pwm-stm32.c 18.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) STMicroelectronics 2016
 *
 * Author: Gerald Baeza <gerald.baeza@st.com>
 *
 * Inspired by timer-stm32.c from Maxime Coquelin
 *             pwm-atmel.c from Bo Shen
 */

11
#include <linux/bitfield.h>
12 13 14
#include <linux/mfd/stm32-timers.h>
#include <linux/module.h>
#include <linux/of.h>
15
#include <linux/pinctrl/consumer.h>
16 17 18 19 20 21 22
#include <linux/platform_device.h>
#include <linux/pwm.h>

#define CCMR_CHANNEL_SHIFT 8
#define CCMR_CHANNEL_MASK  0xFF
#define MAX_BREAKINPUT 2

23 24 25 26 27 28
struct stm32_breakinput {
	u32 index;
	u32 level;
	u32 filter;
};

29 30
struct stm32_pwm {
	struct pwm_chip chip;
31
	struct mutex lock; /* protect pwm config/enable */
32 33 34 35
	struct clk *clk;
	struct regmap *regmap;
	u32 max_arr;
	bool have_complementary_output;
36 37
	struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
	unsigned int num_breakinputs;
38
	u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
};

static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
{
	return container_of(chip, struct stm32_pwm, chip);
}

static u32 active_channels(struct stm32_pwm *dev)
{
	u32 ccer;

	regmap_read(dev->regmap, TIM_CCER, &ccer);

	return ccer & TIM_CCER_CCXE;
}

static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
{
	switch (ch) {
	case 0:
		return regmap_write(dev->regmap, TIM_CCR1, value);
	case 1:
		return regmap_write(dev->regmap, TIM_CCR2, value);
	case 2:
		return regmap_write(dev->regmap, TIM_CCR3, value);
	case 3:
		return regmap_write(dev->regmap, TIM_CCR4, value);
	}
	return -EINVAL;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
#define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
#define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
#define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)

/*
 * Capture using PWM input mode:
 *                              ___          ___
 * TI[1, 2, 3 or 4]: ........._|   |________|
 *                             ^0  ^1       ^2
 *                              .   .        .
 *                              .   .        XXXXX
 *                              .   .   XXXXX     |
 *                              .  XXXXX     .    |
 *                            XXXXX .        .    |
 * COUNTER:        ______XXXXX  .   .        .    |_XXX
 *                 start^       .   .        .        ^stop
 *                      .       .   .        .
 *                      v       v   .        v
 *                                  v
 * CCR1/CCR3:       tx..........t0...........t2
 * CCR2/CCR4:       tx..............t1.........
 *
 * DMA burst transfer:          |            |
 *                              v            v
 * DMA buffer:                  { t0, tx }   { t2, t1 }
 * DMA done:                                 ^
 *
 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
 *
 * DMA done, compute:
 * - Period     = t2 - t0
 * - Duty cycle = t1 - t0
 */
static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
				 unsigned long tmo_ms, u32 *raw_prd,
				 u32 *raw_dty)
{
	struct device *parent = priv->chip.dev->parent;
	enum stm32_timers_dmas dma_id;
	u32 ccen, ccr;
	int ret;

	/* Ensure registers have been updated, enable counter and capture */
	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);

	/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
	dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
	ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
	ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
	regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen);

	/*
	 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
	 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
	 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
	 * or { CCR3, CCR4 }, { CCR3, CCR4 }
	 */
	ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
					  2, tmo_ms);
	if (ret)
		goto stop;

	/* Period: t2 - t0 (take care of counter overflow) */
	if (priv->capture[0] <= priv->capture[2])
		*raw_prd = priv->capture[2] - priv->capture[0];
	else
		*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];

	/* Duty cycle capture requires at least two capture units */
	if (pwm->chip->npwm < 2)
		*raw_dty = 0;
	else if (priv->capture[0] <= priv->capture[3])
		*raw_dty = priv->capture[3] - priv->capture[0];
	else
		*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];

	if (*raw_dty > *raw_prd) {
		/*
		 * Race beetween PWM input and DMA: it may happen
		 * falling edge triggers new capture on TI2/4 before DMA
		 * had a chance to read CCR2/4. It means capture[1]
		 * contains period + duty_cycle. So, subtract period.
		 */
		*raw_dty -= *raw_prd;
	}

stop:
	regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0);
	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);

	return ret;
}

static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
			     struct pwm_capture *result, unsigned long tmo_ms)
{
	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
	unsigned long long prd, div, dty;
	unsigned long rate;
175
	unsigned int psc = 0, icpsc, scale;
176
	u32 raw_prd = 0, raw_dty = 0;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	int ret = 0;

	mutex_lock(&priv->lock);

	if (active_channels(priv)) {
		ret = -EBUSY;
		goto unlock;
	}

	ret = clk_enable(priv->clk);
	if (ret) {
		dev_err(priv->chip.dev, "failed to enable counter clock\n");
		goto unlock;
	}

	rate = clk_get_rate(priv->clk);
	if (!rate) {
		ret = -EINVAL;
		goto clk_dis;
	}

