pgtable.h 11.7 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0-only */
2 3 4
/*
 * Page table support for the Hexagon architecture
 *
R
Richard Kuo 已提交
5
 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
 */

#ifndef _ASM_PGTABLE_H
#define _ASM_PGTABLE_H

/*
 * Page table definitions for Qualcomm Hexagon processor.
 */
#include <asm/page.h>
#include <asm-generic/pgtable-nopmd.h>

/* A handy thing to have if one has the RAM. Declared in head.S */
extern unsigned long empty_zero_page;

/*
 * The PTE model described here is that of the Hexagon Virtual Machine,
 * which autonomously walks 2-level page tables.  At a lower level, we
 * also describe the RISCish software-loaded TLB entry structure of
 * the underlying Hexagon processor. A kernel built to run on the
 * virtual machine has no need to know about the underlying hardware.
 */
#include <asm/vm_mmu.h>

/*
 * To maximize the comfort level for the PTE manipulation macros,
 * define the "well known" architecture-specific bits.
 */
#define _PAGE_READ	__HVM_PTE_R
#define _PAGE_WRITE	__HVM_PTE_W
#define _PAGE_EXECUTE	__HVM_PTE_X
#define _PAGE_USER	__HVM_PTE_U

/*
 * We have a total of 4 "soft" bits available in the abstract PTE.
 * The two mandatory software bits are Dirty and Accessed.
 * To make nonlinear swap work according to the more recent
 * model, we want a low order "Present" bit to indicate whether
 * the PTE describes MMU programming or swap space.
 */
#define _PAGE_PRESENT	(1<<0)
#define _PAGE_DIRTY	(1<<1)
#define _PAGE_ACCESSED	(1<<2)

/*
 * For now, let's say that Valid and Present are the same thing.
 * Alternatively, we could say that it's the "or" of R, W, and X
 * permissions.
 */
#define _PAGE_VALID	_PAGE_PRESENT

/*
 * We're not defining _PAGE_GLOBAL here, since there's no concept
 * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
 * and we want to use the same page table structures and macros in
 * the native kernel as we do in the virtual machine kernel.
 * So we'll put up with a bit of inefficiency for now...
 */

/*
 * Top "FOURTH" level (pgd), which for the Hexagon VM is really
 * only the second from the bottom, pgd and pud both being collapsed.
 * Each entry represents 4MB of virtual address space, 4K of table
 * thus maps the full 4GB.
 */
#define PGDIR_SHIFT 22
#define PTRS_PER_PGD 1024

#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))

#ifdef CONFIG_PAGE_SIZE_4KB
#define PTRS_PER_PTE 1024
#endif

#ifdef CONFIG_PAGE_SIZE_16KB
#define PTRS_PER_PTE 256
#endif

#ifdef CONFIG_PAGE_SIZE_64KB
#define PTRS_PER_PTE 64
#endif

#ifdef CONFIG_PAGE_SIZE_256KB
#define PTRS_PER_PTE 16
#endif

#ifdef CONFIG_PAGE_SIZE_1MB
#define PTRS_PER_PTE 4
#endif

/*  Any bigger and the PTE disappears.  */
#define pgd_ERROR(e) \
	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
		pgd_val(e))

/*
 * Page Protection Constants. Includes (in this variant) cache attributes.
 */
extern unsigned long _dflt_cache_att;

#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
				_dflt_cache_att)
#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
#define PAGE_COPY	PAGE_READONLY
#define PAGE_EXEC	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
#define PAGE_COPY_EXEC	PAGE_EXEC
#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
				_PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
				_PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)


/*
 * Aliases for mapping mmap() protection bits to page protections.
 * These get used for static initialization, so using the _dflt_cache_att
 * variable for the default cache attribute isn't workable. If the
 * default gets changed at boot time, the boot option code has to
 * update data structures like the protaction_map[] array.
 */
#define CACHEDEF	(CACHE_DEFAULT << 6)

