hmm.c 38.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2013 Red Hat Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * Authors: Jérôme Glisse <jglisse@redhat.com>
 */
/*
 * Refer to include/linux/hmm.h for information about heterogeneous memory
 * management or HMM for short.
 */
#include <linux/mm.h>
#include <linux/hmm.h>
22
#include <linux/init.h>
23 24
#include <linux/rmap.h>
#include <linux/swap.h>
25 26
#include <linux/slab.h>
#include <linux/sched.h>
27 28
#include <linux/mmzone.h>
#include <linux/pagemap.h>
29 30
#include <linux/swapops.h>
#include <linux/hugetlb.h>
31
#include <linux/memremap.h>
32
#include <linux/jump_label.h>
33
#include <linux/mmu_notifier.h>
34 35 36
#include <linux/memory_hotplug.h>

#define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37

38
#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
39 40 41 42 43
/*
 * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
 */
DEFINE_STATIC_KEY_FALSE(device_private_key);
EXPORT_SYMBOL(device_private_key);
44
#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
45 46


47
#if IS_ENABLED(CONFIG_HMM_MIRROR)
48 49
static const struct mmu_notifier_ops hmm_mmu_notifier_ops;

50 51 52 53
/*
 * struct hmm - HMM per mm struct
 *
 * @mm: mm struct this HMM struct is bound to
54
 * @lock: lock protecting ranges list
55
 * @sequence: we track updates to the CPU page table with a sequence number
56
 * @ranges: list of range being snapshotted
57 58 59
 * @mirrors: list of mirrors for this mm
 * @mmu_notifier: mmu notifier to track updates to CPU page table
 * @mirrors_sem: read/write semaphore protecting the mirrors list
60 61 62
 */
struct hmm {
	struct mm_struct	*mm;
63
	spinlock_t		lock;
64
	atomic_t		sequence;
65
	struct list_head	ranges;
66 67 68
	struct list_head	mirrors;
	struct mmu_notifier	mmu_notifier;
	struct rw_semaphore	mirrors_sem;
69 70 71 72 73 74 75 76 77 78 79 80
};

/*
 * hmm_register - register HMM against an mm (HMM internal)
 *
 * @mm: mm struct to attach to
 *
 * This is not intended to be used directly by device drivers. It allocates an
 * HMM struct if mm does not have one, and initializes it.
 */
static struct hmm *hmm_register(struct mm_struct *mm)
{
81 82
	struct hmm *hmm = READ_ONCE(mm->hmm);
	bool cleanup = false;
83 84 85 86 87 88

	/*
	 * The hmm struct can only be freed once the mm_struct goes away,
	 * hence we should always have pre-allocated an new hmm struct
	 * above.
	 */
89 90 91 92 93 94 95 96 97 98
	if (hmm)
		return hmm;

	hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
	if (!hmm)
		return NULL;
	INIT_LIST_HEAD(&hmm->mirrors);
	init_rwsem(&hmm->mirrors_sem);
	atomic_set(&hmm->sequence, 0);
	hmm->mmu_notifier.ops = NULL;
99 100
	INIT_LIST_HEAD(&hmm->ranges);
	spin_lock_init(&hmm->lock);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
	hmm->mm = mm;

	/*
	 * We should only get here if hold the mmap_sem in write mode ie on
	 * registration of first mirror through hmm_mirror_register()
	 */
	hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
	if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
		kfree(hmm);
		return NULL;
	}

	spin_lock(&mm->page_table_lock);
	if (!mm->hmm)
		mm->hmm = hmm;
	else
		cleanup = true;
	spin_unlock(&mm->page_table_lock);

	if (cleanup) {
		mmu_notifier_unregister(&hmm->mmu_notifier, mm);
		kfree(hmm);
	}

125 126 127 128 129 130 131
	return mm->hmm;
}

void hmm_mm_destroy(struct mm_struct *mm)
{
	kfree(mm->hmm);
}
132 133 134 135 136 137 138

static void hmm_invalidate_range(struct hmm *hmm,
				 enum hmm_update_type action,
				 unsigned long start,
				 unsigned long end)
{
	struct hmm_mirror *mirror;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	struct hmm_range *range;

	spin_lock(&hmm->lock);
	list_for_each_entry(range, &hmm->ranges, list) {
		unsigned long addr, idx, npages;

		if (end < range->start || start >= range->end)
			continue;

		range->valid = false;
		addr = max(start, range->start);
		idx = (addr - range->start) >> PAGE_SHIFT;
		npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
		memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
	}
	spin_unlock(&hmm->lock);
155 156 157 158 159 160 161 162

	down_read(&hmm->mirrors_sem);
	list_for_each_entry(mirror, &hmm->mirrors, list)
		mirror->ops->sync_cpu_device_pagetables(mirror, action,
							start, end);
	up_read(&hmm->mirrors_sem);
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
{
	struct hmm_mirror *mirror;
	struct hmm *hmm = mm->hmm;

	down_write(&hmm->mirrors_sem);
	mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
					  list);
	while (mirror) {
		list_del_init(&mirror->list);
		if (mirror->ops->release) {
			/*
			 * Drop mirrors_sem so callback can wait on any pending
			 * work that might itself trigger mmu_notifier callback
			 * and thus would deadlock with us.
			 */
			up_write(&hmm->mirrors_sem);
			mirror->ops->release(mirror);
			down_write(&hmm->mirrors_sem);
		}
		mirror = list_first_entry_or_null(&hmm->mirrors,
						  struct hmm_mirror, list);
	}
	up_write(&hmm->mirrors_sem);
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static void hmm_invalidate_range_start(struct mmu_notifier *mn,
				       struct mm_struct *mm,
				       unsigned long start,
				       unsigned long end)
{
	struct hmm *hmm = mm->hmm;

