tree-log.c 179.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/blkdev.h>
J
Josef Bacik 已提交
9
#include <linux/list_sort.h>
10
#include <linux/iversion.h>
11
#include "misc.h"
12
#include "ctree.h"
13
#include "tree-log.h"
14 15 16
#include "disk-io.h"
#include "locking.h"
#include "print-tree.h"
M
Mark Fasheh 已提交
17
#include "backref.h"
18
#include "compression.h"
19
#include "qgroup.h"
20 21
#include "block-group.h"
#include "space-info.h"
22
#include "zoned.h"
23 24 25 26 27 28 29

/* magic values for the inode_only field in btrfs_log_inode:
 *
 * LOG_INODE_ALL means to log everything
 * LOG_INODE_EXISTS means to log just enough to recreate the inode
 * during log replay
 */
30 31 32 33 34 35
enum {
	LOG_INODE_ALL,
	LOG_INODE_EXISTS,
	LOG_OTHER_INODE,
	LOG_OTHER_INODE_ALL,
};
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 * directory trouble cases
 *
 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
 * log, we must force a full commit before doing an fsync of the directory
 * where the unlink was done.
 * ---> record transid of last unlink/rename per directory
 *
 * mkdir foo/some_dir
 * normal commit
 * rename foo/some_dir foo2/some_dir
 * mkdir foo/some_dir
 * fsync foo/some_dir/some_file
 *
 * The fsync above will unlink the original some_dir without recording
 * it in its new location (foo2).  After a crash, some_dir will be gone
 * unless the fsync of some_file forces a full commit
 *
 * 2) we must log any new names for any file or dir that is in the fsync
 * log. ---> check inode while renaming/linking.
 *
 * 2a) we must log any new names for any file or dir during rename
 * when the directory they are being removed from was logged.
 * ---> check inode and old parent dir during rename
 *
 *  2a is actually the more important variant.  With the extra logging
 *  a crash might unlink the old name without recreating the new one
 *
 * 3) after a crash, we must go through any directories with a link count
 * of zero and redo the rm -rf
 *
 * mkdir f1/foo
 * normal commit
 * rm -rf f1/foo
 * fsync(f1)
 *
 * The directory f1 was fully removed from the FS, but fsync was never
 * called on f1, only its parent dir.  After a crash the rm -rf must
 * be replayed.  This must be able to recurse down the entire
 * directory tree.  The inode link count fixup code takes care of the
 * ugly details.
 */

80 81 82 83 84 85 86 87 88
/*
 * stages for the tree walking.  The first
 * stage (0) is to only pin down the blocks we find
 * the second stage (1) is to make sure that all the inodes
 * we find in the log are created in the subvolume.
 *
 * The last stage is to deal with directories and links and extents
 * and all the other fun semantics
 */
89 90 91 92 93 94
enum {
	LOG_WALK_PIN_ONLY,
	LOG_WALK_REPLAY_INODES,
	LOG_WALK_REPLAY_DIR_INDEX,
	LOG_WALK_REPLAY_ALL,
};
95

96
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97
			   struct btrfs_root *root, struct btrfs_inode *inode,
98
			   int inode_only,
99
			   struct btrfs_log_ctx *ctx);
100 101 102
static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
			     struct btrfs_root *root,
			     struct btrfs_path *path, u64 objectid);
103 104 105 106 107
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct btrfs_root *log,
				       struct btrfs_path *path,
				       u64 dirid, int del_all);
108
static void wait_log_commit(struct btrfs_root *root, int transid);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

/*
 * tree logging is a special write ahead log used to make sure that
 * fsyncs and O_SYNCs can happen without doing full tree commits.
 *
 * Full tree commits are expensive because they require commonly
 * modified blocks to be recowed, creating many dirty pages in the
 * extent tree an 4x-6x higher write load than ext3.
 *
 * Instead of doing a tree commit on every fsync, we use the
 * key ranges and transaction ids to find items for a given file or directory
 * that have changed in this transaction.  Those items are copied into
 * a special tree (one per subvolume root), that tree is written to disk
 * and then the fsync is considered complete.
 *
 * After a crash, items are copied out of the log-tree back into the
 * subvolume tree.  Any file data extents found are recorded in the extent
 * allocation tree, and the log-tree freed.
 *
 * The log tree is read three times, once to pin down all the extents it is
 * using in ram and once, once to create all the inodes logged in the tree
 * and once to do all the other items.
 */

/*
 * start a sub transaction and setup the log tree
 * this increments the log tree writer count to make the people
 * syncing the tree wait for us to finish
 */
static int start_log_trans(struct btrfs_trans_handle *trans,
139 140
			   struct btrfs_root *root,
			   struct btrfs_log_ctx *ctx)
141
{
142
	struct btrfs_fs_info *fs_info = root->fs_info;
143
	struct btrfs_root *tree_root = fs_info->tree_root;
144
	const bool zoned = btrfs_is_zoned(fs_info);
145
	int ret = 0;
146
	bool created = false;
Y
Yan Zheng 已提交
147

148 149 150 151 152 153 154 155
	/*
	 * First check if the log root tree was already created. If not, create
	 * it before locking the root's log_mutex, just to keep lockdep happy.
	 */
	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
		mutex_lock(&tree_root->log_mutex);
		if (!fs_info->log_root_tree) {
			ret = btrfs_init_log_root_tree(trans, fs_info);
156
			if (!ret) {
157
				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
158 159
				created = true;
			}
160 161 162 163 164 165
		}
		mutex_unlock(&tree_root->log_mutex);
		if (ret)
			return ret;
	}

Y
Yan Zheng 已提交
166
	mutex_lock(&root->log_mutex);
167

168
again:
Y
Yan Zheng 已提交
169
	if (root->log_root) {
170 171
		int index = (root->log_transid + 1) % 2;

172
		if (btrfs_need_log_full_commit(trans)) {
173 174 175
			ret = -EAGAIN;
			goto out;
		}
176

177 178 179 180 181
		if (zoned && atomic_read(&root->log_commit[index])) {
			wait_log_commit(root, root->log_transid - 1);
			goto again;
		}

182
		if (!root->log_start_pid) {
183
			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184
			root->log_start_pid = current->pid;
185
		} else if (root->log_start_pid != current->pid) {
186
			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
187
		}
188
	} else {
189 190 191 192 193 194 195 196 197 198 199
		/*
		 * This means fs_info->log_root_tree was already created
		 * for some other FS trees. Do the full commit not to mix
		 * nodes from multiple log transactions to do sequential
		 * writing.
		 */
		if (zoned && !created) {
			ret = -EAGAIN;
			goto out;
		}

200
		ret = btrfs_add_log_tree(trans, root);
201
		if (ret)
202
			goto out;
203

204
		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
205 206
		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
		root->log_start_pid = current->pid;
207
	}
208

Y
Yan Zheng 已提交
209
	atomic_inc(&root->log_writers);
210
	if (!ctx->logging_new_name) {
211
		int index = root->log_transid % 2;
212
		list_add_tail(&ctx->list, &root->log_ctxs[index]);
213
		ctx->log_transid = root->log_transid;
214
	}
215

216
out:
Y
Yan Zheng 已提交
217
	mutex_unlock(&root->log_mutex);
218
	return ret;
219 220 221 222 223 224 225 226 227
}

/*
 * returns 0 if there was a log transaction running and we were able
 * to join, or returns -ENOENT if there were not transactions
 * in progress
 */
static int join_running_log_trans(struct btrfs_root *root)
{
228
	const bool zoned = btrfs_is_zoned(root->fs_info);
229 230
	int ret = -ENOENT;

231 232 233
	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
		return ret;

Y
Yan Zheng 已提交
234
	mutex_lock(&root->log_mutex);
235
again:
236
	if (root->log_root) {
237 238
		int index = (root->log_transid + 1) % 2;

239
		ret = 0;
240 241 242 243
		if (zoned && atomic_read(&root->log_commit[index])) {
			wait_log_commit(root, root->log_transid - 1);
			goto again;
		}
Y
Yan Zheng 已提交
244
		atomic_inc(&root->log_writers);
245
	}
Y
Yan Zheng 已提交
246
	mutex_unlock(&root->log_mutex);
247 248 249
	return ret;
}

250 251 252 253 254
/*
 * This either makes the current running log transaction wait
 * until you call btrfs_end_log_trans() or it makes any future
 * log transactions wait until you call btrfs_end_log_trans()
 */
255
void btrfs_pin_log_trans(struct btrfs_root *root)
256 257 258 259
{
	atomic_inc(&root->log_writers);
}

260 261 262 263
/*
 * indicate we're done making changes to the log tree
 * and wake up anyone waiting to do a sync
 */
264
void btrfs_end_log_trans(struct btrfs_root *root)
265
{
Y
Yan Zheng 已提交
266
	if (atomic_dec_and_test(&root->log_writers)) {
267 268
		/* atomic_dec_and_test implies a barrier */
		cond_wake_up_nomb(&root->log_writer_wait);
Y
Yan Zheng 已提交
269
	}
270 271
}

272 273 274 275 276 277 278 279 280 281 282
static int btrfs_write_tree_block(struct extent_buffer *buf)
{
	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
					buf->start + buf->len - 1);
}

static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
{
	filemap_fdatawait_range(buf->pages[0]->mapping,
			        buf->start, buf->start + buf->len - 1);
}
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

/*
 * the walk control struct is used to pass state down the chain when
 * processing the log tree.  The stage field tells us which part
 * of the log tree processing we are currently doing.  The others
 * are state fields used for that specific part
 */
struct walk_control {
	/* should we free the extent on disk when done?  This is used
	 * at transaction commit time while freeing a log tree
	 */
	int free;

	/* should we write out the extent buffer?  This is used
	 * while flushing the log tree to disk during a sync
	 */
	int write;

	/* should we wait for the extent buffer io to finish?  Also used
	 * while flushing the log tree to disk for a sync
	 */
	int wait;

	/* pin only walk, we record which extents on disk belong to the
	 * log trees
	 */
	int pin;

	/* what stage of the replay code we're currently in */
	int stage;

314 315 316 317 318 319 320
	/*
	 * Ignore any items from the inode currently being processed. Needs
	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
	 * the LOG_WALK_REPLAY_INODES stage.
	 */
	bool ignore_cur_inode;

321 322 323 324 325 326 327 328 329 330 331 332
	/* the root we are currently replaying */
	struct btrfs_root *replay_dest;

	/* the trans handle for the current replay */
	struct btrfs_trans_handle *trans;

	/* the function that gets used to process blocks we find in the
	 * tree.  Note the extent_buffer might not be up to date when it is
	 * passed in, and it must be checked or read if you need the data
	 * inside it
	 */
	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
333
			    struct walk_control *wc, u64 gen, int level);
334 335 336 337 338 339 340
};

/*
 * process_func used to pin down extents, write them or wait on them
 */
static int process_one_buffer(struct btrfs_root *log,
			      struct extent_buffer *eb,
341
			      struct walk_control *wc, u64 gen, int level)
342
{
343
	struct btrfs_fs_info *fs_info = log->fs_info;
344 345
	int ret = 0;

346 347 348 349
	/*
	 * If this fs is mixed then we need to be able to process the leaves to
	 * pin down any logged extents, so we have to read the block.
	 */
350
	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
351
		ret = btrfs_read_buffer(eb, gen, level, NULL);
352 353 354 355
		if (ret)
			return ret;
	}

J
Josef Bacik 已提交
356
	if (wc->pin)
357
		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
358
						      eb->len);
359

360
	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
361
		if (wc->pin && btrfs_header_level(eb) == 0)
362
			ret = btrfs_exclude_logged_extents(eb);
363 364 365 366 367
		if (wc->write)
			btrfs_write_tree_block(eb);
		if (wc->wait)
			btrfs_wait_tree_block_writeback(eb);
	}
368
	return ret;
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
}

/*
 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 * to the src data we are copying out.
 *
 * root is the tree we are copying into, and path is a scratch
 * path for use in this function (it should be released on entry and
 * will be released on exit).
 *
 * If the key is already in the destination tree the existing item is
 * overwritten.  If the existing item isn't big enough, it is extended.
 * If it is too large, it is truncated.
 *
 * If the key isn't in the destination yet, a new item is inserted.
 */
static noinline int overwrite_item(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct btrfs_path *path,
				   struct extent_buffer *eb, int slot,
				   struct btrfs_key *key)
{
	int ret;
	u32 item_size;
	u64 saved_i_size = 0;
	int save_old_i_size = 0;
	unsigned long src_ptr;
	unsigned long dst_ptr;
	int overwrite_root = 0;
398
	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
399 400 401 402 403 404 405 406 407

	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
		overwrite_root = 1;

	item_size = btrfs_item_size_nr(eb, slot);
	src_ptr = btrfs_item_ptr_offset(eb, slot);

	/* look for the key in the destination tree */
	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
408 409 410
	if (ret < 0)
		return ret;

411 412 413 414 415 416 417 418 419
	if (ret == 0) {
		char *src_copy;
		char *dst_copy;
		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
						  path->slots[0]);
		if (dst_size != item_size)
			goto insert;

		if (item_size == 0) {
420
			btrfs_release_path(path);
421 422 423 424
			return 0;
		}
		dst_copy = kmalloc(item_size, GFP_NOFS);
		src_copy = kmalloc(item_size, GFP_NOFS);
425
		if (!dst_copy || !src_copy) {
426
			btrfs_release_path(path);
427 428 429 430
			kfree(dst_copy);
			kfree(src_copy);
			return -ENOMEM;
		}
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

		read_extent_buffer(eb, src_copy, src_ptr, item_size);

		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
				   item_size);
		ret = memcmp(dst_copy, src_copy, item_size);

		kfree(dst_copy);
		kfree(src_copy);
		/*
		 * they have the same contents, just return, this saves
		 * us from cowing blocks in the destination tree and doing
		 * extra writes that may not have been done by a previous
		 * sync
		 */
		if (ret == 0) {
448
			btrfs_release_path(path);
449 450 451
			return 0;
		}

452 453 454 455 456 457 458
		/*
		 * We need to load the old nbytes into the inode so when we
		 * replay the extents we've logged we get the right nbytes.
		 */
		if (inode_item) {
			struct btrfs_inode_item *item;
			u64 nbytes;
459
			u32 mode;
460 461 462 463 464 465 466

			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
					      struct btrfs_inode_item);
			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
			item = btrfs_item_ptr(eb, slot,
					      struct btrfs_inode_item);
			btrfs_set_inode_nbytes(eb, item, nbytes);
467 468 469 470 471 472 473 474 475

			/*
			 * If this is a directory we need to reset the i_size to
			 * 0 so that we can set it up properly when replaying
			 * the rest of the items in this log.
			 */
			mode = btrfs_inode_mode(eb, item);
			if (S_ISDIR(mode))
				btrfs_set_inode_size(eb, item, 0);
476 477 478
		}
	} else if (inode_item) {
		struct btrfs_inode_item *item;
479
		u32 mode;
480 481 482 483 484 485 486

		/*
		 * New inode, set nbytes to 0 so that the nbytes comes out
		 * properly when we replay the extents.
		 */
		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
		btrfs_set_inode_nbytes(eb, item, 0);
487 488 489 490 491 492 493 494 495

		/*
		 * If this is a directory we need to reset the i_size to 0 so
		 * that we can set it up properly when replaying the rest of
		 * the items in this log.
		 */
		mode = btrfs_inode_mode(eb, item);
		if (S_ISDIR(mode))
			btrfs_set_inode_size(eb, item, 0);
496 497
	}
insert:
498
	btrfs_release_path(path);
499
	/* try to insert the key into the destination tree */
500
	path->skip_release_on_error = 1;
501 502
	ret = btrfs_insert_empty_item(trans, root, path,
				      key, item_size);
503
	path->skip_release_on_error = 0;
504 505

	/* make sure any existing item is the correct size */
506
	if (ret == -EEXIST || ret == -EOVERFLOW) {
507 508 509
		u32 found_size;
		found_size = btrfs_item_size_nr(path->nodes[0],
						path->slots[0]);
510
		if (found_size > item_size)
511
			btrfs_truncate_item(path, item_size, 1);
512
		else if (found_size < item_size)
513
			btrfs_extend_item(path, item_size - found_size);
514
	} else if (ret) {
515
		return ret;
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	}
	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
					path->slots[0]);

	/* don't overwrite an existing inode if the generation number
	 * was logged as zero.  This is done when the tree logging code
	 * is just logging an inode to make sure it exists after recovery.
	 *
	 * Also, don't overwrite i_size on directories during replay.
	 * log replay inserts and removes directory items based on the
	 * state of the tree found in the subvolume, and i_size is modified
	 * as it goes
	 */
	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
		struct btrfs_inode_item *src_item;
		struct btrfs_inode_item *dst_item;

		src_item = (struct btrfs_inode_item *)src_ptr;
		dst_item = (struct btrfs_inode_item *)dst_ptr;

536 537
		if (btrfs_inode_generation(eb, src_item) == 0) {
			struct extent_buffer *dst_eb = path->nodes[0];
538
			const u64 ino_size = btrfs_inode_size(eb, src_item);
539

540 541 542 543 544 545 546
			/*
			 * For regular files an ino_size == 0 is used only when
			 * logging that an inode exists, as part of a directory
			 * fsync, and the inode wasn't fsynced before. In this
			 * case don't set the size of the inode in the fs/subvol
			 * tree, otherwise we would be throwing valid data away.
			 */
547
			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
548
			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
549 550
			    ino_size != 0)
				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
551
			goto no_copy;
552
		}
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

		if (overwrite_root &&
		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
			save_old_i_size = 1;
			saved_i_size = btrfs_inode_size(path->nodes[0],
							dst_item);
		}
	}

	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
			   src_ptr, item_size);

	if (save_old_i_size) {
		struct btrfs_inode_item *dst_item;
		dst_item = (struct btrfs_inode_item *)dst_ptr;
		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
	}

	/* make sure the generation is filled in */
	if (key->type == BTRFS_INODE_ITEM_KEY) {
		struct btrfs_inode_item *dst_item;
		dst_item = (struct btrfs_inode_item *)dst_ptr;
		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
			btrfs_set_inode_generation(path->nodes[0], dst_item,
						   trans->transid);
		}
	}
no_copy:
	btrfs_mark_buffer_dirty(path->nodes[0]);
583
	btrfs_release_path(path);
584 585 586 587 588 589 590 591 592 593 594 595
	return 0;
}

/*
 * simple helper to read an inode off the disk from a given root
 * This can only be called for subvolume roots and not for the log
 */
static noinline struct inode *read_one_inode(struct btrfs_root *root,
					     u64 objectid)
{
	struct inode *inode;

D
David Sterba 已提交
596
	inode = btrfs_iget(root->fs_info->sb, objectid, root);
597
	if (IS_ERR(inode))
598
		inode = NULL;
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	return inode;
}

/* replays a single extent in 'eb' at 'slot' with 'key' into the
 * subvolume 'root'.  path is released on entry and should be released
 * on exit.
 *
 * extents in the log tree have not been allocated out of the extent
 * tree yet.  So, this completes the allocation, taking a reference
 * as required if the extent already exists or creating a new extent
 * if it isn't in the extent allocation tree yet.
 *
 * The extent is inserted into the file, dropping any existing extents
 * from the file that overlap the new one.
 */
static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
				      struct extent_buffer *eb, int slot,
				      struct btrfs_key *key)
{
620
	struct btrfs_drop_extents_args drop_args = { 0 };
621
	struct btrfs_fs_info *fs_info = root->fs_info;
622 623 624
	int found_type;
	u64 extent_end;
	u64 start = key->offset;
625
	u64 nbytes = 0;
626 627 628 629 630 631 632 633
	struct btrfs_file_extent_item *item;
	struct inode *inode = NULL;
	unsigned long size;
	int ret = 0;

	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
	found_type = btrfs_file_extent_type(eb, item);

Y
Yan Zheng 已提交
634
	if (found_type == BTRFS_FILE_EXTENT_REG ||
635 636 637 638 639 640 641 642 643 644 645
	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
		nbytes = btrfs_file_extent_num_bytes(eb, item);
		extent_end = start + nbytes;

		/*
		 * We don't add to the inodes nbytes if we are prealloc or a
		 * hole.
		 */
		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
			nbytes = 0;
	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
646
		size = btrfs_file_extent_ram_bytes(eb, item);
647
		nbytes = btrfs_file_extent_ram_bytes(eb, item);
648
		extent_end = ALIGN(start + size,
649
				   fs_info->sectorsize);
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	} else {
		ret = 0;
		goto out;
	}

	inode = read_one_inode(root, key->objectid);
	if (!inode) {
		ret = -EIO;
		goto out;
	}

	/*
	 * first check to see if we already have this extent in the
	 * file.  This must be done before the btrfs_drop_extents run
	 * so we don't try to drop this extent.
	 */
666 667
	ret = btrfs_lookup_file_extent(trans, root, path,
			btrfs_ino(BTRFS_I(inode)), start, 0);
668

Y
Yan Zheng 已提交
669 670 671
	if (ret == 0 &&
	    (found_type == BTRFS_FILE_EXTENT_REG ||
	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		struct btrfs_file_extent_item cmp1;
		struct btrfs_file_extent_item cmp2;
		struct btrfs_file_extent_item *existing;
		struct extent_buffer *leaf;

		leaf = path->nodes[0];
		existing = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_file_extent_item);

		read_extent_buffer(eb, &cmp1, (unsigned long)item,
				   sizeof(cmp1));
		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
				   sizeof(cmp2));

		/*
		 * we already have a pointer to this exact extent,
		 * we don't have to do anything
		 */
		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
691
			btrfs_release_path(path);
692 693 694
			goto out;
		}
	}
695
	btrfs_release_path(path);
696 697

	/* drop any overlapping extents */
698 699 700 701
	drop_args.start = start;
	drop_args.end = extent_end;
	drop_args.drop_cache = true;
	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
702 703
	if (ret)
		goto out;
704

Y
Yan Zheng 已提交
705 706
	if (found_type == BTRFS_FILE_EXTENT_REG ||
	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
707
		u64 offset;
Y
Yan Zheng 已提交
708 709 710
		unsigned long dest_offset;
		struct btrfs_key ins;

711 712 713 714
		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
		    btrfs_fs_incompat(fs_info, NO_HOLES))
			goto update_inode;