	/* prescaler: fit timeout window provided by upper layer */
	div = (unsigned long long)rate * (unsigned long long)tmo_ms;
	do_div(div, MSEC_PER_SEC);
	prd = div;
	while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
		psc++;
		div = prd;
		do_div(div, psc + 1);
	}
	regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
	regmap_write(priv->regmap, TIM_PSC, psc);

	/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
	regmap_update_bits(priv->regmap,
			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
			   TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
			   TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
			   TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);

	/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
	regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
			   TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
			   TIM_CCER_CC2P : TIM_CCER_CC4P);

	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
	if (ret)
		goto stop;

226 227 228
	/*
	 * Got a capture. Try to improve accuracy at high rates:
	 * - decrease counter clock prescaler, scale up to max rate.
229
	 * - use input prescaler, capture once every /2 /4 or /8 edges.
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	 */
	if (raw_prd) {
		u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */

		scale = max_arr / min(max_arr, raw_prd);
	} else {
		scale = priv->max_arr; /* bellow resolution, use max scale */
	}

	if (psc && scale > 1) {
		/* 2nd measure with new scale */
		psc /= scale;
		regmap_write(priv->regmap, TIM_PSC, psc);
		ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
					    &raw_dty);
		if (ret)
			goto stop;
	}

249
	/* Compute intermediate period not to exceed timeout at low rates */
250
	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	do_div(prd, rate);

	for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
		/* input prescaler: also keep arbitrary margin */
		if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
			break;
		if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
			break;
	}

	if (!icpsc)
		goto done;

	/* Last chance to improve period accuracy, using input prescaler */
	regmap_update_bits(priv->regmap,
			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
			   TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
			   FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
			   FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));

	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
	if (ret)
		goto stop;

	if (raw_dty >= (raw_prd >> icpsc)) {
		/*
		 * We may fall here using input prescaler, when input
		 * capture starts on high side (before falling edge).
		 * Example with icpsc to capture on each 4 events:
		 *
		 *       start   1st capture                     2nd capture
		 *         v     v                               v
		 *         ___   _____   _____   _____   _____   ____
		 * TI1..4     |__|    |__|    |__|    |__|    |__|
		 *            v  v    .  .    .  .    .       v  v
		 * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
		 * icpsc2/4:  0       1       2       3       0
		 *            v  v                            v  v
		 * CCR1/3  ......t0..............................t2
		 * CCR2/4  ..t1..............................t1'...
		 *               .                            .  .
		 * Capture0:     .<----------------------------->.
		 * Capture1:     .<-------------------------->.  .
		 *               .                            .  .
		 * Period:       .<------>                    .  .
		 * Low side:                                  .<>.
		 *
		 * Result:
		 * - Period = Capture0 / icpsc
		 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
		 */
		raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
	}

done:
	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
	result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
308 309 310 311 312 313 314 315 316 317 318 319 320 321
	dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
	result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
stop:
	regmap_write(priv->regmap, TIM_CCER, 0);
	regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
	regmap_write(priv->regmap, TIM_PSC, 0);
clk_dis:
	clk_disable(priv->clk);
unlock:
	mutex_unlock(&priv->lock);

	return ret;
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
			    int duty_ns, int period_ns)
{
	unsigned long long prd, div, dty;
	unsigned int prescaler = 0;
	u32 ccmr, mask, shift;

	/* Period and prescaler values depends on clock rate */
	div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;

	do_div(div, NSEC_PER_SEC);
	prd = div;

	while (div > priv->max_arr) {
		prescaler++;
		div = prd;
		do_div(div, prescaler + 1);
	}

	prd = div;

	if (prescaler > MAX_TIM_PSC)
		return -EINVAL;

	/*
	 * All channels share the same prescaler and counter so when two
	 * channels are active at the same time we can't change them
	 */
	if (active_channels(priv) & ~(1 << ch * 4)) {
		u32 psc, arr;

		regmap_read(priv->regmap, TIM_PSC, &psc);
		regmap_read(priv->regmap, TIM_ARR, &arr);

		if ((psc != prescaler) || (arr != prd - 1))
			return -EBUSY;
	}

	regmap_write(priv->regmap, TIM_PSC, prescaler);
	regmap_write(priv->regmap, TIM_ARR, prd - 1);
	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);