	VM_BUG_ON(!hmm);

	atomic_inc(&hmm->sequence);
}

static void hmm_invalidate_range_end(struct mmu_notifier *mn,
				     struct mm_struct *mm,
				     unsigned long start,
				     unsigned long end)
{
	struct hmm *hmm = mm->hmm;

	VM_BUG_ON(!hmm);

	hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
}

static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
214
	.release		= hmm_release,
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	.invalidate_range_start	= hmm_invalidate_range_start,
	.invalidate_range_end	= hmm_invalidate_range_end,
};

/*
 * hmm_mirror_register() - register a mirror against an mm
 *
 * @mirror: new mirror struct to register
 * @mm: mm to register against
 *
 * To start mirroring a process address space, the device driver must register
 * an HMM mirror struct.
 *
 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
 */
int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
{
	/* Sanity check */
	if (!mm || !mirror || !mirror->ops)
		return -EINVAL;

236
again:
237 238 239 240 241
	mirror->hmm = hmm_register(mm);
	if (!mirror->hmm)
		return -ENOMEM;

	down_write(&mirror->hmm->mirrors_sem);
242 243 244 245 246 247 248 249 250 251 252 253
	if (mirror->hmm->mm == NULL) {
		/*
		 * A racing hmm_mirror_unregister() is about to destroy the hmm
		 * struct. Try again to allocate a new one.
		 */
		up_write(&mirror->hmm->mirrors_sem);
		mirror->hmm = NULL;
		goto again;
	} else {
		list_add(&mirror->list, &mirror->hmm->mirrors);
		up_write(&mirror->hmm->mirrors_sem);
	}
254 255 256 257 258 259 260 261 262 263 264 265 266 267

	return 0;
}
EXPORT_SYMBOL(hmm_mirror_register);

/*
 * hmm_mirror_unregister() - unregister a mirror
 *
 * @mirror: new mirror struct to register
 *
 * Stop mirroring a process address space, and cleanup.
 */
void hmm_mirror_unregister(struct hmm_mirror *mirror)
{
268 269 270 271 272 273
	bool should_unregister = false;
	struct mm_struct *mm;
	struct hmm *hmm;

	if (mirror->hmm == NULL)
		return;
274

275
	hmm = mirror->hmm;
276
	down_write(&hmm->mirrors_sem);
277
	list_del_init(&mirror->list);
278 279 280 281
	should_unregister = list_empty(&hmm->mirrors);
	mirror->hmm = NULL;
	mm = hmm->mm;
	hmm->mm = NULL;
282
	up_write(&hmm->mirrors_sem);
283 284 285 286 287 288 289 290 291 292 293

	if (!should_unregister || mm == NULL)
		return;

	spin_lock(&mm->page_table_lock);
	if (mm->hmm == hmm)
		mm->hmm = NULL;
	spin_unlock(&mm->page_table_lock);

	mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
	kfree(hmm);
294 295
}
EXPORT_SYMBOL(hmm_mirror_unregister);
296

297 298 299 300 301 302 303
struct hmm_vma_walk {
	struct hmm_range	*range;
	unsigned long		last;
	bool			fault;
	bool			block;
};

304 305
static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
			    bool write_fault, uint64_t *pfn)
306 307 308
{
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
	struct hmm_vma_walk *hmm_vma_walk = walk->private;
309
	struct hmm_range *range = hmm_vma_walk->range;
310 311 312 313
	struct vm_area_struct *vma = walk->vma;
	int r;

	flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
314
	flags |= write_fault ? FAULT_FLAG_WRITE : 0;
315 316 317 318
	r = handle_mm_fault(vma, addr, flags);
	if (r & VM_FAULT_RETRY)
		return -EBUSY;
	if (r & VM_FAULT_ERROR) {
319
		*pfn = range->values[HMM_PFN_ERROR];
320 321 322 323 324 325
		return -EFAULT;
	}

	return -EAGAIN;
}

326 327 328 329
static int hmm_pfns_bad(unsigned long addr,
			unsigned long end,
			struct mm_walk *walk)
{
330 331
	struct hmm_vma_walk *hmm_vma_walk = walk->private;
	struct hmm_range *range = hmm_vma_walk->range;
332
	uint64_t *pfns = range->pfns;
333 334 335 336
	unsigned long i;

	i = (addr - range->start) >> PAGE_SHIFT;
	for (; addr < end; addr += PAGE_SIZE, i++)
337
		pfns[i] = range->values[HMM_PFN_ERROR];
338 339 340 341

	return 0;
}

342 343 344 345
/*
 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
 * @start: range virtual start address (inclusive)
 * @end: range virtual end address (exclusive)
346 347
 * @fault: should we fault or not ?
 * @write_fault: write fault ?
348 349 350 351 352 353
 * @walk: mm_walk structure
 * Returns: 0 on success, -EAGAIN after page fault, or page fault error
 *
 * This function will be called whenever pmd_none() or pte_none() returns true,
 * or whenever there is no page directory covering the virtual address range.
 */
354 355 356
static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
			      bool fault, bool write_fault,
			      struct mm_walk *walk)
357
{
358 359
	struct hmm_vma_walk *hmm_vma_walk = walk->private;
	struct hmm_range *range = hmm_vma_walk->range;
360
	uint64_t *pfns = range->pfns;
361 362
	unsigned long i;