Y
Yan Zheng 已提交
715 716
		ret = btrfs_insert_empty_item(trans, root, path, key,
					      sizeof(*item));
717 718
		if (ret)
			goto out;
Y
Yan Zheng 已提交
719 720 721 722 723 724 725 726
		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
						    path->slots[0]);
		copy_extent_buffer(path->nodes[0], eb, dest_offset,
				(unsigned long)item,  sizeof(*item));

		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
		ins.type = BTRFS_EXTENT_ITEM_KEY;
727
		offset = key->offset - btrfs_file_extent_offset(eb, item);
Y
Yan Zheng 已提交
728

729 730 731 732 733 734 735 736
		/*
		 * Manually record dirty extent, as here we did a shallow
		 * file extent item copy and skip normal backref update,
		 * but modifying extent tree all by ourselves.
		 * So need to manually record dirty extent for qgroup,
		 * as the owner of the file extent changed from log tree
		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
		 */
737
		ret = btrfs_qgroup_trace_extent(trans,
738 739 740 741 742 743
				btrfs_file_extent_disk_bytenr(eb, item),
				btrfs_file_extent_disk_num_bytes(eb, item),
				GFP_NOFS);
		if (ret < 0)
			goto out;

Y
Yan Zheng 已提交
744
		if (ins.objectid > 0) {
745
			struct btrfs_ref ref = { 0 };
Y
Yan Zheng 已提交
746 747 748
			u64 csum_start;
			u64 csum_end;
			LIST_HEAD(ordered_sums);
749

Y
Yan Zheng 已提交
750 751 752 753
			/*
			 * is this extent already allocated in the extent
			 * allocation tree?  If so, just add a reference
			 */
754
			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
Y
Yan Zheng 已提交
755
						ins.offset);
756 757 758
			if (ret < 0) {
				goto out;
			} else if (ret == 0) {
759 760 761 762 763
				btrfs_init_generic_ref(&ref,
						BTRFS_ADD_DELAYED_REF,
						ins.objectid, ins.offset, 0);
				btrfs_init_data_ref(&ref,
						root->root_key.objectid,
764
						key->objectid, offset);
765
				ret = btrfs_inc_extent_ref(trans, &ref);
766 767
				if (ret)
					goto out;
Y
Yan Zheng 已提交
768 769 770 771 772
			} else {
				/*
				 * insert the extent pointer in the extent
				 * allocation tree
				 */
773
				ret = btrfs_alloc_logged_file_extent(trans,
774
						root->root_key.objectid,
775
						key->objectid, offset, &ins);
776 777
				if (ret)
					goto out;
Y
Yan Zheng 已提交
778
			}
779
			btrfs_release_path(path);
Y
Yan Zheng 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792

			if (btrfs_file_extent_compression(eb, item)) {
				csum_start = ins.objectid;
				csum_end = csum_start + ins.offset;
			} else {
				csum_start = ins.objectid +
					btrfs_file_extent_offset(eb, item);
				csum_end = csum_start +
					btrfs_file_extent_num_bytes(eb, item);
			}

			ret = btrfs_lookup_csums_range(root->log_root,
						csum_start, csum_end - 1,
A
Arne Jansen 已提交
793
						&ordered_sums, 0);
794 795
			if (ret)
				goto out;
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
			/*
			 * Now delete all existing cums in the csum root that
			 * cover our range. We do this because we can have an
			 * extent that is completely referenced by one file
			 * extent item and partially referenced by another
			 * file extent item (like after using the clone or
			 * extent_same ioctls). In this case if we end up doing
			 * the replay of the one that partially references the
			 * extent first, and we do not do the csum deletion
			 * below, we can get 2 csum items in the csum tree that
			 * overlap each other. For example, imagine our log has
			 * the two following file extent items:
			 *
			 * key (257 EXTENT_DATA 409600)
			 *     extent data disk byte 12845056 nr 102400
			 *     extent data offset 20480 nr 20480 ram 102400
			 *
			 * key (257 EXTENT_DATA 819200)
			 *     extent data disk byte 12845056 nr 102400
			 *     extent data offset 0 nr 102400 ram 102400
			 *
			 * Where the second one fully references the 100K extent
			 * that starts at disk byte 12845056, and the log tree
			 * has a single csum item that covers the entire range
			 * of the extent:
			 *
			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
			 *
			 * After the first file extent item is replayed, the
			 * csum tree gets the following csum item:
			 *
			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
			 *
			 * Which covers the 20K sub-range starting at offset 20K
			 * of our extent. Now when we replay the second file
			 * extent item, if we do not delete existing csum items
			 * that cover any of its blocks, we end up getting two
			 * csum items in our csum tree that overlap each other:
			 *
			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
			 *
			 * Which is a problem, because after this anyone trying
			 * to lookup up for the checksum of any block of our
			 * extent starting at an offset of 40K or higher, will
			 * end up looking at the second csum item only, which
			 * does not contain the checksum for any block starting
			 * at offset 40K or higher of our extent.
			 */
Y
Yan Zheng 已提交
845 846 847 848 849
			while (!list_empty(&ordered_sums)) {
				struct btrfs_ordered_sum *sums;
				sums = list_entry(ordered_sums.next,
						struct btrfs_ordered_sum,
						list);
850
				if (!ret)
851 852
					ret = btrfs_del_csums(trans,
							      fs_info->csum_root,
853 854
							      sums->bytenr,
							      sums->len);
855 856
				if (!ret)
					ret = btrfs_csum_file_blocks(trans,
857
						fs_info->csum_root, sums);
Y
Yan Zheng 已提交
858 859 860
				list_del(&sums->list);
				kfree(sums);
			}
861 862
			if (ret)
				goto out;
Y
Yan Zheng 已提交
863
		} else {
864
			btrfs_release_path(path);
Y
Yan Zheng 已提交
865 866 867 868
		}
	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
		/* inline extents are easy, we just overwrite them */
		ret = overwrite_item(trans, root, path, eb, slot, key);
869 870
		if (ret)
			goto out;
Y
Yan Zheng 已提交
871
	}
872

873 874 875 876 877
	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
						extent_end - start);
	if (ret)
		goto out;

878
update_inode:
879
	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
880
	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
out:
	if (inode)
		iput(inode);
	return ret;
}

/*
 * when cleaning up conflicts between the directory names in the
 * subvolume, directory names in the log and directory names in the
 * inode back references, we may have to unlink inodes from directories.
 *
 * This is a helper function to do the unlink of a specific directory
 * item
 */
static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
898
				      struct btrfs_inode *dir,
899 900 901 902 903 904 905 906 907 908 909 910 911 912
				      struct btrfs_dir_item *di)
{
	struct inode *inode;
	char *name;
	int name_len;
	struct extent_buffer *leaf;
	struct btrfs_key location;
	int ret;

	leaf = path->nodes[0];

	btrfs_dir_item_key_to_cpu(leaf, di, &location);
	name_len = btrfs_dir_name_len(leaf, di);
	name = kmalloc(name_len, GFP_NOFS);
913 914 915
	if (!name)
		return -ENOMEM;

916
	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
917
	btrfs_release_path(path);
918 919

	inode = read_one_inode(root, location.objectid);
920
	if (!inode) {
921 922
		ret = -EIO;
		goto out;
923
	}
924

925
	ret = link_to_fixup_dir(trans, root, path, location.objectid);
926 927
	if (ret)
		goto out;
928

929 930
	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
			name_len);
931 932
	if (ret)
		goto out;
933
	else
934
		ret = btrfs_run_delayed_items(trans);
935
out:
936 937 938 939 940 941
	kfree(name);
	iput(inode);
	return ret;
}

/*
942 943 944 945 946
 * See if a given name and sequence number found in an inode back reference are
 * already in a directory and correctly point to this inode.
 *
 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
 * exists.
947 948 949 950 951 952 953 954
 */
static noinline int inode_in_dir(struct btrfs_root *root,
				 struct btrfs_path *path,
				 u64 dirid, u64 objectid, u64 index,
				 const char *name, int name_len)
{
	struct btrfs_dir_item *di;
	struct btrfs_key location;
955
	int ret = 0;
956 957 958

	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
					 index, name, name_len, 0);
959
	if (IS_ERR(di)) {
960
		ret = PTR_ERR(di);
961 962
		goto out;
	} else if (di) {
963 964 965
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
		if (location.objectid != objectid)
			goto out;
966
	} else {
967
		goto out;
968
	}
969

970
	btrfs_release_path(path);
971
	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
972 973
	if (IS_ERR(di)) {
		ret = PTR_ERR(di);
974
		goto out;
975 976 977 978 979
	} else if (di) {
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
		if (location.objectid == objectid)
			ret = 1;
	}
980
out:
981
	btrfs_release_path(path);
982
	return ret;
983 984 985 986 987 988 989 990 991 992 993 994 995 996
}

/*
 * helper function to check a log tree for a named back reference in
 * an inode.  This is used to decide if a back reference that is
 * found in the subvolume conflicts with what we find in the log.
 *
 * inode backreferences may have multiple refs in a single item,
 * during replay we process one reference at a time, and we don't
 * want to delete valid links to a file from the subvolume if that
 * link is also in the log.
 */
static noinline int backref_in_log(struct btrfs_root *log,
				   struct btrfs_key *key,
M
Mark Fasheh 已提交
997
				   u64 ref_objectid,
998
				   const char *name, int namelen)
999 1000 1001 1002 1003
{
	struct btrfs_path *path;
	int ret;

	path = btrfs_alloc_path();
1004 1005 1006
	if (!path)
		return -ENOMEM;

1007
	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1008 1009 1010
	if (ret < 0) {
		goto out;
	} else if (ret == 1) {
1011
		ret = 0;
M
Mark Fasheh 已提交
1012 1013 1014
		goto out;
	}

1015 1016 1017 1018 1019 1020 1021 1022 1023
	if (key->type == BTRFS_INODE_EXTREF_KEY)
		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
						       path->slots[0],
						       ref_objectid,
						       name, namelen);
	else
		ret = !!btrfs_find_name_in_backref(path->nodes[0],
						   path->slots[0],
						   name, namelen);
1024 1025
out:
	btrfs_free_path(path);
1026
	return ret;
1027 1028
}

1029
static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1030 1031
				  struct btrfs_root *root,
				  struct btrfs_path *path,
1032
				  struct btrfs_root *log_root,
1033 1034
				  struct btrfs_inode *dir,
				  struct btrfs_inode *inode,
M
Mark Fasheh 已提交
1035 1036 1037
				  u64 inode_objectid, u64 parent_objectid,
				  u64 ref_index, char *name, int namelen,
				  int *search_done)
1038
{
L
liubo 已提交
1039
	int ret;
M
Mark Fasheh 已提交
1040 1041 1042
	char *victim_name;
	int victim_name_len;
	struct extent_buffer *leaf;
1043
	struct btrfs_dir_item *di;
M
Mark Fasheh 已提交
1044 1045
	struct btrfs_key search_key;
	struct btrfs_inode_extref *extref;
1046

M
Mark Fasheh 已提交
1047 1048 1049 1050 1051 1052
again:
	/* Search old style refs */
	search_key.objectid = inode_objectid;
	search_key.type = BTRFS_INODE_REF_KEY;
	search_key.offset = parent_objectid;
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1053 1054 1055 1056
	if (ret == 0) {
		struct btrfs_inode_ref *victim_ref;
		unsigned long ptr;
		unsigned long ptr_end;
M
Mark Fasheh 已提交
1057 1058

		leaf = path->nodes[0];
1059 1060 1061 1062

		/* are we trying to overwrite a back ref for the root directory
		 * if so, just jump out, we're done
		 */
M
Mark Fasheh 已提交
1063
		if (search_key.objectid == search_key.offset)
1064
			return 1;
1065 1066 1067 1068 1069 1070 1071

		/* check all the names in this back reference to see
		 * if they are in the log.  if so, we allow them to stay
		 * otherwise they must be unlinked as a conflict
		 */
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
C
Chris Mason 已提交
1072
		while (ptr < ptr_end) {
1073 1074 1075 1076
			victim_ref = (struct btrfs_inode_ref *)ptr;
			victim_name_len = btrfs_inode_ref_name_len(leaf,
								   victim_ref);
			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1077 1078
			if (!victim_name)
				return -ENOMEM;
1079 1080 1081 1082 1083

			read_extent_buffer(leaf, victim_name,
					   (unsigned long)(victim_ref + 1),
					   victim_name_len);

1084 1085 1086 1087 1088 1089 1090
			ret = backref_in_log(log_root, &search_key,
					     parent_objectid, victim_name,
					     victim_name_len);
			if (ret < 0) {
				kfree(victim_name);
				return ret;
			} else if (!ret) {
1091
				inc_nlink(&inode->vfs_inode);
1092
				btrfs_release_path(path);
1093

1094
				ret = btrfs_unlink_inode(trans, root, dir, inode,
1095
						victim_name, victim_name_len);
M
Mark Fasheh 已提交
1096
				kfree(victim_name);
1097 1098
				if (ret)
					return ret;
1099
				ret = btrfs_run_delayed_items(trans);
1100 1101
				if (ret)
					return ret;
M
Mark Fasheh 已提交
1102 1103
				*search_done = 1;
				goto again;
1104 1105
			}
			kfree(victim_name);
M
Mark Fasheh 已提交
1106

1107 1108 1109
			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
		}

1110 1111
		/*
		 * NOTE: we have searched root tree and checked the
1112
		 * corresponding ref, it does not need to check again.
1113
		 */
1114
		*search_done = 1;
1115
	}
1116
	btrfs_release_path(path);
1117

M
Mark Fasheh 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	/* Same search but for extended refs */
	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
					   inode_objectid, parent_objectid, 0,
					   0);
	if (!IS_ERR_OR_NULL(extref)) {
		u32 item_size;
		u32 cur_offset = 0;
		unsigned long base;
		struct inode *victim_parent;

		leaf = path->nodes[0];

		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
		base = btrfs_item_ptr_offset(leaf, path->slots[0]);

		while (cur_offset < item_size) {
1134
			extref = (struct btrfs_inode_extref *)(base + cur_offset);
M
Mark Fasheh 已提交
1135 1136 1137 1138 1139 1140 1141

			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);

			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
				goto next;

			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1142 1143
			if (!victim_name)
				return -ENOMEM;
M
Mark Fasheh 已提交
1144 1145 1146 1147 1148 1149 1150 1151
			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
					   victim_name_len);

			search_key.objectid = inode_objectid;
			search_key.type = BTRFS_INODE_EXTREF_KEY;
			search_key.offset = btrfs_extref_hash(parent_objectid,
							      victim_name,
							      victim_name_len);
1152 1153 1154 1155 1156 1157
			ret = backref_in_log(log_root, &search_key,
					     parent_objectid, victim_name,
					     victim_name_len);
			if (ret < 0) {
				return ret;
			} else if (!ret) {
M
Mark Fasheh 已提交
1158 1159
				ret = -ENOENT;
				victim_parent = read_one_inode(root,
1160
						parent_objectid);
M
Mark Fasheh 已提交
1161
				if (victim_parent) {
1162
					inc_nlink(&inode->vfs_inode);
M
Mark Fasheh 已提交
1163 1164 1165
					btrfs_release_path(path);

					ret = btrfs_unlink_inode(trans, root,
1166
							BTRFS_I(victim_parent),
1167
							inode,
1168 1169
							victim_name,
							victim_name_len);
1170 1171
					if (!ret)
						ret = btrfs_run_delayed_items(
1172
								  trans);
M
Mark Fasheh 已提交
1173 1174 1175
				}
				iput(victim_parent);
				kfree(victim_name);
1176 1177
				if (ret)
					return ret;
M
Mark Fasheh 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
				*search_done = 1;
				goto again;
			}
			kfree(victim_name);
next:
			cur_offset += victim_name_len + sizeof(*extref);
		}
		*search_done = 1;
	}
	btrfs_release_path(path);

L
liubo 已提交
1189
	/* look for a conflicting sequence number */
1190
	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
M
Mark Fasheh 已提交
1191
					 ref_index, name, namelen, 0);
1192
	if (IS_ERR(di)) {
1193
		return PTR_ERR(di);
1194
	} else if (di) {
1195
		ret = drop_one_dir_item(trans, root, path, dir, di);
1196 1197
		if (ret)
			return ret;
L
liubo 已提交
1198 1199 1200
	}
	btrfs_release_path(path);

1201
	/* look for a conflicting name */
1202
	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
L
liubo 已提交
1203
				   name, namelen, 0);
1204 1205 1206
	if (IS_ERR(di)) {
		return PTR_ERR(di);
	} else if (di) {
1207
		ret = drop_one_dir_item(trans, root, path, dir, di);
1208 1209
		if (ret)
			return ret;
L
liubo 已提交
1210 1211 1212
	}
	btrfs_release_path(path);

1213 1214
	return 0;
}
1215

1216 1217 1218
static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
			     u32 *namelen, char **name, u64 *index,
			     u64 *parent_objectid)
M
Mark Fasheh 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
{
	struct btrfs_inode_extref *extref;

	extref = (struct btrfs_inode_extref *)ref_ptr;

	*namelen = btrfs_inode_extref_name_len(eb, extref);
	*name = kmalloc(*namelen, GFP_NOFS);
	if (*name == NULL)
		return -ENOMEM;

	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
			   *namelen);

1232 1233
	if (index)
		*index = btrfs_inode_extref_index(eb, extref);
M
Mark Fasheh 已提交
1234 1235 1236 1237 1238 1239
	if (parent_objectid)
		*parent_objectid = btrfs_inode_extref_parent(eb, extref);

	return 0;
}

1240 1241
static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
			  u32 *namelen, char **name, u64 *index)
M
Mark Fasheh 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
{
	struct btrfs_inode_ref *ref;

	ref = (struct btrfs_inode_ref *)ref_ptr;

	*namelen = btrfs_inode_ref_name_len(eb, ref);
	*name = kmalloc(*namelen, GFP_NOFS);
	if (*name == NULL)
		return -ENOMEM;

	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);

1254 1255
	if (index)
		*index = btrfs_inode_ref_index(eb, ref);
M
Mark Fasheh 已提交
1256 1257 1258 1259

	return 0;
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/*
 * Take an inode reference item from the log tree and iterate all names from the
 * inode reference item in the subvolume tree with the same key (if it exists).
 * For any name that is not in the inode reference item from the log tree, do a
 * proper unlink of that name (that is, remove its entry from the inode
 * reference item and both dir index keys).
 */
static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
				 struct btrfs_root *root,
				 struct btrfs_path *path,
				 struct btrfs_inode *inode,
				 struct extent_buffer *log_eb,
				 int log_slot,
				 struct btrfs_key *key)
{
	int ret;
	unsigned long ref_ptr;
	unsigned long ref_end;
	struct extent_buffer *eb;

again:
	btrfs_release_path(path);
	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
	if (ret > 0) {
		ret = 0;
		goto out;
	}
	if (ret < 0)
		goto out;

	eb = path->nodes[0];
	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
	while (ref_ptr < ref_end) {
		char *name = NULL;
		int namelen;
		u64 parent_id;

		if (key->type == BTRFS_INODE_EXTREF_KEY) {
			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
						NULL, &parent_id);
		} else {
			parent_id = key->offset;
			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
					     NULL);
		}
		if (ret)
			goto out;

		if (key->type == BTRFS_INODE_EXTREF_KEY)
1310 1311 1312
			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
							       parent_id, name,
							       namelen);
1313
		else
1314 1315
			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
							   name, namelen);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

		if (!ret) {
			struct inode *dir;

			btrfs_release_path(path);
			dir = read_one_inode(root, parent_id);
			if (!dir) {
				ret = -ENOENT;
				kfree(name);
				goto out;
			}
			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
						 inode, name, namelen);
			kfree(name);
			iput(dir);
			if (ret)
				goto out;
			goto again;
		}

		kfree(name);
		ref_ptr += namelen;
		if (key->type == BTRFS_INODE_EXTREF_KEY)
			ref_ptr += sizeof(struct btrfs_inode_extref);
		else
			ref_ptr += sizeof(struct btrfs_inode_ref);
	}
	ret = 0;
 out:
	btrfs_release_path(path);
	return ret;
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
				  const u8 ref_type, const char *name,
				  const int namelen)
{
	struct btrfs_key key;
	struct btrfs_path *path;
	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = btrfs_ino(BTRFS_I(inode));
	key.type = ref_type;
	if (key.type == BTRFS_INODE_REF_KEY)
		key.offset = parent_id;
	else
		key.offset = btrfs_extref_hash(parent_id, name, namelen);

	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = 0;
		goto out;
	}
	if (key.type == BTRFS_INODE_EXTREF_KEY)
1377 1378
		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
				path->slots[0], parent_id, name, namelen);
1379
	else
1380 1381
		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
						   name, namelen);
1382 1383 1384 1385 1386 1387

out:
	btrfs_free_path(path);
	return ret;
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct inode *dir, struct inode *inode, const char *name,
		    int namelen, u64 ref_index)
{
	struct btrfs_dir_item *dir_item;
	struct btrfs_key key;
	struct btrfs_path *path;
	struct inode *other_inode = NULL;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	dir_item = btrfs_lookup_dir_item(NULL, root, path,
					 btrfs_ino(BTRFS_I(dir)),
					 name, namelen, 0);
	if (!dir_item) {
		btrfs_release_path(path);
		goto add_link;
	} else if (IS_ERR(dir_item)) {
		ret = PTR_ERR(dir_item);
		goto out;
	}