/* Private (copy-on-write) page protections. */
#define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
#define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
#define __P010 __P000	/* Write-only copy-on-write */
#define __P011 __P001	/* Read/Write copy-on-write */
#define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
			_PAGE_EXECUTE | CACHEDEF)
#define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
			_PAGE_READ | CACHEDEF)
#define __P110 __P100	/* Write/execute copy-on-write */
#define __P111 __P101	/* Read/Write/Execute, copy-on-write */

/* Shared page protections. */
#define __S000 __P000
#define __S001 __P001
#define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
			_PAGE_WRITE | CACHEDEF)
#define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
			_PAGE_WRITE | CACHEDEF)
#define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
			_PAGE_EXECUTE | CACHEDEF)
#define __S101 __P101
#define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
			_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
#define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
			_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)

extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */

/*  HUGETLB not working currently  */
#ifdef CONFIG_HUGETLB_PAGE
#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
#endif

/*
 * For now, assume that higher-level code will do TLB/MMU invalidations
 * and don't insert that overhead into this low-level function.
 */
extern void sync_icache_dcache(pte_t pte);

#define pte_present_exec_user(pte) \
	((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
	(_PAGE_EXECUTE | _PAGE_USER))

static inline void set_pte(pte_t *ptep, pte_t pteval)
{
	/*  should really be using pte_exec, if it weren't declared later. */
	if (pte_present_exec_user(pteval))
		sync_icache_dcache(pteval);

	*ptep = pteval;
}

/*
 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
 * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
 * as a universal null entry, but some of those least significant bits
 * are interpreted by software.
 */
#define _NULL_PMD	0x7
#define _NULL_PTE	0x0

static inline void pmd_clear(pmd_t *pmd_entry_ptr)
{
	 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
}

/*
 * Conveniently, a null PTE value is invalid.
 */
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
				pte_t *ptep)
{
	pte_val(*ptep) = _NULL_PTE;
}

/**
 * pmd_none - check if pmd_entry is mapped
 * @pmd_entry:  pmd entry
 *
 * MIPS checks it against that "invalid pte table" thing.
 */
static inline int pmd_none(pmd_t pmd)
{
	return pmd_val(pmd) == _NULL_PMD;
}

/**
 * pmd_present - is there a page table behind this?
 * Essentially the inverse of pmd_none.  We maybe
 * save an inline instruction by defining it this
 * way, instead of simply "!pmd_none".
 */
static inline int pmd_present(pmd_t pmd)
{
	return pmd_val(pmd) != (unsigned long)_NULL_PMD;
}

/**
 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
 * As we have no known cause of badness, it's null, as it is for many
 * architectures.
 */
static inline int pmd_bad(pmd_t pmd)
{
	return 0;
}

/*
 * pmd_page - converts a PMD entry to a page pointer
 */
#define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
#define pmd_pgtable(pmd) pmd_page(pmd)

/**
 * pte_none - check if pte is mapped
 * @pte: pte_t entry
 */
static inline int pte_none(pte_t pte)
{
	return pte_val(pte) == _NULL_PTE;
};

/*
 * pte_present - check if page is present
 */
static inline int pte_present(pte_t pte)
{
	return pte_val(pte) & _PAGE_PRESENT;
}

/* mk_pte - make a PTE out of a page pointer and protection bits */
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))

/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
#define pte_page(x) pfn_to_page(pte_pfn(x))

/* pte_mkold - mark PTE as not recently accessed */
static inline pte_t pte_mkold(pte_t pte)
{
	pte_val(pte) &= ~_PAGE_ACCESSED;
	return pte;
}

/* pte_mkyoung - mark PTE as recently accessed */
static inline pte_t pte_mkyoung(pte_t pte)
{
	pte_val(pte) |= _PAGE_ACCESSED;
	return pte;
}