363
	hmm_vma_walk->last = addr;
364
	i = (addr - range->start) >> PAGE_SHIFT;
365
	for (; addr < end; addr += PAGE_SIZE, i++) {
366
		pfns[i] = range->values[HMM_PFN_NONE];
367
		if (fault || write_fault) {
368
			int ret;
369

370 371
			ret = hmm_vma_do_fault(walk, addr, write_fault,
					       &pfns[i]);
372 373 374 375 376
			if (ret != -EAGAIN)
				return ret;
		}
	}

377 378 379 380 381 382 383
	return (fault || write_fault) ? -EAGAIN : 0;
}

static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
				      uint64_t pfns, uint64_t cpu_flags,
				      bool *fault, bool *write_fault)
{
384 385
	struct hmm_range *range = hmm_vma_walk->range;

386 387 388 389 390
	*fault = *write_fault = false;
	if (!hmm_vma_walk->fault)
		return;

	/* We aren't ask to do anything ... */
391
	if (!(pfns & range->flags[HMM_PFN_VALID]))
392
		return;
393 394 395 396 397 398 399
	/* If this is device memory than only fault if explicitly requested */
	if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
		/* Do we fault on device memory ? */
		if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
			*write_fault = pfns & range->flags[HMM_PFN_WRITE];
			*fault = true;
		}
400 401
		return;
	}
402 403 404 405 406 407 408

	/* If CPU page table is not valid then we need to fault */
	*fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
	/* Need to write fault ? */
	if ((pfns & range->flags[HMM_PFN_WRITE]) &&
	    !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
		*write_fault = true;
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
		*fault = true;
	}
}

static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
				 const uint64_t *pfns, unsigned long npages,
				 uint64_t cpu_flags, bool *fault,
				 bool *write_fault)
{
	unsigned long i;

	if (!hmm_vma_walk->fault) {
		*fault = *write_fault = false;
		return;
	}

	for (i = 0; i < npages; ++i) {
		hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
				   fault, write_fault);
		if ((*fault) || (*write_fault))
			return;
	}
}

static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
			     struct mm_walk *walk)
{
	struct hmm_vma_walk *hmm_vma_walk = walk->private;
	struct hmm_range *range = hmm_vma_walk->range;
	bool fault, write_fault;
	unsigned long i, npages;
	uint64_t *pfns;

	i = (addr - range->start) >> PAGE_SHIFT;
	npages = (end - addr) >> PAGE_SHIFT;
	pfns = &range->pfns[i];
	hmm_range_need_fault(hmm_vma_walk, pfns, npages,
			     0, &fault, &write_fault);
	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
}

450
static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
451 452 453
{
	if (pmd_protnone(pmd))
		return 0;
454 455 456
	return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
				range->flags[HMM_PFN_WRITE] :
				range->flags[HMM_PFN_VALID];
457 458
}

459 460 461 462 463 464 465
static int hmm_vma_handle_pmd(struct mm_walk *walk,
			      unsigned long addr,
			      unsigned long end,
			      uint64_t *pfns,
			      pmd_t pmd)
{
	struct hmm_vma_walk *hmm_vma_walk = walk->private;
466
	struct hmm_range *range = hmm_vma_walk->range;
467 468
	unsigned long pfn, npages, i;
	bool fault, write_fault;
469
	uint64_t cpu_flags;
470

471
	npages = (end - addr) >> PAGE_SHIFT;
472
	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
473 474
	hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
			     &fault, &write_fault);
475

476 477
	if (pmd_protnone(pmd) || fault || write_fault)
		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
478 479 480

	pfn = pmd_pfn(pmd) + pte_index(addr);
	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
481
		pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
482 483 484 485
	hmm_vma_walk->last = end;
	return 0;
}

486
static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
487 488 489
{
	if (pte_none(pte) || !pte_present(pte))
		return 0;
490 491 492
	return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
				range->flags[HMM_PFN_WRITE] :
				range->flags[HMM_PFN_VALID];
493 494
}

495 496 497 498 499
static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
			      uint64_t *pfn)
{
	struct hmm_vma_walk *hmm_vma_walk = walk->private;
500
	struct hmm_range *range = hmm_vma_walk->range;
501
	struct vm_area_struct *vma = walk->vma;
502 503
	bool fault, write_fault;
	uint64_t cpu_flags;
504
	pte_t pte = *ptep;
505
	uint64_t orig_pfn = *pfn;
506

507 508 509
	*pfn = range->values[HMM_PFN_NONE];
	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
	hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
510
			   &fault, &write_fault);
511 512

	if (pte_none(pte)) {
513
		if (fault || write_fault)
514 515 516 517 518 519 520 521
			goto fault;
		return 0;
	}

	if (!pte_present(pte)) {
		swp_entry_t entry = pte_to_swp_entry(pte);

		if (!non_swap_entry(entry)) {
522
			if (fault || write_fault)
523 524 525 526 527 528 529 530 531
				goto fault;
			return 0;
		}