	/*
	 * Our inode's dentry collides with the dentry of another inode which is
	 * in the log but not yet processed since it has a higher inode number.
	 * So delete that other dentry.
	 */
	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
	btrfs_release_path(path);
	other_inode = read_one_inode(root, key.objectid);
	if (!other_inode) {
		ret = -ENOENT;
		goto out;
	}
	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
				 name, namelen);
	if (ret)
		goto out;
	/*
	 * If we dropped the link count to 0, bump it so that later the iput()
	 * on the inode will not free it. We will fixup the link count later.
	 */
	if (other_inode->i_nlink == 0)
		inc_nlink(other_inode);

	ret = btrfs_run_delayed_items(trans);
	if (ret)
		goto out;
add_link:
	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
			     name, namelen, 0, ref_index);
out:
	iput(other_inode);
	btrfs_free_path(path);

	return ret;
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
/*
 * replay one inode back reference item found in the log tree.
 * eb, slot and key refer to the buffer and key found in the log tree.
 * root is the destination we are replaying into, and path is for temp
 * use by this function.  (it should be released on return).
 */
static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
				  struct btrfs_root *root,
				  struct btrfs_root *log,
				  struct btrfs_path *path,
				  struct extent_buffer *eb, int slot,
				  struct btrfs_key *key)
{
1462 1463
	struct inode *dir = NULL;
	struct inode *inode = NULL;
1464 1465
	unsigned long ref_ptr;
	unsigned long ref_end;
1466
	char *name = NULL;
1467 1468 1469
	int namelen;
	int ret;
	int search_done = 0;
M
Mark Fasheh 已提交
1470 1471 1472
	int log_ref_ver = 0;
	u64 parent_objectid;
	u64 inode_objectid;
1473
	u64 ref_index = 0;
M
Mark Fasheh 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	int ref_struct_size;

	ref_ptr = btrfs_item_ptr_offset(eb, slot);
	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);

	if (key->type == BTRFS_INODE_EXTREF_KEY) {
		struct btrfs_inode_extref *r;

		ref_struct_size = sizeof(struct btrfs_inode_extref);
		log_ref_ver = 1;
		r = (struct btrfs_inode_extref *)ref_ptr;
		parent_objectid = btrfs_inode_extref_parent(eb, r);
	} else {
		ref_struct_size = sizeof(struct btrfs_inode_ref);
		parent_objectid = key->offset;
	}
	inode_objectid = key->objectid;
1491

1492 1493 1494 1495 1496 1497
	/*
	 * it is possible that we didn't log all the parent directories
	 * for a given inode.  If we don't find the dir, just don't
	 * copy the back ref in.  The link count fixup code will take
	 * care of the rest
	 */
M
Mark Fasheh 已提交
1498
	dir = read_one_inode(root, parent_objectid);
1499 1500 1501 1502
	if (!dir) {
		ret = -ENOENT;
		goto out;
	}
1503

M
Mark Fasheh 已提交
1504
	inode = read_one_inode(root, inode_objectid);
1505
	if (!inode) {
1506 1507
		ret = -EIO;
		goto out;
1508 1509 1510
	}

	while (ref_ptr < ref_end) {
M
Mark Fasheh 已提交
1511
		if (log_ref_ver) {
1512 1513
			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
						&ref_index, &parent_objectid);
M
Mark Fasheh 已提交
1514 1515 1516 1517 1518 1519
			/*
			 * parent object can change from one array
			 * item to another.
			 */
			if (!dir)
				dir = read_one_inode(root, parent_objectid);
1520 1521 1522 1523
			if (!dir) {
				ret = -ENOENT;
				goto out;
			}
M
Mark Fasheh 已提交
1524
		} else {
1525 1526
			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
					     &ref_index);
M
Mark Fasheh 已提交
1527 1528
		}
		if (ret)
1529
			goto out;
1530

1531 1532 1533 1534 1535 1536
		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
				   btrfs_ino(BTRFS_I(inode)), ref_index,
				   name, namelen);
		if (ret < 0) {
			goto out;
		} else if (ret == 0) {
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
			/*
			 * look for a conflicting back reference in the
			 * metadata. if we find one we have to unlink that name
			 * of the file before we add our new link.  Later on, we
			 * overwrite any existing back reference, and we don't
			 * want to create dangling pointers in the directory.
			 */

			if (!search_done) {
				ret = __add_inode_ref(trans, root, path, log,
1547
						      BTRFS_I(dir),
1548
						      BTRFS_I(inode),
M
Mark Fasheh 已提交
1549 1550 1551
						      inode_objectid,
						      parent_objectid,
						      ref_index, name, namelen,
1552
						      &search_done);
1553 1554 1555
				if (ret) {
					if (ret == 1)
						ret = 0;
1556 1557
					goto out;
				}
1558 1559
			}

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
			/*
			 * If a reference item already exists for this inode
			 * with the same parent and name, but different index,
			 * drop it and the corresponding directory index entries
			 * from the parent before adding the new reference item
			 * and dir index entries, otherwise we would fail with
			 * -EEXIST returned from btrfs_add_link() below.
			 */
			ret = btrfs_inode_ref_exists(inode, dir, key->type,
						     name, namelen);
			if (ret > 0) {
				ret = btrfs_unlink_inode(trans, root,
							 BTRFS_I(dir),
							 BTRFS_I(inode),
							 name, namelen);
				/*
				 * If we dropped the link count to 0, bump it so
				 * that later the iput() on the inode will not
				 * free it. We will fixup the link count later.
				 */
				if (!ret && inode->i_nlink == 0)
					inc_nlink(inode);
			}
			if (ret < 0)
				goto out;

1586
			/* insert our name */
1587 1588
			ret = add_link(trans, root, dir, inode, name, namelen,
				       ref_index);
1589 1590
			if (ret)
				goto out;
1591

1592 1593 1594
			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
			if (ret)
				goto out;
1595
		}
1596
		/* Else, ret == 1, we already have a perfect match, we're done. */
1597

M
Mark Fasheh 已提交
1598
		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1599
		kfree(name);
1600
		name = NULL;
M
Mark Fasheh 已提交
1601 1602 1603 1604
		if (log_ref_ver) {
			iput(dir);
			dir = NULL;
		}
1605
	}
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	/*
	 * Before we overwrite the inode reference item in the subvolume tree
	 * with the item from the log tree, we must unlink all names from the
	 * parent directory that are in the subvolume's tree inode reference
	 * item, otherwise we end up with an inconsistent subvolume tree where
	 * dir index entries exist for a name but there is no inode reference
	 * item with the same name.
	 */
	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
				    key);
	if (ret)
		goto out;

1620 1621
	/* finally write the back reference in the inode */
	ret = overwrite_item(trans, root, path, eb, slot, key);
1622
out:
1623
	btrfs_release_path(path);
1624
	kfree(name);
1625 1626
	iput(dir);
	iput(inode);
1627
	return ret;
1628 1629
}

M
Mark Fasheh 已提交
1630
static int count_inode_extrefs(struct btrfs_root *root,
1631
		struct btrfs_inode *inode, struct btrfs_path *path)
M
Mark Fasheh 已提交
1632 1633 1634 1635 1636 1637
{
	int ret = 0;
	int name_len;
	unsigned int nlink = 0;
	u32 item_size;
	u32 cur_offset = 0;
1638
	u64 inode_objectid = btrfs_ino(inode);
M
Mark Fasheh 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	u64 offset = 0;
	unsigned long ptr;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;

	while (1) {
		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
					    &extref, &offset);
		if (ret)
			break;
1649

M
Mark Fasheh 已提交
1650 1651 1652
		leaf = path->nodes[0];
		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1653
		cur_offset = 0;
M
Mark Fasheh 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

		while (cur_offset < item_size) {
			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
			name_len = btrfs_inode_extref_name_len(leaf, extref);

			nlink++;

			cur_offset += name_len + sizeof(*extref);
		}

		offset++;
		btrfs_release_path(path);
	}
	btrfs_release_path(path);

1669
	if (ret < 0 && ret != -ENOENT)
M
Mark Fasheh 已提交
1670 1671 1672 1673 1674
		return ret;
	return nlink;
}

static int count_inode_refs(struct btrfs_root *root,
1675
			struct btrfs_inode *inode, struct btrfs_path *path)
1676 1677 1678
{
	int ret;
	struct btrfs_key key;
M
Mark Fasheh 已提交
1679
	unsigned int nlink = 0;
1680 1681 1682
	unsigned long ptr;
	unsigned long ptr_end;
	int name_len;
1683
	u64 ino = btrfs_ino(inode);
1684

L
Li Zefan 已提交
1685
	key.objectid = ino;
1686 1687 1688
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = (u64)-1;

C
Chris Mason 已提交
1689
	while (1) {
1690 1691 1692 1693 1694 1695 1696 1697
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			break;
		if (ret > 0) {
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}
1698
process_slot:
1699 1700
		btrfs_item_key_to_cpu(path->nodes[0], &key,
				      path->slots[0]);
L
Li Zefan 已提交
1701
		if (key.objectid != ino ||
1702 1703 1704 1705 1706
		    key.type != BTRFS_INODE_REF_KEY)
			break;
		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
						   path->slots[0]);
C
Chris Mason 已提交
1707
		while (ptr < ptr_end) {
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
			struct btrfs_inode_ref *ref;

			ref = (struct btrfs_inode_ref *)ptr;
			name_len = btrfs_inode_ref_name_len(path->nodes[0],
							    ref);
			ptr = (unsigned long)(ref + 1) + name_len;
			nlink++;
		}

		if (key.offset == 0)
			break;
1719 1720 1721 1722
		if (path->slots[0] > 0) {
			path->slots[0]--;
			goto process_slot;
		}
1723
		key.offset--;
1724
		btrfs_release_path(path);
1725
	}
1726
	btrfs_release_path(path);
M
Mark Fasheh 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747

	return nlink;
}

/*
 * There are a few corners where the link count of the file can't
 * be properly maintained during replay.  So, instead of adding
 * lots of complexity to the log code, we just scan the backrefs
 * for any file that has been through replay.
 *
 * The scan will update the link count on the inode to reflect the
 * number of back refs found.  If it goes down to zero, the iput
 * will free the inode.
 */
static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
					   struct btrfs_root *root,
					   struct inode *inode)
{
	struct btrfs_path *path;
	int ret;
	u64 nlink = 0;
1748
	u64 ino = btrfs_ino(BTRFS_I(inode));
M
Mark Fasheh 已提交
1749 1750 1751 1752 1753

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1754
	ret = count_inode_refs(root, BTRFS_I(inode), path);
M
Mark Fasheh 已提交
1755 1756 1757 1758 1759
	if (ret < 0)
		goto out;

	nlink = ret;

1760
	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
M
Mark Fasheh 已提交
1761 1762 1763 1764 1765 1766 1767
	if (ret < 0)
		goto out;

	nlink += ret;

	ret = 0;

1768
	if (nlink != inode->i_nlink) {
M
Miklos Szeredi 已提交
1769
		set_nlink(inode, nlink);
1770 1771 1772
		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
		if (ret)
			goto out;
1773
	}
1774
	BTRFS_I(inode)->index_cnt = (u64)-1;
1775

1776 1777 1778
	if (inode->i_nlink == 0) {
		if (S_ISDIR(inode->i_mode)) {
			ret = replay_dir_deletes(trans, root, NULL, path,
L
Li Zefan 已提交
1779
						 ino, 1);
1780 1781
			if (ret)
				goto out;
1782
		}
1783 1784 1785
		ret = btrfs_insert_orphan_item(trans, root, ino);
		if (ret == -EEXIST)
			ret = 0;
1786 1787
	}

M
Mark Fasheh 已提交
1788 1789 1790
out:
	btrfs_free_path(path);
	return ret;
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
}

static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
					    struct btrfs_root *root,
					    struct btrfs_path *path)
{
	int ret;
	struct btrfs_key key;
	struct inode *inode;

	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
	key.type = BTRFS_ORPHAN_ITEM_KEY;
	key.offset = (u64)-1;
C
Chris Mason 已提交
1804
	while (1) {
1805 1806 1807 1808 1809
		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
		if (ret < 0)
			break;

		if (ret == 1) {
1810
			ret = 0;
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}

		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
		    key.type != BTRFS_ORPHAN_ITEM_KEY)
			break;

		ret = btrfs_del_item(trans, root, path);
1822
		if (ret)
1823
			break;
1824

1825
		btrfs_release_path(path);
1826
		inode = read_one_inode(root, key.offset);
1827 1828 1829 1830
		if (!inode) {
			ret = -EIO;
			break;
		}
1831 1832 1833

		ret = fixup_inode_link_count(trans, root, inode);
		iput(inode);
1834
		if (ret)
1835
			break;
1836

1837 1838 1839 1840 1841 1842
		/*
		 * fixup on a directory may create new entries,
		 * make sure we always look for the highset possible
		 * offset
		 */
		key.offset = (u64)-1;
1843
	}
1844
	btrfs_release_path(path);
1845
	return ret;
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
}


/*
 * record a given inode in the fixup dir so we can check its link
 * count when replay is done.  The link count is incremented here
 * so the inode won't go away until we check it
 */
static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
				      u64 objectid)
{
	struct btrfs_key key;
	int ret = 0;
	struct inode *inode;

	inode = read_one_inode(root, objectid);
1864 1865
	if (!inode)
		return -EIO;
1866 1867

	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1868
	key.type = BTRFS_ORPHAN_ITEM_KEY;
1869 1870 1871 1872
	key.offset = objectid;

	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);

1873
	btrfs_release_path(path);
1874
	if (ret == 0) {
1875 1876 1877
		if (!inode->i_nlink)
			set_nlink(inode, 1);
		else
Z
Zach Brown 已提交
1878
			inc_nlink(inode);
1879
		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	} else if (ret == -EEXIST) {
		ret = 0;
	}
	iput(inode);

	return ret;
}

/*
 * when replaying the log for a directory, we only insert names
 * for inodes that actually exist.  This means an fsync on a directory
 * does not implicitly fsync all the new files in it
 */
static noinline int insert_one_name(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    u64 dirid, u64 index,
1896
				    char *name, int name_len,
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
				    struct btrfs_key *location)
{
	struct inode *inode;
	struct inode *dir;
	int ret;

	inode = read_one_inode(root, location->objectid);
	if (!inode)
		return -ENOENT;

	dir = read_one_inode(root, dirid);
	if (!dir) {
		iput(inode);
		return -EIO;
	}
1912

1913 1914
	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
			name_len, 1, index);
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

	/* FIXME, put inode into FIXUP list */

	iput(inode);
	iput(dir);
	return ret;
}

/*
 * take a single entry in a log directory item and replay it into
 * the subvolume.
 *
 * if a conflicting item exists in the subdirectory already,
 * the inode it points to is unlinked and put into the link count
 * fix up tree.
 *
 * If a name from the log points to a file or directory that does
 * not exist in the FS, it is skipped.  fsyncs on directories
 * do not force down inodes inside that directory, just changes to the
 * names or unlinks in a directory.
1935 1936 1937
 *
 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
 * non-existing inode) and 1 if the name was replayed.
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
 */
static noinline int replay_one_name(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *eb,
				    struct btrfs_dir_item *di,
				    struct btrfs_key *key)
{
	char *name;
	int name_len;
	struct btrfs_dir_item *dst_di;
	struct btrfs_key found_key;
	struct btrfs_key log_key;
	struct inode *dir;
	u8 log_type;
1953 1954
	bool exists;
	int ret;
1955
	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1956
	bool name_added = false;
1957 1958

	dir = read_one_inode(root, key->objectid);
1959 1960
	if (!dir)
		return -EIO;
1961 1962 1963

	name_len = btrfs_dir_name_len(eb, di);
	name = kmalloc(name_len, GFP_NOFS);
1964 1965 1966 1967
	if (!name) {
		ret = -ENOMEM;
		goto out;
	}
1968

1969 1970 1971 1972 1973
	log_type = btrfs_dir_type(eb, di);
	read_extent_buffer(eb, name, (unsigned long)(di + 1),
		   name_len);

	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1974
	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1975
	btrfs_release_path(path);
1976 1977 1978 1979
	if (ret < 0)
		goto out;
	exists = (ret == 0);
	ret = 0;
C
Chris Mason 已提交
1980

1981 1982 1983
	if (key->type == BTRFS_DIR_ITEM_KEY) {
		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
				       name, name_len, 1);
C
Chris Mason 已提交
1984
	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1985 1986 1987 1988 1989
		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
						     key->objectid,
						     key->offset, name,
						     name_len, 1);
	} else {
1990 1991 1992
		/* Corruption */
		ret = -EINVAL;
		goto out;
1993
	}
1994 1995 1996 1997 1998

	if (IS_ERR(dst_di)) {
		ret = PTR_ERR(dst_di);
		goto out;
	} else if (!dst_di) {
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
		/* we need a sequence number to insert, so we only
		 * do inserts for the BTRFS_DIR_INDEX_KEY types
		 */
		if (key->type != BTRFS_DIR_INDEX_KEY)
			goto out;
		goto insert;
	}

	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
	/* the existing item matches the logged item */
	if (found_key.objectid == log_key.objectid &&
	    found_key.type == log_key.type &&
	    found_key.offset == log_key.offset &&
	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
2013
		update_size = false;
2014 2015 2016 2017 2018 2019 2020
		goto out;
	}

	/*
	 * don't drop the conflicting directory entry if the inode
	 * for the new entry doesn't exist
	 */
C
Chris Mason 已提交
2021
	if (!exists)
2022 2023
		goto out;

2024
	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2025 2026
	if (ret)
		goto out;
2027 2028 2029 2030

	if (key->type == BTRFS_DIR_INDEX_KEY)
		goto insert;
out:
2031
	btrfs_release_path(path);
2032
	if (!ret && update_size) {
2033
		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2034
		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2035
	}
2036 2037
	kfree(name);
	iput(dir);
2038 2039
	if (!ret && name_added)
		ret = 1;
2040
	return ret;
2041 2042

insert:
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	/*
	 * Check if the inode reference exists in the log for the given name,
	 * inode and parent inode
	 */
	found_key.objectid = log_key.objectid;
	found_key.type = BTRFS_INODE_REF_KEY;
	found_key.offset = key->objectid;
	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
	if (ret < 0) {
	        goto out;
	} else if (ret) {
	        /* The dentry will be added later. */
	        ret = 0;
	        update_size = false;
	        goto out;
	}

	found_key.objectid = log_key.objectid;
	found_key.type = BTRFS_INODE_EXTREF_KEY;
	found_key.offset = key->objectid;
	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
			     name_len);
	if (ret < 0) {
		goto out;
	} else if (ret) {
2068 2069 2070 2071 2072
		/* The dentry will be added later. */
		ret = 0;
		update_size = false;
		goto out;
	}
2073
	btrfs_release_path(path);
2074 2075
	ret = insert_one_name(trans, root, key->objectid, key->offset,
			      name, name_len, &log_key);
2076
	if (ret && ret != -ENOENT && ret != -EEXIST)
2077
		goto out;
2078 2079
	if (!ret)
		name_added = true;
2080
	update_size = false;
2081
	ret = 0;
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	goto out;
}

/*
 * find all the names in a directory item and reconcile them into
 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
 * one name in a directory item, but the same code gets used for
 * both directory index types
 */
static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
					struct btrfs_root *root,
					struct btrfs_path *path,
					struct extent_buffer *eb, int slot,
					struct btrfs_key *key)
{
2097
	int ret = 0;
2098 2099 2100 2101 2102
	u32 item_size = btrfs_item_size_nr(eb, slot);
	struct btrfs_dir_item *di;
	int name_len;
	unsigned long ptr;
	unsigned long ptr_end;
2103
	struct btrfs_path *fixup_path = NULL;
2104 2105 2106

	ptr = btrfs_item_ptr_offset(eb, slot);
	ptr_end = ptr + item_size;
C
Chris Mason 已提交
2107
	while (ptr < ptr_end) {
2108 2109 2110
		di = (struct btrfs_dir_item *)ptr;
		name_len = btrfs_dir_name_len(eb, di);
		ret = replay_one_name(trans, root, path, eb, di, key);
2111 2112
		if (ret < 0)
			break;
2113 2114
		ptr = (unsigned long)(di + 1);
		ptr += name_len;
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

		/*
		 * If this entry refers to a non-directory (directories can not
		 * have a link count > 1) and it was added in the transaction
		 * that was not committed, make sure we fixup the link count of
		 * the inode it the entry points to. Otherwise something like
		 * the following would result in a directory pointing to an
		 * inode with a wrong link that does not account for this dir
		 * entry:
		 *
		 * mkdir testdir
		 * touch testdir/foo
		 * touch testdir/bar
		 * sync
		 *
		 * ln testdir/bar testdir/bar_link
		 * ln testdir/foo testdir/foo_link
		 * xfs_io -c "fsync" testdir/bar
		 *
		 * <power failure>
		 *
		 * mount fs, log replay happens
		 *
		 * File foo would remain with a link count of 1 when it has two
		 * entries pointing to it in the directory testdir. This would
		 * make it impossible to ever delete the parent directory has
		 * it would result in stale dentries that can never be deleted.
		 */
		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
			struct btrfs_key di_key;

			if (!fixup_path) {
				fixup_path = btrfs_alloc_path();
				if (!fixup_path) {
					ret = -ENOMEM;
					break;
				}
			}

			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
			ret = link_to_fixup_dir(trans, root, fixup_path,
						di_key.objectid);
			if (ret)
				break;
		}
		ret = 0;
2161
	}
2162 2163
	btrfs_free_path(fixup_path);
	return ret;
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
}

/*
 * directory replay has two parts.  There are the standard directory
 * items in the log copied from the subvolume, and range items
 * created in the log while the subvolume was logged.
 *
 * The range items tell us which parts of the key space the log
 * is authoritative for.  During replay, if a key in the subvolume
 * directory is in a logged range item, but not actually in the log
 * that means it was deleted from the directory before the fsync
 * and should be removed.
 */
static noinline int find_dir_range(struct btrfs_root *root,
				   struct btrfs_path *path,
				   u64 dirid, int key_type,
				   u64 *start_ret, u64 *end_ret)
{
	struct btrfs_key key;
	u64 found_end;
	struct btrfs_dir_log_item *item;
	int ret;
	int nritems;

	if (*start_ret == (u64)-1)
		return 1;

	key.objectid = dirid;
	key.type = key_type;
	key.offset = *start_ret;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		if (path->slots[0] == 0)
			goto out;
		path->slots[0]--;
	}
	if (ret != 0)
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);

	if (key.type != key_type || key.objectid != dirid) {
		ret = 1;
		goto next;
	}
	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
			      struct btrfs_dir_log_item);
	found_end = btrfs_dir_log_end(path->nodes[0], item);

	if (*start_ret >= key.offset && *start_ret <= found_end) {
		ret = 0;
		*start_ret = key.offset;
		*end_ret = found_end;
		goto out;
	}
	ret = 1;
next:
	/* check the next slot in the tree to see if it is a valid item */
	nritems = btrfs_header_nritems(path->nodes[0]);
2224
	path->slots[0]++;
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	if (path->slots[0] >= nritems) {
		ret = btrfs_next_leaf(root, path);
		if (ret)
			goto out;
	}

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);

	if (key.type != key_type || key.objectid != dirid) {
		ret = 1;
		goto out;
	}
	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
			      struct btrfs_dir_log_item);
	found_end = btrfs_dir_log_end(path->nodes[0], item);
	*start_ret = key.offset;
	*end_ret = found_end;
	ret = 0;
out:
2244
	btrfs_release_path(path);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	return ret;
}