/* pte_mkclean - mark page as in sync with backing store */
static inline pte_t pte_mkclean(pte_t pte)
{
	pte_val(pte) &= ~_PAGE_DIRTY;
	return pte;
}

/* pte_mkdirty - mark page as modified */
static inline pte_t pte_mkdirty(pte_t pte)
{
	pte_val(pte) |= _PAGE_DIRTY;
	return pte;
}

/* pte_young - "is PTE marked as accessed"? */
static inline int pte_young(pte_t pte)
{
	return pte_val(pte) & _PAGE_ACCESSED;
}

/* pte_dirty - "is PTE dirty?" */
static inline int pte_dirty(pte_t pte)
{
	return pte_val(pte) & _PAGE_DIRTY;
}

/* pte_modify - set protection bits on PTE */
static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
{
	pte_val(pte) &= PAGE_MASK;
	pte_val(pte) |= pgprot_val(prot);
	return pte;
}

/* pte_wrprotect - mark page as not writable */
static inline pte_t pte_wrprotect(pte_t pte)
{
	pte_val(pte) &= ~_PAGE_WRITE;
	return pte;
}

/* pte_mkwrite - mark page as writable */
static inline pte_t pte_mkwrite(pte_t pte)
{
	pte_val(pte) |= _PAGE_WRITE;
	return pte;
}

/* pte_mkexec - mark PTE as executable */
static inline pte_t pte_mkexec(pte_t pte)
{
	pte_val(pte) |= _PAGE_EXECUTE;
	return pte;
}

/* pte_read - "is PTE marked as readable?" */
static inline int pte_read(pte_t pte)
{
	return pte_val(pte) & _PAGE_READ;
}

/* pte_write - "is PTE marked as writable?" */
static inline int pte_write(pte_t pte)
{
	return pte_val(pte) & _PAGE_WRITE;
}


/* pte_exec - "is PTE marked as executable?" */
static inline int pte_exec(pte_t pte)
{
	return pte_val(pte) & _PAGE_EXECUTE;
}

/* __pte_to_swp_entry - extract swap entry from PTE */
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })

/* __swp_entry_to_pte - extract PTE from swap entry */
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })

/* pfn_pte - convert page number and protection value to page table entry */
#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))

/* pte_pfn - convert pte to page frame number */
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))

/*
 * set_pte_at - update page table and do whatever magic may be
 * necessary to make the underlying hardware/firmware take note.
 *
 * VM may require a virtual instruction to alert the MMU.
 */
#define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)

376 377 378 379
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
{
	return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK);
}
380 381 382 383 384

/* ZERO_PAGE - returns the globally shared zero page */
#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))

/*
385 386 387 388 389 390 391 392
 * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the PTE is
 * interpreted as swap information.  The remaining free bits are interpreted as
 * swap type/offset tuple.  Rather than have the TLB fill handler test
 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
 * all zeros for swap entries, which speeds up the miss handler at the cost of
 * 3 bits of offset.  That trade-off can be revisited if necessary, but Hexagon
 * processor architecture and target applications suggest a lot of TLB misses
 * and not much swap space.
393 394 395
 *
 * Format of swap PTE:
 *	bit	0:	Present (zero)
396 397 398 399
 *	bits	1-5:	swap type (arch independent layer uses 5 bits max)
 *	bits	6-9:	bits 3:0 of offset
 *	bits	10-12:	effectively _PAGE_PROTNONE (all zero)
 *	bits	13-31:  bits 22:4 of swap offset
400 401 402 403 404 405
 *
 * The split offset makes some of the following macros a little gnarly,
 * but there's plenty of precedent for this sort of thing.
 */

/* Used for swap PTEs */
406
#define __swp_type(swp_pte)		(((swp_pte).val >> 1) & 0x1f)
407 408

#define __swp_offset(swp_pte) \
409
	((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
410 411 412

#define __swp_entry(type, offset) \
	((swp_entry_t)	{ \
413 414
		((type << 1) | \
		 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
415 416

#endif