		/*
		 * This is a special swap entry, ignore migration, use
		 * device and report anything else as error.
		 */
		if (is_device_private_entry(entry)) {
532 533
			cpu_flags = range->flags[HMM_PFN_VALID] |
				range->flags[HMM_PFN_DEVICE_PRIVATE];
534
			cpu_flags |= is_write_device_private_entry(entry) ?
535 536 537 538 539 540 541
				range->flags[HMM_PFN_WRITE] : 0;
			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
					   &fault, &write_fault);
			if (fault || write_fault)
				goto fault;
			*pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
			*pfn |= cpu_flags;
542 543 544 545
			return 0;
		}

		if (is_migration_entry(entry)) {
546
			if (fault || write_fault) {
547 548 549
				pte_unmap(ptep);
				hmm_vma_walk->last = addr;
				migration_entry_wait(vma->vm_mm,
550
						     pmdp, addr);
551 552 553 554 555 556
				return -EAGAIN;
			}
			return 0;
		}

		/* Report error for everything else */
557
		*pfn = range->values[HMM_PFN_ERROR];
558 559 560
		return -EFAULT;
	}

561
	if (fault || write_fault)
562 563
		goto fault;

564
	*pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
565 566 567 568 569
	return 0;

fault:
	pte_unmap(ptep);
	/* Fault any virtual address we were asked to fault */
570
	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
571 572
}

573 574 575 576 577
static int hmm_vma_walk_pmd(pmd_t *pmdp,
			    unsigned long start,
			    unsigned long end,
			    struct mm_walk *walk)
{
578 579
	struct hmm_vma_walk *hmm_vma_walk = walk->private;
	struct hmm_range *range = hmm_vma_walk->range;
580
	uint64_t *pfns = range->pfns;
581 582 583 584 585 586 587 588 589
	unsigned long addr = start, i;
	pte_t *ptep;

	i = (addr - range->start) >> PAGE_SHIFT;

again:
	if (pmd_none(*pmdp))
		return hmm_vma_walk_hole(start, end, walk);

590
	if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
		return hmm_pfns_bad(start, end, walk);

	if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
		pmd_t pmd;

		/*
		 * No need to take pmd_lock here, even if some other threads
		 * is splitting the huge pmd we will get that event through
		 * mmu_notifier callback.
		 *
		 * So just read pmd value and check again its a transparent
		 * huge or device mapping one and compute corresponding pfn
		 * values.
		 */
		pmd = pmd_read_atomic(pmdp);
		barrier();
		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
			goto again;
609

610
		return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
611 612 613 614 615 616 617
	}

	if (pmd_bad(*pmdp))
		return hmm_pfns_bad(start, end, walk);

	ptep = pte_offset_map(pmdp, addr);
	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
618
		int r;
619

620 621 622 623 624
		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
		if (r) {
			/* hmm_vma_handle_pte() did unmap pte directory */
			hmm_vma_walk->last = addr;
			return r;
625
		}
626 627 628
	}
	pte_unmap(ptep - 1);

629
	hmm_vma_walk->last = addr;
630 631 632
	return 0;
}

633 634
static void hmm_pfns_clear(struct hmm_range *range,
			   uint64_t *pfns,
635 636 637 638
			   unsigned long addr,
			   unsigned long end)
{
	for (; addr < end; addr += PAGE_SIZE, pfns++)
639
		*pfns = range->values[HMM_PFN_NONE];
640 641
}

642 643 644 645 646
static void hmm_pfns_special(struct hmm_range *range)
{
	unsigned long addr = range->start, i = 0;

	for (; addr < range->end; addr += PAGE_SIZE, i++)
647
		range->pfns[i] = range->values[HMM_PFN_SPECIAL];
648 649
}

650 651
/*
 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
652
 * @range: range being snapshotted
653 654
 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
 *          vma permission, 0 success
655 656 657 658 659 660 661 662 663 664 665 666
 *
 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
 * validity is tracked by range struct. See hmm_vma_range_done() for further
 * information.
 *
 * The range struct is initialized here. It tracks the CPU page table, but only
 * if the function returns success (0), in which case the caller must then call
 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
 *
 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
 */
667
int hmm_vma_get_pfns(struct hmm_range *range)
668
{
669
	struct vm_area_struct *vma = range->vma;
670
	struct hmm_vma_walk hmm_vma_walk;
671 672 673 674
	struct mm_walk mm_walk;
	struct hmm *hmm;

	/* Sanity check, this really should not happen ! */
675
	if (range->start < vma->vm_start || range->start >= vma->vm_end)
676
		return -EINVAL;
677
	if (range->end < vma->vm_start || range->end > vma->vm_end)
678 679 680 681 682 683 684 685 686
		return -EINVAL;

	hmm = hmm_register(vma->vm_mm);
	if (!hmm)
		return -ENOMEM;
	/* Caller must have registered a mirror, via hmm_mirror_register() ! */
	if (!hmm->mmu_notifier.ops)
		return -EINVAL;

687 688 689 690 691 692
	/* FIXME support hugetlb fs */
	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
		hmm_pfns_special(range);
		return -EINVAL;
	}

693 694 695 696 697 698 699
	if (!(vma->vm_flags & VM_READ)) {
		/*
		 * If vma do not allow read access, then assume that it does
		 * not allow write access, either. Architecture that allow
		 * write without read access are not supported by HMM, because
		 * operations such has atomic access would not work.
		 */
700
		hmm_pfns_clear(range, range->pfns, range->start, range->end);
701 702 703
		return -EPERM;
	}