/*
 * this looks for a given directory item in the log.  If the directory
 * item is not in the log, the item is removed and the inode it points
 * to is unlinked
 */
static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_root *log,
				      struct btrfs_path *path,
				      struct btrfs_path *log_path,
				      struct inode *dir,
				      struct btrfs_key *dir_key)
{
	int ret;
	struct extent_buffer *eb;
	int slot;
	u32 item_size;
	struct btrfs_dir_item *di;
	struct btrfs_dir_item *log_di;
	int name_len;
	unsigned long ptr;
	unsigned long ptr_end;
	char *name;
	struct inode *inode;
	struct btrfs_key location;

again:
	eb = path->nodes[0];
	slot = path->slots[0];
	item_size = btrfs_item_size_nr(eb, slot);
	ptr = btrfs_item_ptr_offset(eb, slot);
	ptr_end = ptr + item_size;
C
Chris Mason 已提交
2280
	while (ptr < ptr_end) {
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		di = (struct btrfs_dir_item *)ptr;
		name_len = btrfs_dir_name_len(eb, di);
		name = kmalloc(name_len, GFP_NOFS);
		if (!name) {
			ret = -ENOMEM;
			goto out;
		}
		read_extent_buffer(eb, name, (unsigned long)(di + 1),
				  name_len);
		log_di = NULL;
2291
		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2292 2293 2294
			log_di = btrfs_lookup_dir_item(trans, log, log_path,
						       dir_key->objectid,
						       name, name_len, 0);
2295
		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2296 2297 2298 2299 2300 2301
			log_di = btrfs_lookup_dir_index_item(trans, log,
						     log_path,
						     dir_key->objectid,
						     dir_key->offset,
						     name, name_len, 0);
		}
2302
		if (!log_di) {
2303
			btrfs_dir_item_key_to_cpu(eb, di, &location);
2304 2305
			btrfs_release_path(path);
			btrfs_release_path(log_path);
2306
			inode = read_one_inode(root, location.objectid);
2307 2308 2309 2310
			if (!inode) {
				kfree(name);
				return -EIO;
			}
2311 2312 2313

			ret = link_to_fixup_dir(trans, root,
						path, location.objectid);
2314 2315 2316 2317 2318 2319
			if (ret) {
				kfree(name);
				iput(inode);
				goto out;
			}

Z
Zach Brown 已提交
2320
			inc_nlink(inode);
2321 2322
			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
					BTRFS_I(inode), name, name_len);
2323
			if (!ret)
2324
				ret = btrfs_run_delayed_items(trans);
2325 2326
			kfree(name);
			iput(inode);
2327 2328
			if (ret)
				goto out;
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

			/* there might still be more names under this key
			 * check and repeat if required
			 */
			ret = btrfs_search_slot(NULL, root, dir_key, path,
						0, 0);
			if (ret == 0)
				goto again;
			ret = 0;
			goto out;
2339 2340 2341
		} else if (IS_ERR(log_di)) {
			kfree(name);
			return PTR_ERR(log_di);
2342
		}
2343
		btrfs_release_path(log_path);
2344 2345 2346 2347 2348 2349 2350
		kfree(name);

		ptr = (unsigned long)(di + 1);
		ptr += name_len;
	}
	ret = 0;
out:
2351 2352
	btrfs_release_path(path);
	btrfs_release_path(log_path);
2353 2354 2355
	return ret;
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct btrfs_root *log,
			      struct btrfs_path *path,
			      const u64 ino)
{
	struct btrfs_key search_key;
	struct btrfs_path *log_path;
	int i;
	int nritems;
	int ret;

	log_path = btrfs_alloc_path();
	if (!log_path)
		return -ENOMEM;

	search_key.objectid = ino;
	search_key.type = BTRFS_XATTR_ITEM_KEY;
	search_key.offset = 0;
again:
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
	if (ret < 0)
		goto out;
process_leaf:
	nritems = btrfs_header_nritems(path->nodes[0]);
	for (i = path->slots[0]; i < nritems; i++) {
		struct btrfs_key key;
		struct btrfs_dir_item *di;
		struct btrfs_dir_item *log_di;
		u32 total_size;
		u32 cur;

		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
			ret = 0;
			goto out;
		}

		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
		total_size = btrfs_item_size_nr(path->nodes[0], i);
		cur = 0;
		while (cur < total_size) {
			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
			u32 this_len = sizeof(*di) + name_len + data_len;
			char *name;

			name = kmalloc(name_len, GFP_NOFS);
			if (!name) {
				ret = -ENOMEM;
				goto out;
			}
			read_extent_buffer(path->nodes[0], name,
					   (unsigned long)(di + 1), name_len);

			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
						    name, name_len, 0);
			btrfs_release_path(log_path);
			if (!log_di) {
				/* Doesn't exist in log tree, so delete it. */
				btrfs_release_path(path);
				di = btrfs_lookup_xattr(trans, root, path, ino,
							name, name_len, -1);
				kfree(name);
				if (IS_ERR(di)) {
					ret = PTR_ERR(di);
					goto out;
				}
				ASSERT(di);
				ret = btrfs_delete_one_dir_name(trans, root,
								path, di);
				if (ret)
					goto out;
				btrfs_release_path(path);
				search_key = key;
				goto again;
			}
			kfree(name);
			if (IS_ERR(log_di)) {
				ret = PTR_ERR(log_di);
				goto out;
			}
			cur += this_len;
			di = (struct btrfs_dir_item *)((char *)di + this_len);
		}
	}
	ret = btrfs_next_leaf(root, path);
	if (ret > 0)
		ret = 0;
	else if (ret == 0)
		goto process_leaf;
out:
	btrfs_free_path(log_path);
	btrfs_release_path(path);
	return ret;
}


2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
/*
 * deletion replay happens before we copy any new directory items
 * out of the log or out of backreferences from inodes.  It
 * scans the log to find ranges of keys that log is authoritative for,
 * and then scans the directory to find items in those ranges that are
 * not present in the log.
 *
 * Anything we don't find in the log is unlinked and removed from the
 * directory.
 */
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct btrfs_root *log,
				       struct btrfs_path *path,
2468
				       u64 dirid, int del_all)
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
{
	u64 range_start;
	u64 range_end;
	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
	int ret = 0;
	struct btrfs_key dir_key;
	struct btrfs_key found_key;
	struct btrfs_path *log_path;
	struct inode *dir;

	dir_key.objectid = dirid;
	dir_key.type = BTRFS_DIR_ITEM_KEY;
	log_path = btrfs_alloc_path();
	if (!log_path)
		return -ENOMEM;

	dir = read_one_inode(root, dirid);
	/* it isn't an error if the inode isn't there, that can happen
	 * because we replay the deletes before we copy in the inode item
	 * from the log
	 */
	if (!dir) {
		btrfs_free_path(log_path);
		return 0;
	}
again:
	range_start = 0;
	range_end = 0;
C
Chris Mason 已提交
2497
	while (1) {
2498 2499 2500 2501 2502 2503 2504 2505
		if (del_all)
			range_end = (u64)-1;
		else {
			ret = find_dir_range(log, path, dirid, key_type,
					     &range_start, &range_end);
			if (ret != 0)
				break;
		}
2506 2507

		dir_key.offset = range_start;
C
Chris Mason 已提交
2508
		while (1) {
2509 2510 2511 2512 2513 2514 2515 2516 2517
			int nritems;
			ret = btrfs_search_slot(NULL, root, &dir_key, path,
						0, 0);
			if (ret < 0)
				goto out;

			nritems = btrfs_header_nritems(path->nodes[0]);
			if (path->slots[0] >= nritems) {
				ret = btrfs_next_leaf(root, path);
2518
				if (ret == 1)
2519
					break;
2520 2521
				else if (ret < 0)
					goto out;
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
			}
			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
					      path->slots[0]);
			if (found_key.objectid != dirid ||
			    found_key.type != dir_key.type)
				goto next_type;

			if (found_key.offset > range_end)
				break;

			ret = check_item_in_log(trans, root, log, path,
2533 2534
						log_path, dir,
						&found_key);
2535 2536
			if (ret)
				goto out;
2537 2538 2539 2540
			if (found_key.offset == (u64)-1)
				break;
			dir_key.offset = found_key.offset + 1;
		}
2541
		btrfs_release_path(path);
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
		if (range_end == (u64)-1)
			break;
		range_start = range_end + 1;
	}

next_type:
	ret = 0;
	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
		key_type = BTRFS_DIR_LOG_INDEX_KEY;
		dir_key.type = BTRFS_DIR_INDEX_KEY;
2552
		btrfs_release_path(path);
2553 2554 2555
		goto again;
	}
out:
2556
	btrfs_release_path(path);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	btrfs_free_path(log_path);
	iput(dir);
	return ret;
}

/*
 * the process_func used to replay items from the log tree.  This
 * gets called in two different stages.  The first stage just looks
 * for inodes and makes sure they are all copied into the subvolume.
 *
 * The second stage copies all the other item types from the log into
 * the subvolume.  The two stage approach is slower, but gets rid of
 * lots of complexity around inodes referencing other inodes that exist
 * only in the log (references come from either directory items or inode
 * back refs).
 */
static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2574
			     struct walk_control *wc, u64 gen, int level)
2575 2576 2577 2578 2579 2580 2581 2582
{
	int nritems;
	struct btrfs_path *path;
	struct btrfs_root *root = wc->replay_dest;
	struct btrfs_key key;
	int i;
	int ret;

2583
	ret = btrfs_read_buffer(eb, gen, level, NULL);
2584 2585
	if (ret)
		return ret;
2586 2587 2588 2589 2590 2591 2592

	level = btrfs_header_level(eb);

	if (level != 0)
		return 0;

	path = btrfs_alloc_path();
2593 2594
	if (!path)
		return -ENOMEM;
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

	nritems = btrfs_header_nritems(eb);
	for (i = 0; i < nritems; i++) {
		btrfs_item_key_to_cpu(eb, &key, i);

		/* inode keys are done during the first stage */
		if (key.type == BTRFS_INODE_ITEM_KEY &&
		    wc->stage == LOG_WALK_REPLAY_INODES) {
			struct btrfs_inode_item *inode_item;
			u32 mode;

			inode_item = btrfs_item_ptr(eb, i,
					    struct btrfs_inode_item);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
			/*
			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
			 * and never got linked before the fsync, skip it, as
			 * replaying it is pointless since it would be deleted
			 * later. We skip logging tmpfiles, but it's always
			 * possible we are replaying a log created with a kernel
			 * that used to log tmpfiles.
			 */
			if (btrfs_inode_nlink(eb, inode_item) == 0) {
				wc->ignore_cur_inode = true;
				continue;
			} else {
				wc->ignore_cur_inode = false;
			}
2622 2623 2624 2625
			ret = replay_xattr_deletes(wc->trans, root, log,
						   path, key.objectid);
			if (ret)
				break;
2626 2627 2628
			mode = btrfs_inode_mode(eb, inode_item);
			if (S_ISDIR(mode)) {
				ret = replay_dir_deletes(wc->trans,
2629
					 root, log, path, key.objectid, 0);
2630 2631
				if (ret)
					break;
2632 2633 2634
			}
			ret = overwrite_item(wc->trans, root, path,
					     eb, i, &key);
2635 2636
			if (ret)
				break;
2637

2638 2639 2640 2641 2642 2643 2644
			/*
			 * Before replaying extents, truncate the inode to its
			 * size. We need to do it now and not after log replay
			 * because before an fsync we can have prealloc extents
			 * added beyond the inode's i_size. If we did it after,
			 * through orphan cleanup for example, we would drop
			 * those prealloc extents just after replaying them.
2645 2646
			 */
			if (S_ISREG(mode)) {
2647
				struct btrfs_drop_extents_args drop_args = { 0 };
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
				struct inode *inode;
				u64 from;

				inode = read_one_inode(root, key.objectid);
				if (!inode) {
					ret = -EIO;
					break;
				}
				from = ALIGN(i_size_read(inode),
					     root->fs_info->sectorsize);
2658 2659 2660 2661 2662 2663
				drop_args.start = from;
				drop_args.end = (u64)-1;
				drop_args.drop_cache = true;
				ret = btrfs_drop_extents(wc->trans, root,
							 BTRFS_I(inode),
							 &drop_args);
2664
				if (!ret) {
2665 2666
					inode_sub_bytes(inode,
							drop_args.bytes_found);
2667
					/* Update the inode's nbytes. */
2668
					ret = btrfs_update_inode(wc->trans,
2669
							root, BTRFS_I(inode));
2670 2671
				}
				iput(inode);
2672 2673
				if (ret)
					break;
2674
			}
2675

2676 2677
			ret = link_to_fixup_dir(wc->trans, root,
						path, key.objectid);
2678 2679
			if (ret)
				break;
2680
		}
2681

2682 2683 2684
		if (wc->ignore_cur_inode)
			continue;

2685 2686 2687 2688 2689 2690 2691 2692
		if (key.type == BTRFS_DIR_INDEX_KEY &&
		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
			ret = replay_one_dir_item(wc->trans, root, path,
						  eb, i, &key);
			if (ret)
				break;
		}

2693 2694 2695 2696 2697 2698 2699
		if (wc->stage < LOG_WALK_REPLAY_ALL)
			continue;

		/* these keys are simply copied */
		if (key.type == BTRFS_XATTR_ITEM_KEY) {
			ret = overwrite_item(wc->trans, root, path,
					     eb, i, &key);
2700 2701
			if (ret)
				break;
2702 2703
		} else if (key.type == BTRFS_INODE_REF_KEY ||
			   key.type == BTRFS_INODE_EXTREF_KEY) {
M
Mark Fasheh 已提交
2704 2705
			ret = add_inode_ref(wc->trans, root, log, path,
					    eb, i, &key);
2706 2707 2708
			if (ret && ret != -ENOENT)
				break;
			ret = 0;
2709 2710 2711
		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
			ret = replay_one_extent(wc->trans, root, path,
						eb, i, &key);
2712 2713
			if (ret)
				break;
2714
		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2715 2716
			ret = replay_one_dir_item(wc->trans, root, path,
						  eb, i, &key);
2717 2718
			if (ret)
				break;
2719 2720 2721
		}
	}
	btrfs_free_path(path);
2722
	return ret;
2723 2724
}

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
/*
 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
 */
static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
{
	struct btrfs_block_group *cache;

	cache = btrfs_lookup_block_group(fs_info, start);
	if (!cache) {
		btrfs_err(fs_info, "unable to find block group for %llu", start);
		return;
	}

	spin_lock(&cache->space_info->lock);
	spin_lock(&cache->lock);
	cache->reserved -= fs_info->nodesize;
	cache->space_info->bytes_reserved -= fs_info->nodesize;
	spin_unlock(&cache->lock);
	spin_unlock(&cache->space_info->lock);

	btrfs_put_block_group(cache);
}

C
Chris Mason 已提交
2748
static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2749 2750 2751 2752
				   struct btrfs_root *root,
				   struct btrfs_path *path, int *level,
				   struct walk_control *wc)
{
2753
	struct btrfs_fs_info *fs_info = root->fs_info;
2754 2755 2756 2757 2758 2759 2760
	u64 bytenr;
	u64 ptr_gen;
	struct extent_buffer *next;
	struct extent_buffer *cur;
	u32 blocksize;
	int ret = 0;

C
Chris Mason 已提交
2761
	while (*level > 0) {
2762 2763
		struct btrfs_key first_key;

2764 2765
		cur = path->nodes[*level];

2766
		WARN_ON(btrfs_header_level(cur) != *level);
2767 2768 2769 2770 2771 2772 2773

		if (path->slots[*level] >=
		    btrfs_header_nritems(cur))
			break;

		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2774
		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2775
		blocksize = fs_info->nodesize;
2776

2777 2778 2779
		next = btrfs_find_create_tree_block(fs_info, bytenr,
						    btrfs_header_owner(cur),
						    *level - 1);
2780 2781
		if (IS_ERR(next))
			return PTR_ERR(next);
2782 2783

		if (*level == 1) {
2784 2785
			ret = wc->process_func(root, next, wc, ptr_gen,
					       *level - 1);
2786 2787
			if (ret) {
				free_extent_buffer(next);
2788
				return ret;
2789
			}
2790

2791 2792
			path->slots[*level]++;
			if (wc->free) {
2793 2794
				ret = btrfs_read_buffer(next, ptr_gen,
							*level - 1, &first_key);
2795 2796 2797 2798
				if (ret) {
					free_extent_buffer(next);
					return ret;
				}
2799

2800 2801
				if (trans) {
					btrfs_tree_lock(next);
2802
					btrfs_clean_tree_block(next);
2803 2804
					btrfs_wait_tree_block_writeback(next);
					btrfs_tree_unlock(next);
2805
					ret = btrfs_pin_reserved_extent(trans,
2806 2807 2808 2809 2810
							bytenr, blocksize);
					if (ret) {
						free_extent_buffer(next);
						return ret;
					}
2811 2812
					btrfs_redirty_list_add(
						trans->transaction, next);
2813 2814 2815
				} else {
					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
						clear_extent_buffer_dirty(next);
2816
					unaccount_log_buffer(fs_info, bytenr);
2817
				}
2818 2819 2820 2821
			}
			free_extent_buffer(next);
			continue;
		}
2822
		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2823 2824 2825 2826
		if (ret) {
			free_extent_buffer(next);
			return ret;
		}
2827 2828 2829 2830 2831 2832 2833 2834

		if (path->nodes[*level-1])
			free_extent_buffer(path->nodes[*level-1]);
		path->nodes[*level-1] = next;
		*level = btrfs_header_level(next);
		path->slots[*level] = 0;
		cond_resched();
	}
2835
	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2836 2837 2838 2839 2840

	cond_resched();
	return 0;
}

C
Chris Mason 已提交
2841
static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2842 2843 2844 2845
				 struct btrfs_root *root,
				 struct btrfs_path *path, int *level,
				 struct walk_control *wc)
{
2846
	struct btrfs_fs_info *fs_info = root->fs_info;
2847 2848 2849 2850
	int i;
	int slot;
	int ret;

C
Chris Mason 已提交
2851
	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2852
		slot = path->slots[i];
2853
		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2854 2855 2856 2857 2858
			path->slots[i]++;
			*level = i;
			WARN_ON(*level == 0);
			return 0;
		} else {
2859
			ret = wc->process_func(root, path->nodes[*level], wc,
2860 2861
				 btrfs_header_generation(path->nodes[*level]),
				 *level);
2862 2863 2864
			if (ret)
				return ret;

2865 2866 2867 2868 2869
			if (wc->free) {
				struct extent_buffer *next;

				next = path->nodes[*level];

2870 2871
				if (trans) {
					btrfs_tree_lock(next);
2872
					btrfs_clean_tree_block(next);
2873 2874
					btrfs_wait_tree_block_writeback(next);
					btrfs_tree_unlock(next);
2875
					ret = btrfs_pin_reserved_extent(trans,
2876 2877 2878 2879
						     path->nodes[*level]->start,
						     path->nodes[*level]->len);
					if (ret)
						return ret;
2880 2881 2882
				} else {
					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
						clear_extent_buffer_dirty(next);
2883

2884 2885 2886
					unaccount_log_buffer(fs_info,
						path->nodes[*level]->start);
				}
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
			}
			free_extent_buffer(path->nodes[*level]);
			path->nodes[*level] = NULL;
			*level = i + 1;
		}
	}
	return 1;
}

/*
 * drop the reference count on the tree rooted at 'snap'.  This traverses
 * the tree freeing any blocks that have a ref count of zero after being
 * decremented.
 */
static int walk_log_tree(struct btrfs_trans_handle *trans,
			 struct btrfs_root *log, struct walk_control *wc)
{
2904
	struct btrfs_fs_info *fs_info = log->fs_info;
2905 2906 2907 2908 2909 2910 2911
	int ret = 0;
	int wret;
	int level;
	struct btrfs_path *path;
	int orig_level;

	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
2912 2913
	if (!path)
		return -ENOMEM;
2914 2915 2916 2917

	level = btrfs_header_level(log->node);
	orig_level = level;
	path->nodes[level] = log->node;
D
David Sterba 已提交
2918
	atomic_inc(&log->node->refs);
2919 2920
	path->slots[level] = 0;

C
Chris Mason 已提交
2921
	while (1) {
2922 2923 2924
		wret = walk_down_log_tree(trans, log, path, &level, wc);
		if (wret > 0)
			break;
2925
		if (wret < 0) {
2926
			ret = wret;
2927 2928
			goto out;
		}
2929 2930 2931 2932

		wret = walk_up_log_tree(trans, log, path, &level, wc);
		if (wret > 0)
			break;
2933
		if (wret < 0) {
2934
			ret = wret;
2935 2936
			goto out;
		}
2937 2938 2939 2940
	}

	/* was the root node processed? if not, catch it here */
	if (path->nodes[orig_level]) {
2941
		ret = wc->process_func(log, path->nodes[orig_level], wc,
2942 2943
			 btrfs_header_generation(path->nodes[orig_level]),
			 orig_level);
2944 2945
		if (ret)
			goto out;
2946 2947 2948 2949 2950
		if (wc->free) {
			struct extent_buffer *next;

			next = path->nodes[orig_level];

2951 2952
			if (trans) {
				btrfs_tree_lock(next);
2953
				btrfs_clean_tree_block(next);
2954 2955
				btrfs_wait_tree_block_writeback(next);
				btrfs_tree_unlock(next);
2956
				ret = btrfs_pin_reserved_extent(trans,
2957 2958 2959
						next->start, next->len);
				if (ret)
					goto out;
2960 2961 2962
			} else {
				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
					clear_extent_buffer_dirty(next);
2963
				unaccount_log_buffer(fs_info, next->start);
2964
			}
2965 2966 2967
		}
	}

2968
out:
2969 2970 2971 2972
	btrfs_free_path(path);
	return ret;
}

Y
Yan Zheng 已提交
2973 2974 2975 2976 2977
/*
 * helper function to update the item for a given subvolumes log root
 * in the tree of log roots
 */
static int update_log_root(struct btrfs_trans_handle *trans,
2978 2979
			   struct btrfs_root *log,
			   struct btrfs_root_item *root_item)
Y
Yan Zheng 已提交
2980
{
2981
	struct btrfs_fs_info *fs_info = log->fs_info;
Y
Yan Zheng 已提交
2982 2983 2984 2985
	int ret;

	if (log->log_transid == 1) {
		/* insert root item on the first sync */
2986
		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2987
				&log->root_key, root_item);
Y
Yan Zheng 已提交
2988
	} else {
2989
		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2990
				&log->root_key, root_item);
Y
Yan Zheng 已提交
2991 2992 2993 2994
	}
	return ret;
}

