int mv88e6xxx_eee_enable_set(struct dsa_switch *ds, int port,
				    bool eee_enabled, bool tx_lpi_enabled)
{
	int reg, nreg;

	reg = mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (reg < 0)
		return reg;

	nreg = reg & ~0x0300;
	if (eee_enabled)
		nreg |= 0x0200;
	if (tx_lpi_enabled)
		nreg |= 0x0100;

	if (nreg != reg)
		return mv88e6xxx_phy_write_indirect(ds, port, 16, nreg);

	return 0;
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
	int ret;

	ret = mv88e6xxx_eee_enable_set(ds, port, e->eee_enabled,
				       e->tx_lpi_enabled);
	if (ret)
		return -EOPNOTSUPP;

	return 0;
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, int fid, u16 cmd)
{
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x01, fid);
	if (ret < 0)
		return ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x0b, cmd);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_wait(ds);
}

static int _mv88e6xxx_flush_fid(struct dsa_switch *ds, int fid)
{
	int ret;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_cmd(ds, fid, ATU_CMD_FLUSH_NONSTATIC_FID);
}

static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg, ret;
	u8 oldstate;

	mutex_lock(&ps->smi_mutex);

	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), 0x04);
	if (reg < 0)
		goto abort;

	oldstate = reg & PSTATE_MASK;
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
		if (oldstate >= PSTATE_LEARNING && state <= PSTATE_BLOCKING) {
			ret = _mv88e6xxx_flush_fid(ds, ps->fid[port]);
			if (ret)
				goto abort;
		}
		reg = (reg & ~PSTATE_MASK) | state;
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), 0x04, reg);
	}

abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

/* Must be called with smi lock held */
static int _mv88e6xxx_update_port_config(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	u16 reg = fid << 12;

	if (dsa_is_cpu_port(ds, port))
		reg |= ds->phys_port_mask;
	else
		reg |= (ps->bridge_mask[fid] |
		       (1 << dsa_upstream_port(ds))) & ~(1 << port);

	return _mv88e6xxx_reg_write(ds, REG_PORT(port), 0x06, reg);
}

/* Must be called with smi lock held */
static int _mv88e6xxx_update_bridge_config(struct dsa_switch *ds, int fid)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int port;
	u32 mask;
	int ret;

	mask = ds->phys_port_mask;
	while (mask) {
		port = __ffs(mask);
		mask &= ~(1 << port);
		if (ps->fid[port] != fid)
			continue;

		ret = _mv88e6xxx_update_port_config(ds, port);
		if (ret)
			return ret;
	}

	return _mv88e6xxx_flush_fid(ds, fid);
}

/* Bridge handling functions */

int mv88e6xxx_join_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret = 0;
	u32 nmask;
	int fid;

	/* If the bridge group is not empty, join that group.
	 * Otherwise create a new group.
	 */
	fid = ps->fid[port];
	nmask = br_port_mask & ~(1 << port);
	if (nmask)
		fid = ps->fid[__ffs(nmask)];

	nmask = ps->bridge_mask[fid] | (1 << port);
	if (nmask != br_port_mask) {
		netdev_err(ds->ports[port],
			   "join: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
			   fid, br_port_mask, nmask);
		return -EINVAL;
	}

	mutex_lock(&ps->smi_mutex);

	ps->bridge_mask[fid] = br_port_mask;

	if (fid != ps->fid[port]) {
		ps->fid_mask |= 1 << ps->fid[port];
		ps->fid[port] = fid;
		ret = _mv88e6xxx_update_bridge_config(ds, fid);
	}

	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_leave_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid, newfid;
	int ret;

	fid = ps->fid[port];

	if (ps->bridge_mask[fid] != br_port_mask) {
		netdev_err(ds->ports[port],
			   "leave: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
			   fid, br_port_mask, ps->bridge_mask[fid]);
		return -EINVAL;
	}

	/* If the port was the last port of a bridge, we are done.
	 * Otherwise assign a new fid to the port, and fix up
	 * the bridge configuration.
	 */
	if (br_port_mask == (1 << port))
		return 0;

	mutex_lock(&ps->smi_mutex);

	newfid = __ffs(ps->fid_mask);
	ps->fid[port] = newfid;
	ps->fid_mask &= (1 << newfid);
	ps->bridge_mask[fid] &= ~(1 << port);
	ps->bridge_mask[newfid] = 1 << port;

	ret = _mv88e6xxx_update_bridge_config(ds, fid);
	if (!ret)
		ret = _mv88e6xxx_update_bridge_config(ds, newfid);

	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
		stp_state = PSTATE_DISABLED;
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
		stp_state = PSTATE_BLOCKING;
		break;
	case BR_STATE_LEARNING:
		stp_state = PSTATE_LEARNING;
		break;
	case BR_STATE_FORWARDING:
	default:
		stp_state = PSTATE_FORWARDING;
		break;
	}

	netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);

	/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
	 * so we can not update the port state directly but need to schedule it.
	 */
	ps->port_state[port] = stp_state;
	set_bit(port, &ps->port_state_update_mask);
	schedule_work(&ps->bridge_work);

	return 0;
}

static void mv88e6xxx_bridge_work(struct work_struct *work)
{
	struct mv88e6xxx_priv_state *ps;
	struct dsa_switch *ds;
	int port;

	ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
	ds = ((struct dsa_switch *)ps) - 1;

	while (ps->port_state_update_mask) {
		port = __ffs(ps->port_state_update_mask);
		clear_bit(port, &ps->port_state_update_mask);
		mv88e6xxx_set_port_state(ds, port, ps->port_state[port]);
	}
}

972 973 974
int mv88e6xxx_setup_port_common(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
975
	int ret, fid;
976 977 978

	mutex_lock(&ps->smi_mutex);

979 980
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
981
	 */
982
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), 0x05, 0x0000);
983 984 985 986 987 988 989 990
	if (ret)
		goto abort;

	/* Port based VLAN map: give each port its own address
	 * database, allow the CPU port to talk to each of the 'real'
	 * ports, and allow each of the 'real' ports to only talk to
	 * the upstream port.
	 */
991 992 993 994 995 996
	fid = __ffs(ps->fid_mask);
	ps->fid[port] = fid;
	ps->fid_mask &= ~(1 << fid);

	if (!dsa_is_cpu_port(ds, port))
		ps->bridge_mask[fid] = 1 << port;
997

998
	ret = _mv88e6xxx_update_port_config(ds, port);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	if (ret)
		goto abort;

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), 0x07, 0x0000);
abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

1011 1012 1013 1014 1015 1016 1017 1018
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	mutex_init(&ps->smi_mutex);
	mutex_init(&ps->stats_mutex);
	mutex_init(&ps->phy_mutex);

1019 1020 1021 1022
	ps->fid_mask = (1 << DSA_MAX_PORTS) - 1;

	INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);

1023 1024 1025
	return 0;
}

1026 1027 1028 1029 1030 1031 1032
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	register_switch_driver(&mv88e6123_61_65_switch_driver);
1033
#endif
1034 1035 1036
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
1037 1038
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
1039 1040 1041 1042 1043 1044 1045
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
1046 1047 1048
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
1049 1050 1051 1052 1053 1054 1055 1056
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	unregister_switch_driver(&mv88e6123_61_65_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
1057 1058 1059 1060

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");