704 705 706 707 708 709
	/* Initialize range to track CPU page table update */
	spin_lock(&hmm->lock);
	range->valid = true;
	list_add_rcu(&range->list, &hmm->ranges);
	spin_unlock(&hmm->lock);

710 711 712 713
	hmm_vma_walk.fault = false;
	hmm_vma_walk.range = range;
	mm_walk.private = &hmm_vma_walk;

714 715 716 717 718 719 720 721
	mm_walk.vma = vma;
	mm_walk.mm = vma->vm_mm;
	mm_walk.pte_entry = NULL;
	mm_walk.test_walk = NULL;
	mm_walk.hugetlb_entry = NULL;
	mm_walk.pmd_entry = hmm_vma_walk_pmd;
	mm_walk.pte_hole = hmm_vma_walk_hole;

722
	walk_page_range(range->start, range->end, &mm_walk);
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	return 0;
}
EXPORT_SYMBOL(hmm_vma_get_pfns);

/*
 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
 * @range: range being tracked
 * Returns: false if range data has been invalidated, true otherwise
 *
 * Range struct is used to track updates to the CPU page table after a call to
 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
 * using the data,  or wants to lock updates to the data it got from those
 * functions, it must call the hmm_vma_range_done() function, which will then
 * stop tracking CPU page table updates.
 *
 * Note that device driver must still implement general CPU page table update
 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
 * the mmu_notifier API directly.
 *
 * CPU page table update tracking done through hmm_range is only temporary and
 * to be used while trying to duplicate CPU page table contents for a range of
 * virtual addresses.
 *
 * There are two ways to use this :
 * again:
748
 *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
749 750
 *   trans = device_build_page_table_update_transaction(pfns);
 *   device_page_table_lock();
751
 *   if (!hmm_vma_range_done(range)) {
752 753 754 755 756 757 758
 *     device_page_table_unlock();
 *     goto again;
 *   }
 *   device_commit_transaction(trans);
 *   device_page_table_unlock();
 *
 * Or:
759
 *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
760
 *   device_page_table_lock();
761 762
 *   hmm_vma_range_done(range);
 *   device_update_page_table(range->pfns);
763 764
 *   device_page_table_unlock();
 */
765
bool hmm_vma_range_done(struct hmm_range *range)
766 767 768 769 770 771 772 773 774
{
	unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
	struct hmm *hmm;

	if (range->end <= range->start) {
		BUG();
		return false;
	}

775
	hmm = hmm_register(range->vma->vm_mm);
776 777 778 779 780 781 782 783 784 785 786 787
	if (!hmm) {
		memset(range->pfns, 0, sizeof(*range->pfns) * npages);
		return false;
	}

	spin_lock(&hmm->lock);
	list_del_rcu(&range->list);
	spin_unlock(&hmm->lock);

	return range->valid;
}
EXPORT_SYMBOL(hmm_vma_range_done);
788 789 790

/*
 * hmm_vma_fault() - try to fault some address in a virtual address range
791
 * @range: range being faulted
792 793 794 795 796 797
 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
 *
 * This is similar to a regular CPU page fault except that it will not trigger
 * any memory migration if the memory being faulted is not accessible by CPUs.
 *
798 799
 * On error, for one virtual address in the range, the function will mark the
 * corresponding HMM pfn entry with an error flag.
800 801 802 803 804 805
 *
 * Expected use pattern:
 * retry:
 *   down_read(&mm->mmap_sem);
 *   // Find vma and address device wants to fault, initialize hmm_pfn_t
 *   // array accordingly
806
 *   ret = hmm_vma_fault(range, write, block);
807 808
 *   switch (ret) {
 *   case -EAGAIN:
809
 *     hmm_vma_range_done(range);
810 811 812 813 814 815
 *     // You might want to rate limit or yield to play nicely, you may
 *     // also commit any valid pfn in the array assuming that you are
 *     // getting true from hmm_vma_range_monitor_end()
 *     goto retry;
 *   case 0:
 *     break;
816 817 818
 *   case -ENOMEM:
 *   case -EINVAL:
 *   case -EPERM:
819 820 821 822 823 824 825
 *   default:
 *     // Handle error !
 *     up_read(&mm->mmap_sem)
 *     return;
 *   }
 *   // Take device driver lock that serialize device page table update
 *   driver_lock_device_page_table_update();
826
 *   hmm_vma_range_done(range);
827 828 829 830 831 832 833 834 835
 *   // Commit pfns we got from hmm_vma_fault()
 *   driver_unlock_device_page_table_update();
 *   up_read(&mm->mmap_sem)
 *
 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
 *
 * YOU HAVE BEEN WARNED !
 */
836
int hmm_vma_fault(struct hmm_range *range, bool block)
837
{
838 839
	struct vm_area_struct *vma = range->vma;
	unsigned long start = range->start;
840 841 842 843 844 845
	struct hmm_vma_walk hmm_vma_walk;
	struct mm_walk mm_walk;
	struct hmm *hmm;
	int ret;