2995
static void wait_log_commit(struct btrfs_root *root, int transid)
2996 2997
{
	DEFINE_WAIT(wait);
Y
Yan Zheng 已提交
2998
	int index = transid % 2;
2999

Y
Yan Zheng 已提交
3000 3001 3002 3003 3004
	/*
	 * we only allow two pending log transactions at a time,
	 * so we know that if ours is more than 2 older than the
	 * current transaction, we're done
	 */
3005
	for (;;) {
Y
Yan Zheng 已提交
3006 3007
		prepare_to_wait(&root->log_commit_wait[index],
				&wait, TASK_UNINTERRUPTIBLE);
3008

3009 3010 3011
		if (!(root->log_transid_committed < transid &&
		      atomic_read(&root->log_commit[index])))
			break;
3012

3013 3014
		mutex_unlock(&root->log_mutex);
		schedule();
Y
Yan Zheng 已提交
3015
		mutex_lock(&root->log_mutex);
3016 3017
	}
	finish_wait(&root->log_commit_wait[index], &wait);
Y
Yan Zheng 已提交
3018 3019
}

3020
static void wait_for_writer(struct btrfs_root *root)
Y
Yan Zheng 已提交
3021 3022
{
	DEFINE_WAIT(wait);
3023

3024 3025 3026 3027 3028 3029
	for (;;) {
		prepare_to_wait(&root->log_writer_wait, &wait,
				TASK_UNINTERRUPTIBLE);
		if (!atomic_read(&root->log_writers))
			break;

Y
Yan Zheng 已提交
3030
		mutex_unlock(&root->log_mutex);
3031
		schedule();
3032
		mutex_lock(&root->log_mutex);
Y
Yan Zheng 已提交
3033
	}
3034
	finish_wait(&root->log_writer_wait, &wait);
3035 3036
}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
					struct btrfs_log_ctx *ctx)
{
	mutex_lock(&root->log_mutex);
	list_del_init(&ctx->list);
	mutex_unlock(&root->log_mutex);
}

/* 
 * Invoked in log mutex context, or be sure there is no other task which
 * can access the list.
 */
static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
					     int index, int error)
{
	struct btrfs_log_ctx *ctx;
3053
	struct btrfs_log_ctx *safe;
3054

3055 3056
	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
		list_del_init(&ctx->list);
3057
		ctx->log_ret = error;
3058
	}
3059 3060
}

3061 3062 3063
/*
 * btrfs_sync_log does sends a given tree log down to the disk and
 * updates the super blocks to record it.  When this call is done,
3064 3065 3066 3067 3068 3069 3070 3071
 * you know that any inodes previously logged are safely on disk only
 * if it returns 0.
 *
 * Any other return value means you need to call btrfs_commit_transaction.
 * Some of the edge cases for fsyncing directories that have had unlinks
 * or renames done in the past mean that sometimes the only safe
 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
 * that has happened.
3072 3073
 */
int btrfs_sync_log(struct btrfs_trans_handle *trans,
3074
		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3075
{
Y
Yan Zheng 已提交
3076 3077
	int index1;
	int index2;
3078
	int mark;
3079
	int ret;
3080
	struct btrfs_fs_info *fs_info = root->fs_info;
3081
	struct btrfs_root *log = root->log_root;
3082
	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3083
	struct btrfs_root_item new_root_item;
3084
	int log_transid = 0;
3085
	struct btrfs_log_ctx root_log_ctx;
3086
	struct blk_plug plug;
3087 3088
	u64 log_root_start;
	u64 log_root_level;
3089

Y
Yan Zheng 已提交
3090
	mutex_lock(&root->log_mutex);
3091 3092 3093 3094 3095 3096 3097
	log_transid = ctx->log_transid;
	if (root->log_transid_committed >= log_transid) {
		mutex_unlock(&root->log_mutex);
		return ctx->log_ret;
	}

	index1 = log_transid % 2;
Y
Yan Zheng 已提交
3098
	if (atomic_read(&root->log_commit[index1])) {
3099
		wait_log_commit(root, log_transid);
Y
Yan Zheng 已提交
3100
		mutex_unlock(&root->log_mutex);
3101
		return ctx->log_ret;
3102
	}
3103
	ASSERT(log_transid == root->log_transid);
Y
Yan Zheng 已提交
3104 3105 3106 3107
	atomic_set(&root->log_commit[index1], 1);

	/* wait for previous tree log sync to complete */
	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3108
		wait_log_commit(root, log_transid - 1);
3109

3110
	while (1) {
M
Miao Xie 已提交
3111
		int batch = atomic_read(&root->log_batch);
3112
		/* when we're on an ssd, just kick the log commit out */
3113
		if (!btrfs_test_opt(fs_info, SSD) &&
3114
		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3115 3116 3117 3118
			mutex_unlock(&root->log_mutex);
			schedule_timeout_uninterruptible(1);
			mutex_lock(&root->log_mutex);
		}
3119
		wait_for_writer(root);
M
Miao Xie 已提交
3120
		if (batch == atomic_read(&root->log_batch))
3121 3122 3123
			break;
	}

3124
	/* bail out if we need to do a full commit */
3125
	if (btrfs_need_log_full_commit(trans)) {
3126 3127 3128 3129 3130
		ret = -EAGAIN;
		mutex_unlock(&root->log_mutex);
		goto out;
	}

3131 3132 3133 3134 3135
	if (log_transid % 2 == 0)
		mark = EXTENT_DIRTY;
	else
		mark = EXTENT_NEW;

3136 3137 3138
	/* we start IO on  all the marked extents here, but we don't actually
	 * wait for them until later.
	 */
3139
	blk_start_plug(&plug);
3140
	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	/*
	 * -EAGAIN happens when someone, e.g., a concurrent transaction
	 *  commit, writes a dirty extent in this tree-log commit. This
	 *  concurrent write will create a hole writing out the extents,
	 *  and we cannot proceed on a zoned filesystem, requiring
	 *  sequential writing. While we can bail out to a full commit
	 *  here, but we can continue hoping the concurrent writing fills
	 *  the hole.
	 */
	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
		ret = 0;
3152
	if (ret) {
3153
		blk_finish_plug(&plug);
3154
		btrfs_abort_transaction(trans, ret);
3155
		btrfs_set_log_full_commit(trans);
3156 3157 3158
		mutex_unlock(&root->log_mutex);
		goto out;
	}
Y
Yan Zheng 已提交
3159

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	/*
	 * We _must_ update under the root->log_mutex in order to make sure we
	 * have a consistent view of the log root we are trying to commit at
	 * this moment.
	 *
	 * We _must_ copy this into a local copy, because we are not holding the
	 * log_root_tree->log_mutex yet.  This is important because when we
	 * commit the log_root_tree we must have a consistent view of the
	 * log_root_tree when we update the super block to point at the
	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
	 * with the commit and possibly point at the new block which we may not
	 * have written out.
	 */
3173
	btrfs_set_root_node(&log->root_item, log->node);
3174
	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
Y
Yan Zheng 已提交
3175 3176 3177

	root->log_transid++;
	log->log_transid = root->log_transid;
3178
	root->log_start_pid = 0;
Y
Yan Zheng 已提交
3179
	/*
3180 3181 3182
	 * IO has been started, blocks of the log tree have WRITTEN flag set
	 * in their headers. new modifications of the log will be written to
	 * new positions. so it's safe to allow log writers to go in.
Y
Yan Zheng 已提交
3183 3184 3185
	 */
	mutex_unlock(&root->log_mutex);

3186
	if (btrfs_is_zoned(fs_info)) {
3187
		mutex_lock(&fs_info->tree_root->log_mutex);
3188 3189 3190
		if (!log_root_tree->node) {
			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
			if (ret) {
3191
				mutex_unlock(&fs_info->tree_root->log_mutex);
3192 3193 3194
				goto out;
			}
		}
3195
		mutex_unlock(&fs_info->tree_root->log_mutex);
3196 3197
	}

3198 3199 3200 3201
	btrfs_init_log_ctx(&root_log_ctx, NULL);

	mutex_lock(&log_root_tree->log_mutex);

3202 3203 3204 3205
	index2 = log_root_tree->log_transid % 2;
	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
	root_log_ctx.log_transid = log_root_tree->log_transid;

3206 3207 3208 3209 3210 3211
	/*
	 * Now we are safe to update the log_root_tree because we're under the
	 * log_mutex, and we're a current writer so we're holding the commit
	 * open until we drop the log_mutex.
	 */
	ret = update_log_root(trans, log, &new_root_item);
3212
	if (ret) {
3213 3214 3215
		if (!list_empty(&root_log_ctx.list))
			list_del_init(&root_log_ctx.list);

3216
		blk_finish_plug(&plug);
3217
		btrfs_set_log_full_commit(trans);
3218

3219
		if (ret != -ENOSPC) {
3220
			btrfs_abort_transaction(trans, ret);
3221 3222 3223
			mutex_unlock(&log_root_tree->log_mutex);
			goto out;
		}
3224
		btrfs_wait_tree_log_extents(log, mark);
3225 3226 3227 3228 3229
		mutex_unlock(&log_root_tree->log_mutex);
		ret = -EAGAIN;
		goto out;
	}

3230
	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3231
		blk_finish_plug(&plug);
3232
		list_del_init(&root_log_ctx.list);
3233 3234 3235 3236
		mutex_unlock(&log_root_tree->log_mutex);
		ret = root_log_ctx.log_ret;
		goto out;
	}
3237

3238
	index2 = root_log_ctx.log_transid % 2;
Y
Yan Zheng 已提交
3239
	if (atomic_read(&log_root_tree->log_commit[index2])) {
3240
		blk_finish_plug(&plug);
3241
		ret = btrfs_wait_tree_log_extents(log, mark);
3242
		wait_log_commit(log_root_tree,
3243
				root_log_ctx.log_transid);
Y
Yan Zheng 已提交
3244
		mutex_unlock(&log_root_tree->log_mutex);
3245 3246
		if (!ret)
			ret = root_log_ctx.log_ret;
Y
Yan Zheng 已提交
3247 3248
		goto out;
	}
3249
	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
Y
Yan Zheng 已提交
3250 3251
	atomic_set(&log_root_tree->log_commit[index2], 1);

3252
	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3253
		wait_log_commit(log_root_tree,
3254
				root_log_ctx.log_transid - 1);
3255 3256 3257 3258 3259 3260
	}

	/*
	 * now that we've moved on to the tree of log tree roots,
	 * check the full commit flag again
	 */
3261
	if (btrfs_need_log_full_commit(trans)) {
3262
		blk_finish_plug(&plug);
3263
		btrfs_wait_tree_log_extents(log, mark);
3264 3265 3266 3267
		mutex_unlock(&log_root_tree->log_mutex);
		ret = -EAGAIN;
		goto out_wake_log_root;
	}
Y
Yan Zheng 已提交
3268

3269
	ret = btrfs_write_marked_extents(fs_info,
3270 3271 3272
					 &log_root_tree->dirty_log_pages,
					 EXTENT_DIRTY | EXTENT_NEW);
	blk_finish_plug(&plug);
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	/*
	 * As described above, -EAGAIN indicates a hole in the extents. We
	 * cannot wait for these write outs since the waiting cause a
	 * deadlock. Bail out to the full commit instead.
	 */
	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
		btrfs_set_log_full_commit(trans);
		btrfs_wait_tree_log_extents(log, mark);
		mutex_unlock(&log_root_tree->log_mutex);
		goto out_wake_log_root;
	} else if (ret) {
3284
		btrfs_set_log_full_commit(trans);
3285
		btrfs_abort_transaction(trans, ret);
3286 3287 3288
		mutex_unlock(&log_root_tree->log_mutex);
		goto out_wake_log_root;
	}
3289
	ret = btrfs_wait_tree_log_extents(log, mark);
3290
	if (!ret)
3291 3292
		ret = btrfs_wait_tree_log_extents(log_root_tree,
						  EXTENT_NEW | EXTENT_DIRTY);
3293
	if (ret) {
3294
		btrfs_set_log_full_commit(trans);
3295 3296 3297
		mutex_unlock(&log_root_tree->log_mutex);
		goto out_wake_log_root;
	}
3298

3299 3300
	log_root_start = log_root_tree->node->start;
	log_root_level = btrfs_header_level(log_root_tree->node);
Y
Yan Zheng 已提交
3301 3302 3303 3304
	log_root_tree->log_transid++;
	mutex_unlock(&log_root_tree->log_mutex);

	/*
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	 * Here we are guaranteed that nobody is going to write the superblock
	 * for the current transaction before us and that neither we do write
	 * our superblock before the previous transaction finishes its commit
	 * and writes its superblock, because:
	 *
	 * 1) We are holding a handle on the current transaction, so no body
	 *    can commit it until we release the handle;
	 *
	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
	 *    if the previous transaction is still committing, and hasn't yet
	 *    written its superblock, we wait for it to do it, because a
	 *    transaction commit acquires the tree_log_mutex when the commit
	 *    begins and releases it only after writing its superblock.
Y
Yan Zheng 已提交
3318
	 */
3319
	mutex_lock(&fs_info->tree_log_mutex);
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335

	/*
	 * The previous transaction writeout phase could have failed, and thus
	 * marked the fs in an error state.  We must not commit here, as we
	 * could have updated our generation in the super_for_commit and
	 * writing the super here would result in transid mismatches.  If there
	 * is an error here just bail.
	 */
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
		ret = -EIO;
		btrfs_set_log_full_commit(trans);
		btrfs_abort_transaction(trans, ret);
		mutex_unlock(&fs_info->tree_log_mutex);
		goto out_wake_log_root;
	}

3336 3337
	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3338
	ret = write_all_supers(fs_info, 1);
3339
	mutex_unlock(&fs_info->tree_log_mutex);
3340
	if (ret) {
3341
		btrfs_set_log_full_commit(trans);
3342
		btrfs_abort_transaction(trans, ret);
3343 3344
		goto out_wake_log_root;
	}
Y
Yan Zheng 已提交
3345

3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	/*
	 * We know there can only be one task here, since we have not yet set
	 * root->log_commit[index1] to 0 and any task attempting to sync the
	 * log must wait for the previous log transaction to commit if it's
	 * still in progress or wait for the current log transaction commit if
	 * someone else already started it. We use <= and not < because the
	 * first log transaction has an ID of 0.
	 */
	ASSERT(root->last_log_commit <= log_transid);
	root->last_log_commit = log_transid;
3356

3357
out_wake_log_root:
3358
	mutex_lock(&log_root_tree->log_mutex);
3359 3360
	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);

3361
	log_root_tree->log_transid_committed++;
Y
Yan Zheng 已提交
3362
	atomic_set(&log_root_tree->log_commit[index2], 0);
3363 3364
	mutex_unlock(&log_root_tree->log_mutex);

3365
	/*
3366 3367 3368
	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
	 * all the updates above are seen by the woken threads. It might not be
	 * necessary, but proving that seems to be hard.
3369
	 */
3370
	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3371
out:
3372
	mutex_lock(&root->log_mutex);
3373
	btrfs_remove_all_log_ctxs(root, index1, ret);
3374
	root->log_transid_committed++;
Y
Yan Zheng 已提交
3375
	atomic_set(&root->log_commit[index1], 0);
3376
	mutex_unlock(&root->log_mutex);
3377

3378
	/*
3379 3380 3381
	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
	 * all the updates above are seen by the woken threads. It might not be
	 * necessary, but proving that seems to be hard.
3382
	 */
3383
	cond_wake_up(&root->log_commit_wait[index1]);
3384
	return ret;
3385 3386
}

3387 3388
static void free_log_tree(struct btrfs_trans_handle *trans,
			  struct btrfs_root *log)
3389 3390 3391 3392 3393 3394 3395
{
	int ret;
	struct walk_control wc = {
		.free = 1,
		.process_func = process_one_buffer
	};

3396 3397 3398 3399 3400 3401 3402 3403
	if (log->node) {
		ret = walk_log_tree(trans, log, &wc);
		if (ret) {
			if (trans)
				btrfs_abort_transaction(trans, ret);
			else
				btrfs_handle_fs_error(log->fs_info, ret, NULL);
		}
3404
	}
3405

3406 3407
	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3408
	extent_io_tree_release(&log->log_csum_range);
3409 3410 3411

	if (trans && log->node)
		btrfs_redirty_list_add(trans->transaction, log->node);
3412
	btrfs_put_root(log);
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
}

/*
 * free all the extents used by the tree log.  This should be called
 * at commit time of the full transaction
 */
int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
{
	if (root->log_root) {
		free_log_tree(trans, root->log_root);
		root->log_root = NULL;
3424
		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
	}
	return 0;
}

int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info)
{
	if (fs_info->log_root_tree) {
		free_log_tree(trans, fs_info->log_root_tree);
		fs_info->log_root_tree = NULL;
3435
		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3436
	}
3437 3438 3439
	return 0;
}

3440
/*
3441 3442 3443 3444
 * Check if an inode was logged in the current transaction. This may often
 * return some false positives, because logged_trans is an in memory only field,
 * not persisted anywhere. This is meant to be used in contexts where a false
 * positive has no functional consequences.
3445 3446 3447 3448 3449 3450 3451
 */
static bool inode_logged(struct btrfs_trans_handle *trans,
			 struct btrfs_inode *inode)
{
	if (inode->logged_trans == trans->transid)
		return true;

3452 3453 3454
	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state))
		return false;

3455 3456 3457
	/*
	 * The inode's logged_trans is always 0 when we load it (because it is
	 * not persisted in the inode item or elsewhere). So if it is 0, the
3458 3459 3460 3461 3462
	 * inode was last modified in the current transaction then the inode may
	 * have been logged before in the current transaction, then evicted and
	 * loaded again in the current transaction - or may have never been logged
	 * in the current transaction, but since we can not be sure, we have to
	 * assume it was, otherwise our callers can leave an inconsistent log.
3463 3464 3465
	 */
	if (inode->logged_trans == 0 &&
	    inode->last_trans == trans->transid &&
3466 3467 3468 3469 3470 3471
	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
		return true;

	return false;
}

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
/*
 * If both a file and directory are logged, and unlinks or renames are
 * mixed in, we have a few interesting corners:
 *
 * create file X in dir Y
 * link file X to X.link in dir Y
 * fsync file X
 * unlink file X but leave X.link
 * fsync dir Y
 *
 * After a crash we would expect only X.link to exist.  But file X
 * didn't get fsync'd again so the log has back refs for X and X.link.
 *
 * We solve this by removing directory entries and inode backrefs from the
 * log when a file that was logged in the current transaction is
 * unlinked.  Any later fsync will include the updated log entries, and
 * we'll be able to reconstruct the proper directory items from backrefs.
 *
 * This optimizations allows us to avoid relogging the entire inode
 * or the entire directory.
 */
int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
				 struct btrfs_root *root,
				 const char *name, int name_len,
3496
				 struct btrfs_inode *dir, u64 index)
3497 3498 3499 3500 3501
{
	struct btrfs_root *log;
	struct btrfs_dir_item *di;
	struct btrfs_path *path;
	int ret;
3502
	int err = 0;
3503
	u64 dir_ino = btrfs_ino(dir);
3504

3505
	if (!inode_logged(trans, dir))
3506 3507
		return 0;

3508 3509 3510 3511
	ret = join_running_log_trans(root);
	if (ret)
		return 0;

3512
	mutex_lock(&dir->log_mutex);
3513 3514 3515

	log = root->log_root;
	path = btrfs_alloc_path();
3516 3517 3518 3519
	if (!path) {
		err = -ENOMEM;
		goto out_unlock;
	}
3520

L
Li Zefan 已提交
3521
	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3522
				   name, name_len, -1);
3523 3524 3525 3526 3527
	if (IS_ERR(di)) {
		err = PTR_ERR(di);
		goto fail;
	}
	if (di) {
3528
		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3529 3530 3531 3532
		if (ret) {
			err = ret;
			goto fail;
		}
3533
	}
3534
	btrfs_release_path(path);
L
Li Zefan 已提交
3535
	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3536
					 index, name, name_len, -1);
3537 3538 3539 3540 3541
	if (IS_ERR(di)) {
		err = PTR_ERR(di);
		goto fail;
	}
	if (di) {
3542
		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3543 3544 3545 3546
		if (ret) {
			err = ret;
			goto fail;
		}
3547 3548
	}

3549 3550 3551 3552
	/*
	 * We do not need to update the size field of the directory's inode item
	 * because on log replay we update the field to reflect all existing
	 * entries in the directory (see overwrite_item()).
3553
	 */
3554
fail:
3555
	btrfs_free_path(path);
3556
out_unlock:
3557
	mutex_unlock(&dir->log_mutex);
3558
	if (err == -ENOSPC) {
3559
		btrfs_set_log_full_commit(trans);
3560
		err = 0;
3561
	} else if (err < 0) {
3562 3563
		btrfs_abort_transaction(trans, err);
	}
3564

3565
	btrfs_end_log_trans(root);
3566

3567
	return err;
3568 3569 3570 3571 3572 3573
}

/* see comments for btrfs_del_dir_entries_in_log */
int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       const char *name, int name_len,
3574
			       struct btrfs_inode *inode, u64 dirid)
3575 3576 3577 3578 3579
{
	struct btrfs_root *log;
	u64 index;
	int ret;

3580
	if (!inode_logged(trans, inode))
3581 3582
		return 0;

3583 3584 3585 3586
	ret = join_running_log_trans(root);
	if (ret)
		return 0;
	log = root->log_root;
3587
	mutex_lock(&inode->log_mutex);
3588

3589
	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3590
				  dirid, &index);
3591
	mutex_unlock(&inode->log_mutex);
3592
	if (ret == -ENOSPC) {
3593
		btrfs_set_log_full_commit(trans);
3594
		ret = 0;
3595
	} else if (ret < 0 && ret != -ENOENT)
3596
		btrfs_abort_transaction(trans, ret);
3597
	btrfs_end_log_trans(root);
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623

	return ret;
}

/*
 * creates a range item in the log for 'dirid'.  first_offset and
 * last_offset tell us which parts of the key space the log should
 * be considered authoritative for.
 */
static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
				       struct btrfs_root *log,
				       struct btrfs_path *path,
				       int key_type, u64 dirid,
				       u64 first_offset, u64 last_offset)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_dir_log_item *item;

	key.objectid = dirid;
	key.offset = first_offset;
	if (key_type == BTRFS_DIR_ITEM_KEY)
		key.type = BTRFS_DIR_LOG_ITEM_KEY;
	else
		key.type = BTRFS_DIR_LOG_INDEX_KEY;
	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3624 3625
	if (ret)
		return ret;
3626 3627 3628 3629 3630