	/* Calculate the duty cycles */
	dty = prd * duty_ns;
	do_div(dty, period_ns);

	write_ccrx(priv, ch, dty);

	/* Configure output mode */
	shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
	ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
	mask = CCMR_CHANNEL_MASK << shift;

	if (ch < 2)
		regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
	else
		regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);

380
	regmap_update_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE, TIM_BDTR_MOE);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

	return 0;
}

static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
				  enum pwm_polarity polarity)
{
	u32 mask;

	mask = TIM_CCER_CC1P << (ch * 4);
	if (priv->have_complementary_output)
		mask |= TIM_CCER_CC1NP << (ch * 4);

	regmap_update_bits(priv->regmap, TIM_CCER, mask,
			   polarity == PWM_POLARITY_NORMAL ? 0 : mask);

	return 0;
}

static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
{
	u32 mask;
	int ret;

	ret = clk_enable(priv->clk);
	if (ret)
		return ret;

	/* Enable channel */
	mask = TIM_CCER_CC1E << (ch * 4);
	if (priv->have_complementary_output)
		mask |= TIM_CCER_CC1NE << (ch * 4);

	regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);

	/* Make sure that registers are updated */
	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);

	/* Enable controller */
	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);

	return 0;
}

static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
{
	u32 mask;

	/* Disable channel */
	mask = TIM_CCER_CC1E << (ch * 4);
	if (priv->have_complementary_output)
		mask |= TIM_CCER_CC1NE << (ch * 4);

	regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);

	/* When all channels are disabled, we can disable the controller */
	if (!active_channels(priv))
		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);

	clk_disable(priv->clk);
}

static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
444
			   const struct pwm_state *state)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
{
	bool enabled;
	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
	int ret;

	enabled = pwm->state.enabled;

	if (enabled && !state->enabled) {
		stm32_pwm_disable(priv, pwm->hwpwm);
		return 0;
	}

	if (state->polarity != pwm->state.polarity)
		stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);

	ret = stm32_pwm_config(priv, pwm->hwpwm,
			       state->duty_cycle, state->period);
	if (ret)
		return ret;

	if (!enabled && state->enabled)
		ret = stm32_pwm_enable(priv, pwm->hwpwm);

	return ret;
}

471
static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
472
				  const struct pwm_state *state)
473 474 475 476 477 478 479 480 481 482 483 484
{
	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
	int ret;

	/* protect common prescaler for all active channels */
	mutex_lock(&priv->lock);
	ret = stm32_pwm_apply(chip, pwm, state);
	mutex_unlock(&priv->lock);

	return ret;
}

485 486
static const struct pwm_ops stm32pwm_ops = {
	.owner = THIS_MODULE,
487
	.apply = stm32_pwm_apply_locked,
488
	.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
489 490 491
};

static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
492
				    const struct stm32_breakinput *bi)
493
{
494 495 496 497
	u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
	u32 bke = TIM_BDTR_BKE(bi->index);
	u32 bkp = TIM_BDTR_BKP(bi->index);
	u32 bkf = TIM_BDTR_BKF(bi->index);
498 499
	u32 mask = bkf | bkp | bke;
	u32 bdtr;
500

501
	bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
502

503
	if (bi->level)
504
		bdtr |= bkp;
505 506 507 508 509 510 511 512

	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);

	regmap_read(priv->regmap, TIM_BDTR, &bdtr);

	return (bdtr & bke) ? 0 : -EINVAL;
}

513 514 515 516 517 518
static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
{
	unsigned int i;
	int ret;

	for (i = 0; i < priv->num_breakinputs; i++) {
519
		ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
520 521 522 523 524 525 526 527
		if (ret < 0)
			return ret;
	}

	return 0;
}

static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
528 529
				       struct device_node *np)
{
530
	int nb, ret, array_size;
531
	unsigned int i;
532 533 534 535 536 537 538 539 540 541 542 543 544 545

	nb = of_property_count_elems_of_size(np, "st,breakinput",
					     sizeof(struct stm32_breakinput));

	/*
	 * Because "st,breakinput" parameter is optional do not make probe
	 * failed if it doesn't exist.
	 */
	if (nb <= 0)
		return 0;

	if (nb > MAX_BREAKINPUT)
		return -EINVAL;