	/* Sanity check, this really should not happen ! */
846
	if (range->start < vma->vm_start || range->start >= vma->vm_end)
847
		return -EINVAL;
848
	if (range->end < vma->vm_start || range->end > vma->vm_end)
849 850 851 852
		return -EINVAL;

	hmm = hmm_register(vma->vm_mm);
	if (!hmm) {
853
		hmm_pfns_clear(range, range->pfns, range->start, range->end);
854 855 856 857 858 859
		return -ENOMEM;
	}
	/* Caller must have registered a mirror using hmm_mirror_register() */
	if (!hmm->mmu_notifier.ops)
		return -EINVAL;

860 861 862 863 864 865
	/* FIXME support hugetlb fs */
	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
		hmm_pfns_special(range);
		return -EINVAL;
	}

866 867 868 869 870 871 872
	if (!(vma->vm_flags & VM_READ)) {
		/*
		 * If vma do not allow read access, then assume that it does
		 * not allow write access, either. Architecture that allow
		 * write without read access are not supported by HMM, because
		 * operations such has atomic access would not work.
		 */
873
		hmm_pfns_clear(range, range->pfns, range->start, range->end);
874 875
		return -EPERM;
	}
876

877 878 879 880 881 882
	/* Initialize range to track CPU page table update */
	spin_lock(&hmm->lock);
	range->valid = true;
	list_add_rcu(&range->list, &hmm->ranges);
	spin_unlock(&hmm->lock);

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	hmm_vma_walk.fault = true;
	hmm_vma_walk.block = block;
	hmm_vma_walk.range = range;
	mm_walk.private = &hmm_vma_walk;
	hmm_vma_walk.last = range->start;

	mm_walk.vma = vma;
	mm_walk.mm = vma->vm_mm;
	mm_walk.pte_entry = NULL;
	mm_walk.test_walk = NULL;
	mm_walk.hugetlb_entry = NULL;
	mm_walk.pmd_entry = hmm_vma_walk_pmd;
	mm_walk.pte_hole = hmm_vma_walk_hole;

	do {
898
		ret = walk_page_range(start, range->end, &mm_walk);
899 900 901 902 903 904 905
		start = hmm_vma_walk.last;
	} while (ret == -EAGAIN);

	if (ret) {
		unsigned long i;

		i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
906 907
		hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
			       range->end);
908
		hmm_vma_range_done(range);
909 910 911 912
	}
	return ret;
}
EXPORT_SYMBOL(hmm_vma_fault);
913
#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
914 915


916
#if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
				       unsigned long addr)
{
	struct page *page;

	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
	if (!page)
		return NULL;
	lock_page(page);
	return page;
}
EXPORT_SYMBOL(hmm_vma_alloc_locked_page);


static void hmm_devmem_ref_release(struct percpu_ref *ref)
{
	struct hmm_devmem *devmem;

	devmem = container_of(ref, struct hmm_devmem, ref);
	complete(&devmem->completion);
}

static void hmm_devmem_ref_exit(void *data)
{
	struct percpu_ref *ref = data;
	struct hmm_devmem *devmem;

	devmem = container_of(ref, struct hmm_devmem, ref);
	percpu_ref_exit(ref);
	devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
}

static void hmm_devmem_ref_kill(void *data)
{
	struct percpu_ref *ref = data;
	struct hmm_devmem *devmem;

	devmem = container_of(ref, struct hmm_devmem, ref);
	percpu_ref_kill(ref);
	wait_for_completion(&devmem->completion);
	devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
}

static int hmm_devmem_fault(struct vm_area_struct *vma,
			    unsigned long addr,
			    const struct page *page,
			    unsigned int flags,
			    pmd_t *pmdp)
{
	struct hmm_devmem *devmem = page->pgmap->data;

	return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
}

static void hmm_devmem_free(struct page *page, void *data)
{
	struct hmm_devmem *devmem = data;

	devmem->ops->free(devmem, page);
}

static DEFINE_MUTEX(hmm_devmem_lock);
static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);

static void hmm_devmem_radix_release(struct resource *resource)
{
983
	resource_size_t key, align_start, align_size;
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

	align_start = resource->start & ~(PA_SECTION_SIZE - 1);
	align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);

	mutex_lock(&hmm_devmem_lock);
	for (key = resource->start;
	     key <= resource->end;
	     key += PA_SECTION_SIZE)
		radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
	mutex_unlock(&hmm_devmem_lock);
}

static void hmm_devmem_release(struct device *dev, void *data)
{
	struct hmm_devmem *devmem = data;
	struct resource *resource = devmem->resource;
	unsigned long start_pfn, npages;
	struct zone *zone;
	struct page *page;

	if (percpu_ref_tryget_live(&devmem->ref)) {
		dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
		percpu_ref_put(&devmem->ref);
	}

	/* pages are dead and unused, undo the arch mapping */
	start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
	npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;

	page = pfn_to_page(start_pfn);
	zone = page_zone(page);

	mem_hotplug_begin();
1017
	if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1018
		__remove_pages(zone, start_pfn, npages, NULL);
1019 1020
	else
		arch_remove_memory(start_pfn << PAGE_SHIFT,
1021
				   npages << PAGE_SHIFT, NULL);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	mem_hotplug_done();

	hmm_devmem_radix_release(resource);
}

static struct hmm_devmem *hmm_devmem_find(resource_size_t phys)
{
	WARN_ON_ONCE(!rcu_read_lock_held());

	return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT);
}

static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
{
	resource_size_t key, align_start, align_size, align_end;
	struct device *device = devmem->device;
	int ret, nid, is_ram;
	unsigned long pfn;

	align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
	align_size = ALIGN(devmem->resource->start +
			   resource_size(devmem->resource),
			   PA_SECTION_SIZE) - align_start;

	is_ram = region_intersects(align_start, align_size,
				   IORESOURCE_SYSTEM_RAM,
				   IORES_DESC_NONE);
	if (is_ram == REGION_MIXED) {
		WARN_ONCE(1, "%s attempted on mixed region %pr\n",
				__func__, devmem->resource);
		return -ENXIO;
	}
	if (is_ram == REGION_INTERSECTS)
		return -ENXIO;