	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
			      struct btrfs_dir_log_item);
	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
	btrfs_mark_buffer_dirty(path->nodes[0]);
3631
	btrfs_release_path(path);
3632 3633 3634 3635 3636 3637 3638 3639 3640
	return 0;
}

/*
 * log all the items included in the current transaction for a given
 * directory.  This also creates the range items in the log tree required
 * to replay anything deleted before the fsync
 */
static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3641
			  struct btrfs_root *root, struct btrfs_inode *inode,
3642 3643
			  struct btrfs_path *path,
			  struct btrfs_path *dst_path, int key_type,
3644
			  struct btrfs_log_ctx *ctx,
3645 3646 3647 3648 3649
			  u64 min_offset, u64 *last_offset_ret)
{
	struct btrfs_key min_key;
	struct btrfs_root *log = root->log_root;
	struct extent_buffer *src;
3650
	int err = 0;
3651 3652 3653 3654 3655
	int ret;
	int i;
	int nritems;
	u64 first_offset = min_offset;
	u64 last_offset = (u64)-1;
3656
	u64 ino = btrfs_ino(inode);
3657 3658 3659

	log = root->log_root;

L
Li Zefan 已提交
3660
	min_key.objectid = ino;
3661 3662 3663
	min_key.type = key_type;
	min_key.offset = min_offset;

3664
	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3665 3666 3667 3668 3669

	/*
	 * we didn't find anything from this transaction, see if there
	 * is anything at all
	 */
L
Li Zefan 已提交
3670 3671
	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
		min_key.objectid = ino;
3672 3673
		min_key.type = key_type;
		min_key.offset = (u64)-1;
3674
		btrfs_release_path(path);
3675 3676
		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
		if (ret < 0) {
3677
			btrfs_release_path(path);
3678 3679
			return ret;
		}
L
Li Zefan 已提交
3680
		ret = btrfs_previous_item(root, path, ino, key_type);
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690

		/* if ret == 0 there are items for this type,
		 * create a range to tell us the last key of this type.
		 * otherwise, there are no items in this directory after
		 * *min_offset, and we create a range to indicate that.
		 */
		if (ret == 0) {
			struct btrfs_key tmp;
			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
					      path->slots[0]);
C
Chris Mason 已提交
3691
			if (key_type == tmp.type)
3692 3693 3694 3695 3696 3697
				first_offset = max(min_offset, tmp.offset) + 1;
		}
		goto done;
	}

	/* go backward to find any previous key */
L
Li Zefan 已提交
3698
	ret = btrfs_previous_item(root, path, ino, key_type);
3699 3700 3701 3702 3703 3704 3705 3706
	if (ret == 0) {
		struct btrfs_key tmp;
		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
		if (key_type == tmp.type) {
			first_offset = tmp.offset;
			ret = overwrite_item(trans, log, dst_path,
					     path->nodes[0], path->slots[0],
					     &tmp);
3707 3708 3709 3710
			if (ret) {
				err = ret;
				goto done;
			}
3711 3712
		}
	}
3713
	btrfs_release_path(path);
3714

3715 3716 3717 3718 3719 3720 3721 3722
	/*
	 * Find the first key from this transaction again.  See the note for
	 * log_new_dir_dentries, if we're logging a directory recursively we
	 * won't be holding its i_mutex, which means we can modify the directory
	 * while we're logging it.  If we remove an entry between our first
	 * search and this search we'll not find the key again and can just
	 * bail.
	 */
3723
search:
3724
	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3725
	if (ret != 0)
3726 3727 3728 3729 3730 3731
		goto done;

	/*
	 * we have a block from this transaction, log every item in it
	 * from our directory
	 */
C
Chris Mason 已提交
3732
	while (1) {
3733 3734 3735 3736
		struct btrfs_key tmp;
		src = path->nodes[0];
		nritems = btrfs_header_nritems(src);
		for (i = path->slots[0]; i < nritems; i++) {
3737 3738
			struct btrfs_dir_item *di;

3739 3740
			btrfs_item_key_to_cpu(src, &min_key, i);

L
Li Zefan 已提交
3741
			if (min_key.objectid != ino || min_key.type != key_type)
3742
				goto done;
3743 3744 3745 3746 3747 3748 3749

			if (need_resched()) {
				btrfs_release_path(path);
				cond_resched();
				goto search;
			}

3750 3751
			ret = overwrite_item(trans, log, dst_path, src, i,
					     &min_key);
3752 3753 3754 3755
			if (ret) {
				err = ret;
				goto done;
			}
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781

			/*
			 * We must make sure that when we log a directory entry,
			 * the corresponding inode, after log replay, has a
			 * matching link count. For example:
			 *
			 * touch foo
			 * mkdir mydir
			 * sync
			 * ln foo mydir/bar
			 * xfs_io -c "fsync" mydir
			 * <crash>
			 * <mount fs and log replay>
			 *
			 * Would result in a fsync log that when replayed, our
			 * file inode would have a link count of 1, but we get
			 * two directory entries pointing to the same inode.
			 * After removing one of the names, it would not be
			 * possible to remove the other name, which resulted
			 * always in stale file handle errors, and would not
			 * be possible to rmdir the parent directory, since
			 * its i_size could never decrement to the value
			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
			 */
			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3782
			if ((btrfs_dir_transid(src, di) == trans->transid ||
3783 3784 3785
			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
			    tmp.type != BTRFS_ROOT_ITEM_KEY)
				ctx->log_new_dentries = true;
3786 3787 3788 3789 3790 3791 3792 3793
		}
		path->slots[0] = nritems;

		/*
		 * look ahead to the next item and see if it is also
		 * from this directory and from this transaction
		 */
		ret = btrfs_next_leaf(root, path);
3794 3795 3796 3797 3798
		if (ret) {
			if (ret == 1)
				last_offset = (u64)-1;
			else
				err = ret;
3799 3800 3801
			goto done;
		}
		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
L
Li Zefan 已提交
3802
		if (tmp.objectid != ino || tmp.type != key_type) {
3803 3804 3805 3806 3807 3808 3809
			last_offset = (u64)-1;
			goto done;
		}
		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
			ret = overwrite_item(trans, log, dst_path,
					     path->nodes[0], path->slots[0],
					     &tmp);
3810 3811 3812 3813
			if (ret)
				err = ret;
			else
				last_offset = tmp.offset;
3814 3815 3816 3817
			goto done;
		}
	}
done:
3818 3819
	btrfs_release_path(path);
	btrfs_release_path(dst_path);
3820

3821 3822 3823 3824 3825 3826 3827
	if (err == 0) {
		*last_offset_ret = last_offset;
		/*
		 * insert the log range keys to indicate where the log
		 * is valid
		 */
		ret = insert_dir_log_key(trans, log, path, key_type,
L
Li Zefan 已提交
3828
					 ino, first_offset, last_offset);
3829 3830 3831 3832
		if (ret)
			err = ret;
	}
	return err;
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
}

/*
 * logging directories is very similar to logging inodes, We find all the items
 * from the current transaction and write them to the log.
 *
 * The recovery code scans the directory in the subvolume, and if it finds a
 * key in the range logged that is not present in the log tree, then it means
 * that dir entry was unlinked during the transaction.
 *
 * In order for that scan to work, we must include one key smaller than
 * the smallest logged by this transaction and one key larger than the largest
 * key logged by this transaction.
 */
static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3848
			  struct btrfs_root *root, struct btrfs_inode *inode,
3849
			  struct btrfs_path *path,
3850 3851
			  struct btrfs_path *dst_path,
			  struct btrfs_log_ctx *ctx)
3852 3853 3854 3855 3856 3857 3858 3859 3860
{
	u64 min_key;
	u64 max_key;
	int ret;
	int key_type = BTRFS_DIR_ITEM_KEY;

again:
	min_key = 0;
	max_key = 0;
C
Chris Mason 已提交
3861
	while (1) {
3862 3863
		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
				ctx, min_key, &max_key);
3864 3865
		if (ret)
			return ret;
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
		if (max_key == (u64)-1)
			break;
		min_key = max_key + 1;
	}

	if (key_type == BTRFS_DIR_ITEM_KEY) {
		key_type = BTRFS_DIR_INDEX_KEY;
		goto again;
	}
	return 0;
}

/*
 * a helper function to drop items from the log before we relog an
 * inode.  max_key_type indicates the highest item type to remove.
 * This cannot be run for file data extents because it does not
 * free the extents they point to.
 */
3884
static int drop_inode_items(struct btrfs_trans_handle *trans,
3885 3886
				  struct btrfs_root *log,
				  struct btrfs_path *path,
3887 3888
				  struct btrfs_inode *inode,
				  int max_key_type)
3889 3890 3891 3892
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
3893
	int start_slot;
3894

3895 3896 3897 3898
	if (!inode_logged(trans, inode))
		return 0;

	key.objectid = btrfs_ino(inode);
3899 3900 3901
	key.type = max_key_type;
	key.offset = (u64)-1;

C
Chris Mason 已提交
3902
	while (1) {
3903
		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3904
		BUG_ON(ret == 0); /* Logic error */
3905
		if (ret < 0)
3906 3907 3908 3909 3910 3911 3912 3913 3914
			break;

		if (path->slots[0] == 0)
			break;

		path->slots[0]--;
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);

3915
		if (found_key.objectid != key.objectid)
3916 3917
			break;

3918 3919
		found_key.offset = 0;
		found_key.type = 0;
3920
		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3921 3922
		if (ret < 0)
			break;
3923 3924 3925 3926 3927 3928 3929 3930

		ret = btrfs_del_items(trans, log, path, start_slot,
				      path->slots[0] - start_slot + 1);
		/*
		 * If start slot isn't 0 then we don't need to re-search, we've
		 * found the last guy with the objectid in this tree.
		 */
		if (ret || start_slot != 0)
3931
			break;
3932
		btrfs_release_path(path);
3933
	}
3934
	btrfs_release_path(path);
3935 3936
	if (ret > 0)
		ret = 0;
3937
	return ret;
3938 3939
}

3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
static int truncate_inode_items(struct btrfs_trans_handle *trans,
				struct btrfs_root *log_root,
				struct btrfs_inode *inode,
				u64 new_size, u32 min_type)
{
	int ret;

	do {
		ret = btrfs_truncate_inode_items(trans, log_root, inode,
						 new_size, min_type, NULL);
	} while (ret == -EAGAIN);

	return ret;
}

3955 3956 3957
static void fill_inode_item(struct btrfs_trans_handle *trans,
			    struct extent_buffer *leaf,
			    struct btrfs_inode_item *item,
3958 3959
			    struct inode *inode, int log_inode_only,
			    u64 logged_isize)
3960
{
3961
	struct btrfs_map_token token;
3962
	u64 flags;
3963

3964
	btrfs_init_map_token(&token, leaf);
3965 3966 3967 3968 3969 3970 3971

	if (log_inode_only) {
		/* set the generation to zero so the recover code
		 * can tell the difference between an logging
		 * just to say 'this inode exists' and a logging
		 * to say 'update this inode with these values'
		 */
3972 3973
		btrfs_set_token_inode_generation(&token, item, 0);
		btrfs_set_token_inode_size(&token, item, logged_isize);
3974
	} else {
3975 3976 3977
		btrfs_set_token_inode_generation(&token, item,
						 BTRFS_I(inode)->generation);
		btrfs_set_token_inode_size(&token, item, inode->i_size);
3978 3979
	}

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);

	btrfs_set_token_timespec_sec(&token, &item->atime,
				     inode->i_atime.tv_sec);
	btrfs_set_token_timespec_nsec(&token, &item->atime,
				      inode->i_atime.tv_nsec);

	btrfs_set_token_timespec_sec(&token, &item->mtime,
				     inode->i_mtime.tv_sec);
	btrfs_set_token_timespec_nsec(&token, &item->mtime,
				      inode->i_mtime.tv_nsec);

	btrfs_set_token_timespec_sec(&token, &item->ctime,
				     inode->i_ctime.tv_sec);
	btrfs_set_token_timespec_nsec(&token, &item->ctime,
				      inode->i_ctime.tv_nsec);

4000 4001 4002 4003 4004 4005 4006 4007
	/*
	 * We do not need to set the nbytes field, in fact during a fast fsync
	 * its value may not even be correct, since a fast fsync does not wait
	 * for ordered extent completion, which is where we update nbytes, it
	 * only waits for writeback to complete. During log replay as we find
	 * file extent items and replay them, we adjust the nbytes field of the
	 * inode item in subvolume tree as needed (see overwrite_item()).
	 */
4008 4009 4010 4011

	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
	btrfs_set_token_inode_transid(&token, item, trans->transid);
	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4012 4013 4014
	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
					  BTRFS_I(inode)->ro_flags);
	btrfs_set_token_inode_flags(&token, item, flags);
4015
	btrfs_set_token_inode_block_group(&token, item, 0);
4016 4017
}

4018 4019
static int log_inode_item(struct btrfs_trans_handle *trans,
			  struct btrfs_root *log, struct btrfs_path *path,
4020
			  struct btrfs_inode *inode, bool inode_item_dropped)
4021 4022 4023 4024
{
	struct btrfs_inode_item *inode_item;
	int ret;

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
	/*
	 * If we are doing a fast fsync and the inode was logged before in the
	 * current transaction, then we know the inode was previously logged and
	 * it exists in the log tree. For performance reasons, in this case use
	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
	 * contention in case there are concurrent fsyncs for other inodes of the
	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
	 * already exists can also result in unnecessarily splitting a leaf.
	 */
	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
		ASSERT(ret <= 0);
		if (ret > 0)
			ret = -ENOENT;
	} else {
		/*
		 * This means it is the first fsync in the current transaction,
		 * so the inode item is not in the log and we need to insert it.
		 * We can never get -EEXIST because we are only called for a fast
		 * fsync and in case an inode eviction happens after the inode was
		 * logged before in the current transaction, when we load again
		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
		 * flags and set ->logged_trans to 0.
		 */
		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
					      sizeof(*inode_item));
		ASSERT(ret != -EEXIST);
	}
	if (ret)
4055 4056 4057
		return ret;
	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
				    struct btrfs_inode_item);
4058 4059
	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
			0, 0);
4060 4061 4062 4063
	btrfs_release_path(path);
	return 0;
}

4064
static int log_csums(struct btrfs_trans_handle *trans,
4065
		     struct btrfs_inode *inode,
4066 4067 4068
		     struct btrfs_root *log_root,
		     struct btrfs_ordered_sum *sums)
{
4069 4070
	const u64 lock_end = sums->bytenr + sums->len - 1;
	struct extent_state *cached_state = NULL;
4071 4072
	int ret;

4073 4074 4075 4076 4077 4078 4079 4080
	/*
	 * If this inode was not used for reflink operations in the current
	 * transaction with new extents, then do the fast path, no need to
	 * worry about logging checksum items with overlapping ranges.
	 */
	if (inode->last_reflink_trans < trans->transid)
		return btrfs_csum_file_blocks(trans, log_root, sums);

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	/*
	 * Serialize logging for checksums. This is to avoid racing with the
	 * same checksum being logged by another task that is logging another
	 * file which happens to refer to the same extent as well. Such races
	 * can leave checksum items in the log with overlapping ranges.
	 */
	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
			       lock_end, &cached_state);
	if (ret)
		return ret;
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	/*
	 * Due to extent cloning, we might have logged a csum item that covers a
	 * subrange of a cloned extent, and later we can end up logging a csum
	 * item for a larger subrange of the same extent or the entire range.
	 * This would leave csum items in the log tree that cover the same range
	 * and break the searches for checksums in the log tree, resulting in
	 * some checksums missing in the fs/subvolume tree. So just delete (or
	 * trim and adjust) any existing csum items in the log for this range.
	 */
	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4101 4102
	if (!ret)
		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4103

4104 4105 4106 4107
	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
			     &cached_state);

	return ret;
4108 4109
}

4110
static noinline int copy_items(struct btrfs_trans_handle *trans,
4111
			       struct btrfs_inode *inode,
4112
			       struct btrfs_path *dst_path,
4113
			       struct btrfs_path *src_path,
4114 4115
			       int start_slot, int nr, int inode_only,
			       u64 logged_isize)
4116
{
4117
	struct btrfs_fs_info *fs_info = trans->fs_info;
4118 4119
	unsigned long src_offset;
	unsigned long dst_offset;
4120
	struct btrfs_root *log = inode->root->log_root;
4121 4122
	struct btrfs_file_extent_item *extent;
	struct btrfs_inode_item *inode_item;
4123
	struct extent_buffer *src = src_path->nodes[0];
4124 4125 4126 4127 4128
	int ret;
	struct btrfs_key *ins_keys;
	u32 *ins_sizes;
	char *ins_data;
	int i;
4129
	struct list_head ordered_sums;
4130
	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4131 4132

	INIT_LIST_HEAD(&ordered_sums);
4133 4134 4135

	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
			   nr * sizeof(u32), GFP_NOFS);
4136 4137 4138
	if (!ins_data)
		return -ENOMEM;

4139 4140 4141 4142 4143 4144 4145 4146 4147
	ins_sizes = (u32 *)ins_data;
	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));

	for (i = 0; i < nr; i++) {
		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
	}
	ret = btrfs_insert_empty_items(trans, log, dst_path,
				       ins_keys, ins_sizes, nr);
4148 4149 4150 4151
	if (ret) {
		kfree(ins_data);
		return ret;
	}
4152

4153
	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4154 4155 4156 4157 4158
		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
						   dst_path->slots[0]);

		src_offset = btrfs_item_ptr_offset(src, start_slot + i);

4159
		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4160 4161 4162
			inode_item = btrfs_item_ptr(dst_path->nodes[0],
						    dst_path->slots[0],
						    struct btrfs_inode_item);
4163
			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4164 4165
					&inode->vfs_inode,
					inode_only == LOG_INODE_EXISTS,
4166
					logged_isize);
4167 4168 4169
		} else {
			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
					   src_offset, ins_sizes[i]);
4170
		}
4171

4172 4173 4174 4175
		/* take a reference on file data extents so that truncates
		 * or deletes of this inode don't have to relog the inode
		 * again
		 */
4176
		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4177
		    !skip_csum) {
4178 4179 4180 4181
			int found_type;
			extent = btrfs_item_ptr(src, start_slot + i,
						struct btrfs_file_extent_item);

4182 4183 4184
			if (btrfs_file_extent_generation(src, extent) < trans->transid)
				continue;

4185
			found_type = btrfs_file_extent_type(src, extent);
4186
			if (found_type == BTRFS_FILE_EXTENT_REG) {
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
				u64 ds, dl, cs, cl;
				ds = btrfs_file_extent_disk_bytenr(src,
								extent);
				/* ds == 0 is a hole */
				if (ds == 0)
					continue;

				dl = btrfs_file_extent_disk_num_bytes(src,
								extent);
				cs = btrfs_file_extent_offset(src, extent);
				cl = btrfs_file_extent_num_bytes(src,
4198
								extent);
4199 4200 4201 4202 4203
				if (btrfs_file_extent_compression(src,
								  extent)) {
					cs = 0;
					cl = dl;
				}
4204 4205

				ret = btrfs_lookup_csums_range(
4206
						fs_info->csum_root,
4207
						ds + cs, ds + cs + cl - 1,
A
Arne Jansen 已提交
4208
						&ordered_sums, 0);
4209 4210
				if (ret)
					break;
4211 4212 4213 4214 4215
			}
		}
	}

	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4216
	btrfs_release_path(dst_path);
4217
	kfree(ins_data);
4218 4219 4220 4221 4222

	/*
	 * we have to do this after the loop above to avoid changing the
	 * log tree while trying to change the log tree.
	 */
C
Chris Mason 已提交
4223
	while (!list_empty(&ordered_sums)) {
4224 4225 4226
		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
						   struct btrfs_ordered_sum,
						   list);
4227
		if (!ret)
4228
			ret = log_csums(trans, inode, log, sums);
4229 4230 4231
		list_del(&sums->list);
		kfree(sums);
	}
4232

4233
	return ret;
4234 4235
}

4236 4237
static int extent_cmp(void *priv, const struct list_head *a,
		      const struct list_head *b)
J
Josef Bacik 已提交
4238
{
4239
	const struct extent_map *em1, *em2;
J
Josef Bacik 已提交
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250

	em1 = list_entry(a, struct extent_map, list);
	em2 = list_entry(b, struct extent_map, list);

	if (em1->start < em2->start)
		return -1;
	else if (em1->start > em2->start)
		return 1;
	return 0;
}

4251 4252
static int log_extent_csums(struct btrfs_trans_handle *trans,
			    struct btrfs_inode *inode,
4253
			    struct btrfs_root *log_root,
4254 4255
			    const struct extent_map *em,
			    struct btrfs_log_ctx *ctx)
J
Josef Bacik 已提交
4256
{
4257
	struct btrfs_ordered_extent *ordered;
4258 4259
	u64 csum_offset;
	u64 csum_len;
4260 4261
	u64 mod_start = em->mod_start;
	u64 mod_len = em->mod_len;
4262 4263
	LIST_HEAD(ordered_sums);
	int ret = 0;
4264

4265 4266
	if (inode->flags & BTRFS_INODE_NODATASUM ||
	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4267
	    em->block_start == EXTENT_MAP_HOLE)
4268
		return 0;
J
Josef Bacik 已提交
4269

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
		const u64 mod_end = mod_start + mod_len;
		struct btrfs_ordered_sum *sums;

		if (mod_len == 0)
			break;

		if (ordered_end <= mod_start)
			continue;
		if (mod_end <= ordered->file_offset)
			break;

		/*
		 * We are going to copy all the csums on this ordered extent, so
		 * go ahead and adjust mod_start and mod_len in case this ordered
		 * extent has already been logged.
		 */
		if (ordered->file_offset > mod_start) {
			if (ordered_end >= mod_end)
				mod_len = ordered->file_offset - mod_start;
			/*
			 * If we have this case
			 *
			 * |--------- logged extent ---------|
			 *       |----- ordered extent ----|
			 *
			 * Just don't mess with mod_start and mod_len, we'll
			 * just end up logging more csums than we need and it
			 * will be ok.
			 */
		} else {
			if (ordered_end < mod_end) {
				mod_len = mod_end - ordered_end;
				mod_start = ordered_end;
			} else {
				mod_len = 0;
			}
		}