546
	priv->num_breakinputs = nb;
547 548
	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
	ret = of_property_read_u32_array(np, "st,breakinput",
549
					 (u32 *)priv->breakinputs, array_size);
550 551 552
	if (ret)
		return ret;

553 554 555 556 557 558 559
	for (i = 0; i < priv->num_breakinputs; i++) {
		if (priv->breakinputs[i].index > 1 ||
		    priv->breakinputs[i].level > 1 ||
		    priv->breakinputs[i].filter > 15)
			return -EINVAL;
	}

560
	return stm32_pwm_apply_breakinputs(priv);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
}

static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
{
	u32 ccer;

	/*
	 * If complementary bit doesn't exist writing 1 will have no
	 * effect so we can detect it.
	 */
	regmap_update_bits(priv->regmap,
			   TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
	regmap_read(priv->regmap, TIM_CCER, &ccer);
	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);

	priv->have_complementary_output = (ccer != 0);
}

static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
{
	u32 ccer;
	int npwm = 0;

	/*
	 * If channels enable bits don't exist writing 1 will have no
	 * effect so we can detect and count them.
	 */
	regmap_update_bits(priv->regmap,
			   TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
	regmap_read(priv->regmap, TIM_CCER, &ccer);
	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);

	if (ccer & TIM_CCER_CC1E)
		npwm++;

	if (ccer & TIM_CCER_CC2E)
		npwm++;

	if (ccer & TIM_CCER_CC3E)
		npwm++;

	if (ccer & TIM_CCER_CC4E)
		npwm++;

	return npwm;
}

static int stm32_pwm_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
	struct stm32_pwm *priv;
	int ret;

	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

620
	mutex_init(&priv->lock);
621 622 623
	priv->regmap = ddata->regmap;
	priv->clk = ddata->clk;
	priv->max_arr = ddata->max_arr;
624 625
	priv->chip.of_xlate = of_pwm_xlate_with_flags;
	priv->chip.of_pwm_n_cells = 3;
626 627 628 629

	if (!priv->regmap || !priv->clk)
		return -EINVAL;

630
	ret = stm32_pwm_probe_breakinputs(priv, np);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	if (ret)
		return ret;

	stm32_pwm_detect_complementary(priv);

	priv->chip.dev = dev;
	priv->chip.ops = &stm32pwm_ops;
	priv->chip.npwm = stm32_pwm_detect_channels(priv);

	ret = pwmchip_add(&priv->chip);
	if (ret < 0)
		return ret;

	platform_set_drvdata(pdev, priv);

	return 0;
}

static int stm32_pwm_remove(struct platform_device *pdev)
{
	struct stm32_pwm *priv = platform_get_drvdata(pdev);
	unsigned int i;

	for (i = 0; i < priv->chip.npwm; i++)
		pwm_disable(&priv->chip.pwms[i]);

	pwmchip_remove(&priv->chip);

	return 0;
}

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static int __maybe_unused stm32_pwm_suspend(struct device *dev)
{
	struct stm32_pwm *priv = dev_get_drvdata(dev);
	unsigned int i;
	u32 ccer, mask;

	/* Look for active channels */
	ccer = active_channels(priv);

	for (i = 0; i < priv->chip.npwm; i++) {
		mask = TIM_CCER_CC1E << (i * 4);
		if (ccer & mask) {
			dev_err(dev, "PWM %u still in use by consumer %s\n",
				i, priv->chip.pwms[i].label);
			return -EBUSY;
		}
	}

	return pinctrl_pm_select_sleep_state(dev);
}

static int __maybe_unused stm32_pwm_resume(struct device *dev)
{
	struct stm32_pwm *priv = dev_get_drvdata(dev);
	int ret;

	ret = pinctrl_pm_select_default_state(dev);
	if (ret)
		return ret;

	/* restore breakinput registers that may have been lost in low power */
	return stm32_pwm_apply_breakinputs(priv);
}

static SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);

698 699 700 701 702 703 704 705 706 707 708 709
static const struct of_device_id stm32_pwm_of_match[] = {
	{ .compatible = "st,stm32-pwm",	},
	{ /* end node */ },
};
MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);

static struct platform_driver stm32_pwm_driver = {
	.probe	= stm32_pwm_probe,
	.remove	= stm32_pwm_remove,
	.driver	= {
		.name = "stm32-pwm",
		.of_match_table = stm32_pwm_of_match,
710
		.pm = &stm32_pwm_pm_ops,
711 712 713 714 715 716 717
	},
};
module_platform_driver(stm32_pwm_driver);

MODULE_ALIAS("platform:stm32-pwm");
MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
MODULE_LICENSE("GPL v2");