1057 1058 1059 1060 1061
	if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
		devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
	else
		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;

1062
	devmem->pagemap.res = *devmem->resource;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	devmem->pagemap.page_fault = hmm_devmem_fault;
	devmem->pagemap.page_free = hmm_devmem_free;
	devmem->pagemap.dev = devmem->device;
	devmem->pagemap.ref = &devmem->ref;
	devmem->pagemap.data = devmem;

	mutex_lock(&hmm_devmem_lock);
	align_end = align_start + align_size - 1;
	for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
		struct hmm_devmem *dup;

		rcu_read_lock();
		dup = hmm_devmem_find(key);
		rcu_read_unlock();
		if (dup) {
			dev_err(device, "%s: collides with mapping for %s\n",
				__func__, dev_name(dup->device));
			mutex_unlock(&hmm_devmem_lock);
			ret = -EBUSY;
			goto error;
		}
		ret = radix_tree_insert(&hmm_devmem_radix,
					key >> PA_SECTION_SHIFT,
					devmem);
		if (ret) {
			dev_err(device, "%s: failed: %d\n", __func__, ret);
			mutex_unlock(&hmm_devmem_lock);
			goto error_radix;
		}
	}
	mutex_unlock(&hmm_devmem_lock);

	nid = dev_to_node(device);
	if (nid < 0)
		nid = numa_mem_id();

	mem_hotplug_begin();
	/*
	 * For device private memory we call add_pages() as we only need to
	 * allocate and initialize struct page for the device memory. More-
	 * over the device memory is un-accessible thus we do not want to
	 * create a linear mapping for the memory like arch_add_memory()
	 * would do.
1106 1107 1108
	 *
	 * For device public memory, which is accesible by the CPU, we do
	 * want the linear mapping and thus use arch_add_memory().
1109
	 */
1110
	if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1111 1112
		ret = arch_add_memory(nid, align_start, align_size, NULL,
				false);
1113 1114
	else
		ret = add_pages(nid, align_start >> PAGE_SHIFT,
1115
				align_size >> PAGE_SHIFT, NULL, false);
1116 1117 1118 1119 1120 1121
	if (ret) {
		mem_hotplug_done();
		goto error_add_memory;
	}
	move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
				align_start >> PAGE_SHIFT,
1122
				align_size >> PAGE_SHIFT, NULL);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	mem_hotplug_done();

	for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
		struct page *page = pfn_to_page(pfn);

		page->pgmap = &devmem->pagemap;
	}
	return 0;

error_add_memory:
	untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
error_radix:
	hmm_devmem_radix_release(devmem->resource);
error:
	return ret;
}

static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
{
	struct hmm_devmem *devmem = data;

	return devmem->resource == match_data;
}

static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
{
	devres_release(devmem->device, &hmm_devmem_release,
		       &hmm_devmem_match, devmem->resource);
}

/*
 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
 *
 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
 * @device: device struct to bind the resource too
 * @size: size in bytes of the device memory to add
 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
 *
 * This function first finds an empty range of physical address big enough to
 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
 * in turn allocates struct pages. It does not do anything beyond that; all
 * events affecting the memory will go through the various callbacks provided
 * by hmm_devmem_ops struct.
 *
 * Device driver should call this function during device initialization and
 * is then responsible of memory management. HMM only provides helpers.
 */
struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
				  struct device *device,
				  unsigned long size)
{
	struct hmm_devmem *devmem;
	resource_size_t addr;
	int ret;

	static_branch_enable(&device_private_key);

	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
				   GFP_KERNEL, dev_to_node(device));
	if (!devmem)
		return ERR_PTR(-ENOMEM);

	init_completion(&devmem->completion);
	devmem->pfn_first = -1UL;
	devmem->pfn_last = -1UL;
	devmem->resource = NULL;
	devmem->device = device;
	devmem->ops = ops;

	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
			      0, GFP_KERNEL);
	if (ret)
		goto error_percpu_ref;

	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
	if (ret)
		goto error_devm_add_action;

	size = ALIGN(size, PA_SECTION_SIZE);
	addr = min((unsigned long)iomem_resource.end,
		   (1UL << MAX_PHYSMEM_BITS) - 1);
	addr = addr - size + 1UL;

	/*
	 * FIXME add a new helper to quickly walk resource tree and find free
	 * range
	 *
	 * FIXME what about ioport_resource resource ?
	 */
	for (; addr > size && addr >= iomem_resource.start; addr -= size) {
		ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
		if (ret != REGION_DISJOINT)
			continue;

		devmem->resource = devm_request_mem_region(device, addr, size,
							   dev_name(device));
		if (!devmem->resource) {
			ret = -ENOMEM;
			goto error_no_resource;
		}
		break;
	}
	if (!devmem->resource) {
		ret = -ERANGE;
		goto error_no_resource;
	}

	devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
	devmem->pfn_last = devmem->pfn_first +
			   (resource_size(devmem->resource) >> PAGE_SHIFT);

	ret = hmm_devmem_pages_create(devmem);
	if (ret)
		goto error_pages;

	devres_add(device, devmem);