		/*
		 * To keep us from looping for the above case of an ordered
		 * extent that falls inside of the logged extent.
		 */
		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
			continue;

		list_for_each_entry(sums, &ordered->list, list) {
			ret = log_csums(trans, inode, log_root, sums);
			if (ret)
				return ret;
		}
	}

	/* We're done, found all csums in the ordered extents. */
	if (mod_len == 0)
		return 0;

4328
	/* If we're compressed we have to save the entire range of csums. */
4329 4330
	if (em->compress_type) {
		csum_offset = 0;
4331
		csum_len = max(em->block_len, em->orig_block_len);
4332
	} else {
4333 4334
		csum_offset = mod_start - em->start;
		csum_len = mod_len;
4335
	}
4336

4337
	/* block start is already adjusted for the file extent offset. */
4338
	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4339 4340 4341 4342 4343
				       em->block_start + csum_offset,
				       em->block_start + csum_offset +
				       csum_len - 1, &ordered_sums, 0);
	if (ret)
		return ret;
J
Josef Bacik 已提交
4344

4345 4346 4347 4348 4349
	while (!list_empty(&ordered_sums)) {
		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
						   struct btrfs_ordered_sum,
						   list);
		if (!ret)
4350
			ret = log_csums(trans, inode, log_root, sums);
4351 4352
		list_del(&sums->list);
		kfree(sums);
J
Josef Bacik 已提交
4353 4354
	}

4355
	return ret;
J
Josef Bacik 已提交
4356 4357
}

4358
static int log_one_extent(struct btrfs_trans_handle *trans,
4359
			  struct btrfs_inode *inode, struct btrfs_root *root,
4360 4361 4362 4363
			  const struct extent_map *em,
			  struct btrfs_path *path,
			  struct btrfs_log_ctx *ctx)
{
4364
	struct btrfs_drop_extents_args drop_args = { 0 };
4365 4366 4367 4368 4369 4370 4371 4372 4373
	struct btrfs_root *log = root->log_root;
	struct btrfs_file_extent_item *fi;
	struct extent_buffer *leaf;
	struct btrfs_map_token token;
	struct btrfs_key key;
	u64 extent_offset = em->start - em->orig_start;
	u64 block_len;
	int ret;

4374
	ret = log_extent_csums(trans, inode, log, em, ctx);
4375 4376 4377
	if (ret)
		return ret;

4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
	/*
	 * If this is the first time we are logging the inode in the current
	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
	 * because it does a deletion search, which always acquires write locks
	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
	 * but also adds significant contention in a log tree, since log trees
	 * are small, with a root at level 2 or 3 at most, due to their short
	 * life span.
	 */
	if (inode_logged(trans, inode)) {
		drop_args.path = path;
		drop_args.start = em->start;
		drop_args.end = em->start + em->len;
		drop_args.replace_extent = true;
		drop_args.extent_item_size = sizeof(*fi);
		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
		if (ret)
			return ret;
	}
4397

4398
	if (!drop_args.extent_inserted) {
4399
		key.objectid = btrfs_ino(inode);
4400 4401 4402 4403 4404 4405 4406 4407 4408
		key.type = BTRFS_EXTENT_DATA_KEY;
		key.offset = em->start;

		ret = btrfs_insert_empty_item(trans, log, path, &key,
					      sizeof(*fi));
		if (ret)
			return ret;
	}
	leaf = path->nodes[0];
4409
	btrfs_init_map_token(&token, leaf);
4410 4411 4412
	fi = btrfs_item_ptr(leaf, path->slots[0],
			    struct btrfs_file_extent_item);

4413
	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4414
	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4415 4416
		btrfs_set_token_file_extent_type(&token, fi,
						 BTRFS_FILE_EXTENT_PREALLOC);
4417
	else
4418 4419
		btrfs_set_token_file_extent_type(&token, fi,
						 BTRFS_FILE_EXTENT_REG);
4420 4421 4422

	block_len = max(em->block_len, em->orig_block_len);
	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4423 4424 4425
		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
							em->block_start);
		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4426
	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4427
		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4428
							em->block_start -
4429 4430
							extent_offset);
		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4431
	} else {
4432 4433
		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4434 4435
	}

4436 4437 4438 4439 4440 4441
	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
	btrfs_set_token_file_extent_encryption(&token, fi, 0);
	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4442 4443 4444 4445 4446 4447 4448
	btrfs_mark_buffer_dirty(leaf);

	btrfs_release_path(path);

	return ret;
}

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
/*
 * Log all prealloc extents beyond the inode's i_size to make sure we do not
 * lose them after doing a fast fsync and replaying the log. We scan the
 * subvolume's root instead of iterating the inode's extent map tree because
 * otherwise we can log incorrect extent items based on extent map conversion.
 * That can happen due to the fact that extent maps are merged when they
 * are not in the extent map tree's list of modified extents.
 */
static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
				      struct btrfs_inode *inode,
				      struct btrfs_path *path)
{
	struct btrfs_root *root = inode->root;
	struct btrfs_key key;
	const u64 i_size = i_size_read(&inode->vfs_inode);
	const u64 ino = btrfs_ino(inode);
	struct btrfs_path *dst_path = NULL;
4466
	bool dropped_extents = false;
4467 4468 4469
	u64 truncate_offset = i_size;
	struct extent_buffer *leaf;
	int slot;
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
	int ins_nr = 0;
	int start_slot;
	int ret;

	if (!(inode->flags & BTRFS_INODE_PREALLOC))
		return 0;

	key.objectid = ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = i_size;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
	/*
	 * We must check if there is a prealloc extent that starts before the
	 * i_size and crosses the i_size boundary. This is to ensure later we
	 * truncate down to the end of that extent and not to the i_size, as
	 * otherwise we end up losing part of the prealloc extent after a log
	 * replay and with an implicit hole if there is another prealloc extent
	 * that starts at an offset beyond i_size.
	 */
	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
	if (ret < 0)
		goto out;

	if (ret == 0) {
		struct btrfs_file_extent_item *ei;

		leaf = path->nodes[0];
		slot = path->slots[0];
		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);

		if (btrfs_file_extent_type(leaf, ei) ==
		    BTRFS_FILE_EXTENT_PREALLOC) {
			u64 extent_end;

			btrfs_item_key_to_cpu(leaf, &key, slot);
			extent_end = key.offset +
				btrfs_file_extent_num_bytes(leaf, ei);

			if (extent_end > i_size)
				truncate_offset = extent_end;
		}
	} else {
		ret = 0;
	}

4518
	while (true) {
4519 4520
		leaf = path->nodes[0];
		slot = path->slots[0];
4521 4522 4523 4524

		if (slot >= btrfs_header_nritems(leaf)) {
			if (ins_nr > 0) {
				ret = copy_items(trans, inode, dst_path, path,
4525
						 start_slot, ins_nr, 1, 0);
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
				if (ret < 0)
					goto out;
				ins_nr = 0;
			}
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid > ino)
			break;
		if (WARN_ON_ONCE(key.objectid < ino) ||
		    key.type < BTRFS_EXTENT_DATA_KEY ||
		    key.offset < i_size) {
			path->slots[0]++;
			continue;
		}
4549
		if (!dropped_extents) {
4550 4551 4552 4553
			/*
			 * Avoid logging extent items logged in past fsync calls
			 * and leading to duplicate keys in the log tree.
			 */
4554 4555 4556
			ret = truncate_inode_items(trans, root->log_root, inode,
						   truncate_offset,
						   BTRFS_EXTENT_DATA_KEY);
4557 4558
			if (ret)
				goto out;
4559
			dropped_extents = true;
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
		}
		if (ins_nr == 0)
			start_slot = slot;
		ins_nr++;
		path->slots[0]++;
		if (!dst_path) {
			dst_path = btrfs_alloc_path();
			if (!dst_path) {
				ret = -ENOMEM;
				goto out;
			}
		}
	}
4573
	if (ins_nr > 0)
4574
		ret = copy_items(trans, inode, dst_path, path,
4575 4576 4577 4578 4579 4580 4581
				 start_slot, ins_nr, 1, 0);
out:
	btrfs_release_path(path);
	btrfs_free_path(dst_path);
	return ret;
}

J
Josef Bacik 已提交
4582 4583
static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
4584
				     struct btrfs_inode *inode,
4585
				     struct btrfs_path *path,
4586
				     struct btrfs_log_ctx *ctx)
J
Josef Bacik 已提交
4587
{
4588 4589
	struct btrfs_ordered_extent *ordered;
	struct btrfs_ordered_extent *tmp;
J
Josef Bacik 已提交
4590 4591
	struct extent_map *em, *n;
	struct list_head extents;
4592
	struct extent_map_tree *tree = &inode->extent_tree;
J
Josef Bacik 已提交
4593
	int ret = 0;
4594
	int num = 0;
J
Josef Bacik 已提交
4595 4596 4597 4598 4599 4600 4601

	INIT_LIST_HEAD(&extents);

	write_lock(&tree->lock);

	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
		list_del_init(&em->list);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
		/*
		 * Just an arbitrary number, this can be really CPU intensive
		 * once we start getting a lot of extents, and really once we
		 * have a bunch of extents we just want to commit since it will
		 * be faster.
		 */
		if (++num > 32768) {
			list_del_init(&tree->modified_extents);
			ret = -EFBIG;
			goto process;
		}

4614
		if (em->generation < trans->transid)
J
Josef Bacik 已提交
4615
			continue;
4616

4617 4618 4619 4620 4621
		/* We log prealloc extents beyond eof later. */
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
		    em->start >= i_size_read(&inode->vfs_inode))
			continue;

4622
		/* Need a ref to keep it from getting evicted from cache */
4623
		refcount_inc(&em->refs);
4624
		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
J
Josef Bacik 已提交
4625
		list_add_tail(&em->list, &extents);
4626
		num++;
J
Josef Bacik 已提交
4627 4628 4629
	}

	list_sort(NULL, &extents, extent_cmp);
4630
process:
J
Josef Bacik 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639
	while (!list_empty(&extents)) {
		em = list_entry(extents.next, struct extent_map, list);

		list_del_init(&em->list);

		/*
		 * If we had an error we just need to delete everybody from our
		 * private list.
		 */
4640
		if (ret) {
4641
			clear_em_logging(tree, em);
4642
			free_extent_map(em);
J
Josef Bacik 已提交
4643
			continue;
4644 4645 4646
		}

		write_unlock(&tree->lock);
J
Josef Bacik 已提交
4647

4648
		ret = log_one_extent(trans, inode, root, em, path, ctx);
4649
		write_lock(&tree->lock);
4650 4651
		clear_em_logging(tree, em);
		free_extent_map(em);
J
Josef Bacik 已提交
4652
	}
4653 4654
	WARN_ON(!list_empty(&extents));
	write_unlock(&tree->lock);
J
Josef Bacik 已提交
4655 4656

	btrfs_release_path(path);
4657 4658
	if (!ret)
		ret = btrfs_log_prealloc_extents(trans, inode, path);
4659 4660
	if (ret)
		return ret;
4661

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	/*
	 * We have logged all extents successfully, now make sure the commit of
	 * the current transaction waits for the ordered extents to complete
	 * before it commits and wipes out the log trees, otherwise we would
	 * lose data if an ordered extents completes after the transaction
	 * commits and a power failure happens after the transaction commit.
	 */
	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
		list_del_init(&ordered->log_list);
		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);

		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
			spin_lock_irq(&inode->ordered_tree.lock);
			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
				atomic_inc(&trans->transaction->pending_ordered);
			}
			spin_unlock_irq(&inode->ordered_tree.lock);
		}
		btrfs_put_ordered_extent(ordered);
	}

	return 0;
J
Josef Bacik 已提交
4685 4686
}

4687
static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4688 4689 4690 4691 4692
			     struct btrfs_path *path, u64 *size_ret)
{
	struct btrfs_key key;
	int ret;

4693
	key.objectid = btrfs_ino(inode);
4694 4695 4696 4697 4698 4699 4700
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
	if (ret < 0) {
		return ret;
	} else if (ret > 0) {
4701
		*size_ret = 0;
4702 4703 4704 4705 4706 4707
	} else {
		struct btrfs_inode_item *item;

		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
				      struct btrfs_inode_item);
		*size_ret = btrfs_inode_size(path->nodes[0], item);
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
		/*
		 * If the in-memory inode's i_size is smaller then the inode
		 * size stored in the btree, return the inode's i_size, so
		 * that we get a correct inode size after replaying the log
		 * when before a power failure we had a shrinking truncate
		 * followed by addition of a new name (rename / new hard link).
		 * Otherwise return the inode size from the btree, to avoid
		 * data loss when replaying a log due to previously doing a
		 * write that expands the inode's size and logging a new name
		 * immediately after.
		 */
		if (*size_ret > inode->vfs_inode.i_size)
			*size_ret = inode->vfs_inode.i_size;
4721 4722 4723 4724 4725 4726
	}

	btrfs_release_path(path);
	return 0;
}

4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
/*
 * At the moment we always log all xattrs. This is to figure out at log replay
 * time which xattrs must have their deletion replayed. If a xattr is missing
 * in the log tree and exists in the fs/subvol tree, we delete it. This is
 * because if a xattr is deleted, the inode is fsynced and a power failure
 * happens, causing the log to be replayed the next time the fs is mounted,
 * we want the xattr to not exist anymore (same behaviour as other filesystems
 * with a journal, ext3/4, xfs, f2fs, etc).
 */
static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
				struct btrfs_root *root,
4738
				struct btrfs_inode *inode,
4739 4740 4741 4742 4743
				struct btrfs_path *path,
				struct btrfs_path *dst_path)
{
	int ret;
	struct btrfs_key key;
4744
	const u64 ino = btrfs_ino(inode);
4745 4746
	int ins_nr = 0;
	int start_slot = 0;
4747 4748 4749 4750
	bool found_xattrs = false;

	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
		return 0;
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766

	key.objectid = ino;
	key.type = BTRFS_XATTR_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (true) {
		int slot = path->slots[0];
		struct extent_buffer *leaf = path->nodes[0];
		int nritems = btrfs_header_nritems(leaf);

		if (slot >= nritems) {
			if (ins_nr > 0) {
4767
				ret = copy_items(trans, inode, dst_path, path,
4768
						 start_slot, ins_nr, 1, 0);
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
				if (ret < 0)
					return ret;
				ins_nr = 0;
			}
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				return ret;
			else if (ret > 0)
				break;
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
			break;

		if (ins_nr == 0)
			start_slot = slot;
		ins_nr++;
		path->slots[0]++;
4789
		found_xattrs = true;
4790 4791 4792
		cond_resched();
	}
	if (ins_nr > 0) {
4793
		ret = copy_items(trans, inode, dst_path, path,
4794
				 start_slot, ins_nr, 1, 0);
4795 4796 4797 4798
		if (ret < 0)
			return ret;
	}

4799 4800 4801
	if (!found_xattrs)
		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);

4802 4803 4804
	return 0;
}

4805
/*
4806 4807 4808 4809 4810 4811 4812
 * When using the NO_HOLES feature if we punched a hole that causes the
 * deletion of entire leafs or all the extent items of the first leaf (the one
 * that contains the inode item and references) we may end up not processing
 * any extents, because there are no leafs with a generation matching the
 * current transaction that have extent items for our inode. So we need to find
 * if any holes exist and then log them. We also need to log holes after any
 * truncate operation that changes the inode's size.
4813
 */
4814 4815 4816
static int btrfs_log_holes(struct btrfs_trans_handle *trans,
			   struct btrfs_root *root,
			   struct btrfs_inode *inode,
4817
			   struct btrfs_path *path)
4818
{
4819
	struct btrfs_fs_info *fs_info = root->fs_info;
4820
	struct btrfs_key key;
4821 4822
	const u64 ino = btrfs_ino(inode);
	const u64 i_size = i_size_read(&inode->vfs_inode);
4823
	u64 prev_extent_end = 0;
4824
	int ret;
4825

4826
	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4827 4828 4829 4830
		return 0;

	key.objectid = ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
4831
	key.offset = 0;
4832 4833 4834 4835 4836

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

4837 4838
	while (true) {
		struct extent_buffer *leaf = path->nodes[0];
4839

4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				return ret;
			if (ret > 0) {
				ret = 0;
				break;
			}
			leaf = path->nodes[0];
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		/* We have a hole, log it. */
		if (prev_extent_end < key.offset) {
4857
			const u64 hole_len = key.offset - prev_extent_end;
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885

			/*
			 * Release the path to avoid deadlocks with other code
			 * paths that search the root while holding locks on
			 * leafs from the log root.
			 */
			btrfs_release_path(path);
			ret = btrfs_insert_file_extent(trans, root->log_root,
						       ino, prev_extent_end, 0,
						       0, hole_len, 0, hole_len,
						       0, 0, 0);
			if (ret < 0)
				return ret;

			/*
			 * Search for the same key again in the root. Since it's
			 * an extent item and we are holding the inode lock, the
			 * key must still exist. If it doesn't just emit warning
			 * and return an error to fall back to a transaction
			 * commit.
			 */
			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
			if (ret < 0)
				return ret;
			if (WARN_ON(ret > 0))
				return -ENOENT;
			leaf = path->nodes[0];
		}
4886

4887
		prev_extent_end = btrfs_file_extent_end(path);
4888 4889
		path->slots[0]++;
		cond_resched();
4890 4891
	}

4892
	if (prev_extent_end < i_size) {
4893
		u64 hole_len;
4894

4895
		btrfs_release_path(path);
4896
		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4897 4898 4899 4900 4901 4902 4903 4904 4905
		ret = btrfs_insert_file_extent(trans, root->log_root,
					       ino, prev_extent_end, 0, 0,
					       hole_len, 0, hole_len,
					       0, 0, 0);
		if (ret < 0)
			return ret;
	}

	return 0;
4906 4907
}

4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
/*
 * When we are logging a new inode X, check if it doesn't have a reference that
 * matches the reference from some other inode Y created in a past transaction
 * and that was renamed in the current transaction. If we don't do this, then at
 * log replay time we can lose inode Y (and all its files if it's a directory):
 *
 * mkdir /mnt/x
 * echo "hello world" > /mnt/x/foobar
 * sync
 * mv /mnt/x /mnt/y
 * mkdir /mnt/x                 # or touch /mnt/x
 * xfs_io -c fsync /mnt/x
 * <power fail>
 * mount fs, trigger log replay
 *
 * After the log replay procedure, we would lose the first directory and all its
 * files (file foobar).
 * For the case where inode Y is not a directory we simply end up losing it:
 *
 * echo "123" > /mnt/foo
 * sync
 * mv /mnt/foo /mnt/bar
 * echo "abc" > /mnt/foo
 * xfs_io -c fsync /mnt/foo
 * <power fail>
 *
 * We also need this for cases where a snapshot entry is replaced by some other
 * entry (file or directory) otherwise we end up with an unreplayable log due to
 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
 * if it were a regular entry:
 *
 * mkdir /mnt/x
 * btrfs subvolume snapshot /mnt /mnt/x/snap
 * btrfs subvolume delete /mnt/x/snap
 * rmdir /mnt/x
 * mkdir /mnt/x
 * fsync /mnt/x or fsync some new file inside it
 * <power fail>
 *
 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
 * the same transaction.
 */
static int btrfs_check_ref_name_override(struct extent_buffer *eb,
					 const int slot,
					 const struct btrfs_key *key,
4953
					 struct btrfs_inode *inode,
4954
					 u64 *other_ino, u64 *other_parent)
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
{
	int ret;
	struct btrfs_path *search_path;
	char *name = NULL;
	u32 name_len = 0;
	u32 item_size = btrfs_item_size_nr(eb, slot);
	u32 cur_offset = 0;
	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);

	search_path = btrfs_alloc_path();
	if (!search_path)
		return -ENOMEM;
	search_path->search_commit_root = 1;
	search_path->skip_locking = 1;

	while (cur_offset < item_size) {
		u64 parent;
		u32 this_name_len;
		u32 this_len;
		unsigned long name_ptr;
		struct btrfs_dir_item *di;

		if (key->type == BTRFS_INODE_REF_KEY) {
			struct btrfs_inode_ref *iref;

			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
			parent = key->offset;
			this_name_len = btrfs_inode_ref_name_len(eb, iref);
			name_ptr = (unsigned long)(iref + 1);
			this_len = sizeof(*iref) + this_name_len;
		} else {
			struct btrfs_inode_extref *extref;

			extref = (struct btrfs_inode_extref *)(ptr +
							       cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			this_name_len = btrfs_inode_extref_name_len(eb, extref);
			name_ptr = (unsigned long)&extref->name;
			this_len = sizeof(*extref) + this_name_len;
		}

		if (this_name_len > name_len) {
			char *new_name;

			new_name = krealloc(name, this_name_len, GFP_NOFS);
			if (!new_name) {
				ret = -ENOMEM;
				goto out;
			}
			name_len = this_name_len;
			name = new_name;
		}

		read_extent_buffer(eb, name, name_ptr, this_name_len);
5009 5010
		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
				parent, name, this_name_len, 0);
5011
		if (di && !IS_ERR(di)) {
5012 5013 5014 5015 5016
			struct btrfs_key di_key;

			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
						  di, &di_key);
			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5017 5018 5019
				if (di_key.objectid != key->objectid) {
					ret = 1;
					*other_ino = di_key.objectid;
5020
					*other_parent = parent;
5021 5022 5023
				} else {
					ret = 0;
				}
5024 5025 5026
			} else {
				ret = -EAGAIN;
			}
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
			goto out;
		} else if (IS_ERR(di)) {
			ret = PTR_ERR(di);
			goto out;
		}
		btrfs_release_path(search_path);

		cur_offset += this_len;
	}
	ret = 0;
out:
	btrfs_free_path(search_path);
	kfree(name);
	return ret;
}

5043 5044
struct btrfs_ino_list {
	u64 ino;
5045
	u64 parent;
5046 5047 5048 5049 5050 5051 5052
	struct list_head list;
};

static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
				  struct btrfs_root *root,
				  struct btrfs_path *path,
				  struct btrfs_log_ctx *ctx,
5053
				  u64 ino, u64 parent)
5054 5055 5056 5057 5058 5059 5060 5061 5062
{
	struct btrfs_ino_list *ino_elem;
	LIST_HEAD(inode_list);
	int ret = 0;