	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
	if (ret) {
		hmm_devmem_remove(devmem);
		return ERR_PTR(ret);
	}

	return devmem;

error_pages:
	devm_release_mem_region(device, devmem->resource->start,
				resource_size(devmem->resource));
error_no_resource:
error_devm_add_action:
	hmm_devmem_ref_kill(&devmem->ref);
	hmm_devmem_ref_exit(&devmem->ref);
error_percpu_ref:
	devres_free(devmem);
	return ERR_PTR(ret);
}
EXPORT_SYMBOL(hmm_devmem_add);

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
					   struct device *device,
					   struct resource *res)
{
	struct hmm_devmem *devmem;
	int ret;

	if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
		return ERR_PTR(-EINVAL);

	static_branch_enable(&device_private_key);

	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
				   GFP_KERNEL, dev_to_node(device));
	if (!devmem)
		return ERR_PTR(-ENOMEM);

	init_completion(&devmem->completion);
	devmem->pfn_first = -1UL;
	devmem->pfn_last = -1UL;
	devmem->resource = res;
	devmem->device = device;
	devmem->ops = ops;

	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
			      0, GFP_KERNEL);
	if (ret)
		goto error_percpu_ref;

	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
	if (ret)
		goto error_devm_add_action;


	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
	devmem->pfn_last = devmem->pfn_first +
			   (resource_size(devmem->resource) >> PAGE_SHIFT);

	ret = hmm_devmem_pages_create(devmem);
	if (ret)
		goto error_devm_add_action;

	devres_add(device, devmem);

	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
	if (ret) {
		hmm_devmem_remove(devmem);
		return ERR_PTR(ret);
	}

	return devmem;

error_devm_add_action:
	hmm_devmem_ref_kill(&devmem->ref);
	hmm_devmem_ref_exit(&devmem->ref);
error_percpu_ref:
	devres_free(devmem);
	return ERR_PTR(ret);
}
EXPORT_SYMBOL(hmm_devmem_add_resource);

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
/*
 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
 *
 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
 *
 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
 * of the device driver. It will free struct page and remove the resource that
 * reserved the physical address range for this device memory.
 */
void hmm_devmem_remove(struct hmm_devmem *devmem)
{
	resource_size_t start, size;
	struct device *device;
1336
	bool cdm = false;
1337 1338 1339 1340 1341 1342 1343 1344

	if (!devmem)
		return;

	device = devmem->device;
	start = devmem->resource->start;
	size = resource_size(devmem->resource);

1345
	cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1346 1347 1348 1349
	hmm_devmem_ref_kill(&devmem->ref);
	hmm_devmem_ref_exit(&devmem->ref);
	hmm_devmem_pages_remove(devmem);

1350 1351
	if (!cdm)
		devm_release_mem_region(device, start, size);
1352 1353
}
EXPORT_SYMBOL(hmm_devmem_remove);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

/*
 * A device driver that wants to handle multiple devices memory through a
 * single fake device can use hmm_device to do so. This is purely a helper
 * and it is not needed to make use of any HMM functionality.
 */
#define HMM_DEVICE_MAX 256

static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
static DEFINE_SPINLOCK(hmm_device_lock);
static struct class *hmm_device_class;
static dev_t hmm_device_devt;

static void hmm_device_release(struct device *device)
{
	struct hmm_device *hmm_device;

	hmm_device = container_of(device, struct hmm_device, device);
	spin_lock(&hmm_device_lock);
	clear_bit(hmm_device->minor, hmm_device_mask);
	spin_unlock(&hmm_device_lock);

	kfree(hmm_device);
}

struct hmm_device *hmm_device_new(void *drvdata)
{
	struct hmm_device *hmm_device;

	hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
	if (!hmm_device)
		return ERR_PTR(-ENOMEM);

	spin_lock(&hmm_device_lock);
	hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
	if (hmm_device->minor >= HMM_DEVICE_MAX) {
		spin_unlock(&hmm_device_lock);
		kfree(hmm_device);
		return ERR_PTR(-EBUSY);
	}
	set_bit(hmm_device->minor, hmm_device_mask);
	spin_unlock(&hmm_device_lock);

	dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
	hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
					hmm_device->minor);
	hmm_device->device.release = hmm_device_release;
	dev_set_drvdata(&hmm_device->device, drvdata);
	hmm_device->device.class = hmm_device_class;
	device_initialize(&hmm_device->device);

	return hmm_device;
}
EXPORT_SYMBOL(hmm_device_new);

void hmm_device_put(struct hmm_device *hmm_device)
{
	put_device(&hmm_device->device);
}
EXPORT_SYMBOL(hmm_device_put);

static int __init hmm_init(void)
{
	int ret;

	ret = alloc_chrdev_region(&hmm_device_devt, 0,
				  HMM_DEVICE_MAX,
				  "hmm_device");
	if (ret)
		return ret;

	hmm_device_class = class_create(THIS_MODULE, "hmm_device");
	if (IS_ERR(hmm_device_class)) {
		unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
		return PTR_ERR(hmm_device_class);
	}
	return 0;
}

device_initcall(hmm_init);
1434
#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
新手
引导
客服 返回
顶部