	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
	if (!ino_elem)
		return -ENOMEM;
	ino_elem->ino = ino;
5063
	ino_elem->parent = parent;
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
	list_add_tail(&ino_elem->list, &inode_list);

	while (!list_empty(&inode_list)) {
		struct btrfs_fs_info *fs_info = root->fs_info;
		struct btrfs_key key;
		struct inode *inode;

		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
					    list);
		ino = ino_elem->ino;
5074
		parent = ino_elem->parent;
5075 5076 5077 5078 5079 5080 5081
		list_del(&ino_elem->list);
		kfree(ino_elem);
		if (ret)
			continue;

		btrfs_release_path(path);

D
David Sterba 已提交
5082
		inode = btrfs_iget(fs_info->sb, ino, root);
5083 5084
		/*
		 * If the other inode that had a conflicting dir entry was
5085 5086
		 * deleted in the current transaction, we need to log its parent
		 * directory.
5087 5088 5089
		 */
		if (IS_ERR(inode)) {
			ret = PTR_ERR(inode);
5090
			if (ret == -ENOENT) {
D
David Sterba 已提交
5091
				inode = btrfs_iget(fs_info->sb, parent, root);
5092 5093 5094 5095 5096 5097
				if (IS_ERR(inode)) {
					ret = PTR_ERR(inode);
				} else {
					ret = btrfs_log_inode(trans, root,
						      BTRFS_I(inode),
						      LOG_OTHER_INODE_ALL,
5098
						      ctx);
5099
					btrfs_add_delayed_iput(inode);
5100 5101
				}
			}
5102 5103
			continue;
		}
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
		/*
		 * If the inode was already logged skip it - otherwise we can
		 * hit an infinite loop. Example:
		 *
		 * From the commit root (previous transaction) we have the
		 * following inodes:
		 *
		 * inode 257 a directory
		 * inode 258 with references "zz" and "zz_link" on inode 257
		 * inode 259 with reference "a" on inode 257
		 *
		 * And in the current (uncommitted) transaction we have:
		 *
		 * inode 257 a directory, unchanged
		 * inode 258 with references "a" and "a2" on inode 257
		 * inode 259 with reference "zz_link" on inode 257
		 * inode 261 with reference "zz" on inode 257
		 *
		 * When logging inode 261 the following infinite loop could
		 * happen if we don't skip already logged inodes:
		 *
		 * - we detect inode 258 as a conflicting inode, with inode 261
		 *   on reference "zz", and log it;
		 *
		 * - we detect inode 259 as a conflicting inode, with inode 258
		 *   on reference "a", and log it;
		 *
		 * - we detect inode 258 as a conflicting inode, with inode 259
		 *   on reference "zz_link", and log it - again! After this we
		 *   repeat the above steps forever.
		 */
		spin_lock(&BTRFS_I(inode)->lock);
		/*
		 * Check the inode's logged_trans only instead of
		 * btrfs_inode_in_log(). This is because the last_log_commit of
5139 5140
		 * the inode is not updated when we only log that it exists (see
		 * btrfs_log_inode()).
5141 5142 5143 5144 5145 5146 5147
		 */
		if (BTRFS_I(inode)->logged_trans == trans->transid) {
			spin_unlock(&BTRFS_I(inode)->lock);
			btrfs_add_delayed_iput(inode);
			continue;
		}
		spin_unlock(&BTRFS_I(inode)->lock);
5148 5149 5150 5151 5152 5153 5154 5155
		/*
		 * We are safe logging the other inode without acquiring its
		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
		 * are safe against concurrent renames of the other inode as
		 * well because during a rename we pin the log and update the
		 * log with the new name before we unpin it.
		 */
		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5156
				      LOG_OTHER_INODE, ctx);
5157
		if (ret) {
5158
			btrfs_add_delayed_iput(inode);
5159 5160 5161 5162 5163 5164 5165 5166
			continue;
		}

		key.objectid = ino;
		key.type = BTRFS_INODE_REF_KEY;
		key.offset = 0;
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0) {
5167
			btrfs_add_delayed_iput(inode);
5168 5169 5170 5171 5172 5173 5174
			continue;
		}

		while (true) {
			struct extent_buffer *leaf = path->nodes[0];
			int slot = path->slots[0];
			u64 other_ino = 0;
5175
			u64 other_parent = 0;
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196

			if (slot >= btrfs_header_nritems(leaf)) {
				ret = btrfs_next_leaf(root, path);
				if (ret < 0) {
					break;
				} else if (ret > 0) {
					ret = 0;
					break;
				}
				continue;
			}

			btrfs_item_key_to_cpu(leaf, &key, slot);
			if (key.objectid != ino ||
			    (key.type != BTRFS_INODE_REF_KEY &&
			     key.type != BTRFS_INODE_EXTREF_KEY)) {
				ret = 0;
				break;
			}

			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5197 5198
					BTRFS_I(inode), &other_ino,
					&other_parent);
5199 5200 5201 5202 5203 5204 5205 5206 5207
			if (ret < 0)
				break;
			if (ret > 0) {
				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
				if (!ino_elem) {
					ret = -ENOMEM;
					break;
				}
				ino_elem->ino = other_ino;
5208
				ino_elem->parent = other_parent;
5209 5210 5211 5212 5213
				list_add_tail(&ino_elem->list, &inode_list);
				ret = 0;
			}
			path->slots[0]++;
		}
5214
		btrfs_add_delayed_iput(inode);
5215 5216 5217 5218 5219
	}

	return ret;
}

5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
				   struct btrfs_inode *inode,
				   struct btrfs_key *min_key,
				   const struct btrfs_key *max_key,
				   struct btrfs_path *path,
				   struct btrfs_path *dst_path,
				   const u64 logged_isize,
				   const bool recursive_logging,
				   const int inode_only,
				   struct btrfs_log_ctx *ctx,
				   bool *need_log_inode_item)
{
	struct btrfs_root *root = inode->root;
	int ins_start_slot = 0;
	int ins_nr = 0;
	int ret;

	while (1) {
		ret = btrfs_search_forward(root, min_key, path, trans->transid);
		if (ret < 0)
			return ret;
		if (ret > 0) {
			ret = 0;
			break;
		}
again:
		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
		if (min_key->objectid != max_key->objectid)
			break;
		if (min_key->type > max_key->type)
			break;

		if (min_key->type == BTRFS_INODE_ITEM_KEY)
			*need_log_inode_item = false;

		if ((min_key->type == BTRFS_INODE_REF_KEY ||
		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
		    inode->generation == trans->transid &&
		    !recursive_logging) {
			u64 other_ino = 0;
			u64 other_parent = 0;

			ret = btrfs_check_ref_name_override(path->nodes[0],
					path->slots[0], min_key, inode,
					&other_ino, &other_parent);
			if (ret < 0) {
				return ret;
5267
			} else if (ret > 0 &&
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
				if (ins_nr > 0) {
					ins_nr++;
				} else {
					ins_nr = 1;
					ins_start_slot = path->slots[0];
				}
				ret = copy_items(trans, inode, dst_path, path,
						 ins_start_slot, ins_nr,
						 inode_only, logged_isize);
				if (ret < 0)
					return ret;
				ins_nr = 0;

				ret = log_conflicting_inodes(trans, root, path,
						ctx, other_ino, other_parent);
				if (ret)
					return ret;
				btrfs_release_path(path);
				goto next_key;
			}
		}

		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
			if (ins_nr == 0)
				goto next_slot;
			ret = copy_items(trans, inode, dst_path, path,
					 ins_start_slot,
					 ins_nr, inode_only, logged_isize);
			if (ret < 0)
				return ret;
			ins_nr = 0;
			goto next_slot;
		}

		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
			ins_nr++;
			goto next_slot;
		} else if (!ins_nr) {
			ins_start_slot = path->slots[0];
			ins_nr = 1;
			goto next_slot;
		}

		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
				 ins_nr, inode_only, logged_isize);
		if (ret < 0)
			return ret;
		ins_nr = 1;
		ins_start_slot = path->slots[0];
next_slot:
		path->slots[0]++;
		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
			btrfs_item_key_to_cpu(path->nodes[0], min_key,
					      path->slots[0]);
			goto again;
		}
		if (ins_nr) {
			ret = copy_items(trans, inode, dst_path, path,
					 ins_start_slot, ins_nr, inode_only,
					 logged_isize);
			if (ret < 0)
				return ret;
			ins_nr = 0;
		}
		btrfs_release_path(path);
next_key:
		if (min_key->offset < (u64)-1) {
			min_key->offset++;
		} else if (min_key->type < max_key->type) {
			min_key->type++;
			min_key->offset = 0;
		} else {
			break;
		}
	}
	if (ins_nr)
		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
				 ins_nr, inode_only, logged_isize);

	return ret;
}

5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
/* log a single inode in the tree log.
 * At least one parent directory for this inode must exist in the tree
 * or be logged already.
 *
 * Any items from this inode changed by the current transaction are copied
 * to the log tree.  An extra reference is taken on any extents in this
 * file, allowing us to avoid a whole pile of corner cases around logging
 * blocks that have been removed from the tree.
 *
 * See LOG_INODE_ALL and related defines for a description of what inode_only
 * does.
 *
 * This handles both files and directories.
 */
5366
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5367
			   struct btrfs_root *root, struct btrfs_inode *inode,
5368
			   int inode_only,
5369
			   struct btrfs_log_ctx *ctx)
5370 5371 5372 5373 5374 5375
{
	struct btrfs_path *path;
	struct btrfs_path *dst_path;
	struct btrfs_key min_key;
	struct btrfs_key max_key;
	struct btrfs_root *log = root->log_root;
5376
	int err = 0;
5377
	int ret = 0;
J
Josef Bacik 已提交
5378
	bool fast_search = false;
5379 5380
	u64 ino = btrfs_ino(inode);
	struct extent_map_tree *em_tree = &inode->extent_tree;
5381
	u64 logged_isize = 0;
5382
	bool need_log_inode_item = true;
5383
	bool xattrs_logged = false;
5384
	bool recursive_logging = false;
5385
	bool inode_item_dropped = true;
5386 5387

	path = btrfs_alloc_path();
5388 5389
	if (!path)
		return -ENOMEM;
5390
	dst_path = btrfs_alloc_path();
5391 5392 5393 5394
	if (!dst_path) {
		btrfs_free_path(path);
		return -ENOMEM;
	}
5395

L
Li Zefan 已提交
5396
	min_key.objectid = ino;
5397 5398 5399
	min_key.type = BTRFS_INODE_ITEM_KEY;
	min_key.offset = 0;

L
Li Zefan 已提交
5400
	max_key.objectid = ino;
5401 5402


J
Josef Bacik 已提交
5403
	/* today the code can only do partial logging of directories */
5404
	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5405
	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5406
		       &inode->runtime_flags) &&
5407
	     inode_only >= LOG_INODE_EXISTS))
5408 5409 5410 5411 5412
		max_key.type = BTRFS_XATTR_ITEM_KEY;
	else
		max_key.type = (u8)-1;
	max_key.offset = (u64)-1;

5413
	/*
5414 5415 5416
	 * Only run delayed items if we are a directory. We want to make sure
	 * all directory indexes hit the fs/subvolume tree so we can find them
	 * and figure out which index ranges have to be logged.
5417
	 */
5418 5419 5420 5421
	if (S_ISDIR(inode->vfs_inode.i_mode)) {
		err = btrfs_commit_inode_delayed_items(trans, inode);
		if (err)
			goto out;
5422 5423
	}

5424 5425 5426 5427 5428 5429
	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
		recursive_logging = true;
		if (inode_only == LOG_OTHER_INODE)
			inode_only = LOG_INODE_EXISTS;
		else
			inode_only = LOG_INODE_ALL;
5430
		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5431
	} else {
5432
		mutex_lock(&inode->log_mutex);
5433
	}
5434

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
	/*
	 * This is for cases where logging a directory could result in losing a
	 * a file after replaying the log. For example, if we move a file from a
	 * directory A to a directory B, then fsync directory A, we have no way
	 * to known the file was moved from A to B, so logging just A would
	 * result in losing the file after a log replay.
	 */
	if (S_ISDIR(inode->vfs_inode.i_mode) &&
	    inode_only == LOG_INODE_ALL &&
	    inode->last_unlink_trans >= trans->transid) {
		btrfs_set_log_full_commit(trans);
		err = 1;
		goto out_unlock;
	}

5450 5451 5452 5453
	/*
	 * a brute force approach to making sure we get the most uptodate
	 * copies of everything.
	 */
5454
	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5455 5456
		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;

5457
		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5458 5459
		if (inode_only == LOG_INODE_EXISTS)
			max_key_type = BTRFS_XATTR_ITEM_KEY;
5460
		ret = drop_inode_items(trans, log, path, inode, max_key_type);
5461
	} else {
5462
		if (inode_only == LOG_INODE_EXISTS && inode_logged(trans, inode)) {
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
			/*
			 * Make sure the new inode item we write to the log has
			 * the same isize as the current one (if it exists).
			 * This is necessary to prevent data loss after log
			 * replay, and also to prevent doing a wrong expanding
			 * truncate - for e.g. create file, write 4K into offset
			 * 0, fsync, write 4K into offset 4096, add hard link,
			 * fsync some other file (to sync log), power fail - if
			 * we use the inode's current i_size, after log replay
			 * we get a 8Kb file, with the last 4Kb extent as a hole
			 * (zeroes), as if an expanding truncate happened,
			 * instead of getting a file of 4Kb only.
			 */
5476
			err = logged_inode_size(log, inode, path, &logged_isize);
5477 5478 5479
			if (err)
				goto out_unlock;
		}
5480
		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5481
			     &inode->runtime_flags)) {
5482
			if (inode_only == LOG_INODE_EXISTS) {
5483
				max_key.type = BTRFS_XATTR_ITEM_KEY;
5484 5485
				ret = drop_inode_items(trans, log, path, inode,
						       max_key.type);
5486 5487
			} else {
				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5488
					  &inode->runtime_flags);
5489
				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5490
					  &inode->runtime_flags);
5491 5492 5493
				if (inode_logged(trans, inode))
					ret = truncate_inode_items(trans, log,
								   inode, 0, 0);
5494
			}
5495
		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5496
					      &inode->runtime_flags) ||
5497
			   inode_only == LOG_INODE_EXISTS) {
5498
			if (inode_only == LOG_INODE_ALL)
5499
				fast_search = true;
5500
			max_key.type = BTRFS_XATTR_ITEM_KEY;
5501 5502
			ret = drop_inode_items(trans, log, path, inode,
					       max_key.type);
5503 5504 5505
		} else {
			if (inode_only == LOG_INODE_ALL)
				fast_search = true;
5506
			inode_item_dropped = false;
5507
			goto log_extents;
J
Josef Bacik 已提交
5508
		}
5509

5510
	}
5511 5512 5513 5514
	if (ret) {
		err = ret;
		goto out_unlock;
	}
5515

5516 5517
	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
				      path, dst_path, logged_isize,
5518 5519
				      recursive_logging, inode_only, ctx,
				      &need_log_inode_item);
5520 5521
	if (err)
		goto out_unlock;
J
Josef Bacik 已提交
5522

5523 5524
	btrfs_release_path(path);
	btrfs_release_path(dst_path);
5525
	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5526 5527
	if (err)
		goto out_unlock;
5528
	xattrs_logged = true;
5529 5530 5531
	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
		btrfs_release_path(path);
		btrfs_release_path(dst_path);
5532
		err = btrfs_log_holes(trans, root, inode, path);
5533 5534 5535
		if (err)
			goto out_unlock;
	}
5536
log_extents:
5537 5538
	btrfs_release_path(path);
	btrfs_release_path(dst_path);
5539
	if (need_log_inode_item) {
5540
		err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
		if (err)
			goto out_unlock;
		/*
		 * If we are doing a fast fsync and the inode was logged before
		 * in this transaction, we don't need to log the xattrs because
		 * they were logged before. If xattrs were added, changed or
		 * deleted since the last time we logged the inode, then we have
		 * already logged them because the inode had the runtime flag
		 * BTRFS_INODE_COPY_EVERYTHING set.
		 */
		if (!xattrs_logged && inode->logged_trans < trans->transid) {
5552 5553
			err = btrfs_log_all_xattrs(trans, root, inode, path,
						   dst_path);
5554 5555
			if (err)
				goto out_unlock;
5556 5557
			btrfs_release_path(path);
		}
5558
	}
J
Josef Bacik 已提交
5559
	if (fast_search) {
5560
		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5561
						ctx);
J
Josef Bacik 已提交
5562 5563 5564 5565
		if (ret) {
			err = ret;
			goto out_unlock;
		}
5566
	} else if (inode_only == LOG_INODE_ALL) {
5567 5568
		struct extent_map *em, *n;

5569
		write_lock(&em_tree->lock);
5570 5571
		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
			list_del_init(&em->list);
5572
		write_unlock(&em_tree->lock);
J
Josef Bacik 已提交
5573 5574
	}

5575 5576 5577
	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
		ret = log_directory_changes(trans, root, inode, path, dst_path,
					ctx);
5578 5579 5580 5581
		if (ret) {
			err = ret;
			goto out_unlock;
		}
5582
	}
5583

5584 5585
	spin_lock(&inode->lock);
	inode->logged_trans = trans->transid;
5586
	/*
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
	 * Don't update last_log_commit if we logged that an inode exists.
	 * We do this for three reasons:
	 *
	 * 1) We might have had buffered writes to this inode that were
	 *    flushed and had their ordered extents completed in this
	 *    transaction, but we did not previously log the inode with
	 *    LOG_INODE_ALL. Later the inode was evicted and after that
	 *    it was loaded again and this LOG_INODE_EXISTS log operation
	 *    happened. We must make sure that if an explicit fsync against
	 *    the inode is performed later, it logs the new extents, an
	 *    updated inode item, etc, and syncs the log. The same logic
	 *    applies to direct IO writes instead of buffered writes.
	 *
	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
	 *    is logged with an i_size of 0 or whatever value was logged
	 *    before. If later the i_size of the inode is increased by a
	 *    truncate operation, the log is synced through an fsync of
	 *    some other inode and then finally an explicit fsync against
	 *    this inode is made, we must make sure this fsync logs the
	 *    inode with the new i_size, the hole between old i_size and
	 *    the new i_size, and syncs the log.
	 *
	 * 3) If we are logging that an ancestor inode exists as part of
	 *    logging a new name from a link or rename operation, don't update
	 *    its last_log_commit - otherwise if an explicit fsync is made
	 *    against an ancestor, the fsync considers the inode in the log
	 *    and doesn't sync the log, resulting in the ancestor missing after
	 *    a power failure unless the log was synced as part of an fsync
	 *    against any other unrelated inode.
5616
	 */
5617 5618 5619
	if (inode_only != LOG_INODE_EXISTS)
		inode->last_log_commit = inode->last_sub_trans;
	spin_unlock(&inode->lock);
5620
out_unlock:
5621
	mutex_unlock(&inode->log_mutex);
5622
out:
5623 5624
	btrfs_free_path(path);
	btrfs_free_path(dst_path);
5625
	return err;
5626 5627
}

5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
/*
 * Check if we need to log an inode. This is used in contexts where while
 * logging an inode we need to log another inode (either that it exists or in
 * full mode). This is used instead of btrfs_inode_in_log() because the later
 * requires the inode to be in the log and have the log transaction committed,
 * while here we do not care if the log transaction was already committed - our
 * caller will commit the log later - and we want to avoid logging an inode
 * multiple times when multiple tasks have joined the same log transaction.
 */
static bool need_log_inode(struct btrfs_trans_handle *trans,
			   struct btrfs_inode *inode)
{
5640 5641 5642 5643 5644 5645 5646
	/*
	 * If a directory was not modified, no dentries added or removed, we can
	 * and should avoid logging it.
	 */
	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
		return false;

5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
	/*
	 * If this inode does not have new/updated/deleted xattrs since the last
	 * time it was logged and is flagged as logged in the current transaction,
	 * we can skip logging it. As for new/deleted names, those are updated in
	 * the log by link/unlink/rename operations.
	 * In case the inode was logged and then evicted and reloaded, its
	 * logged_trans will be 0, in which case we have to fully log it since
	 * logged_trans is a transient field, not persisted.
	 */
	if (inode->logged_trans == trans->transid &&
	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
		return false;

	return true;
}

5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
struct btrfs_dir_list {
	u64 ino;
	struct list_head list;
};

/*
 * Log the inodes of the new dentries of a directory. See log_dir_items() for
 * details about the why it is needed.
 * This is a recursive operation - if an existing dentry corresponds to a
 * directory, that directory's new entries are logged too (same behaviour as
 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
 * the dentries point to we do not lock their i_mutex, otherwise lockdep
 * complains about the following circular lock dependency / possible deadlock:
 *
 *        CPU0                                        CPU1
 *        ----                                        ----
 * lock(&type->i_mutex_dir_key#3/2);
 *                                            lock(sb_internal#2);
 *                                            lock(&type->i_mutex_dir_key#3/2);
 * lock(&sb->s_type->i_mutex_key#14);
 *
 * Where sb_internal is the lock (a counter that works as a lock) acquired by
 * sb_start_intwrite() in btrfs_start_transaction().
 * Not locking i_mutex of the inodes is still safe because:
 *
 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
 *    that while logging the inode new references (names) are added or removed
 *    from the inode, leaving the logged inode item with a link count that does
 *    not match the number of logged inode reference items. This is fine because
 *    at log replay time we compute the real number of links and correct the
 *    link count in the inode item (see replay_one_buffer() and
 *    link_to_fixup_dir());
 *
 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
 *    has a size that doesn't match the sum of the lengths of all the logged
 *    names. This does not result in a problem because if a dir_item key is
 *    logged but its matching dir_index key is not logged, at log replay time we
 *    don't use it to replay the respective name (see replay_one_name()). On the
 *    other hand if only the dir_index key ends up being logged, the respective
 *    name is added to the fs/subvol tree with both the dir_item and dir_index
 *    keys created (see replay_one_name()).
 *    The directory's inode item with a wrong i_size is not a problem as well,
 *    since we don't use it at log replay time to set the i_size in the inode
 *    item of the fs/subvol tree (see overwrite_item()).
 */
static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
				struct btrfs_root *root,
5712
				struct btrfs_inode *start_inode,
5713 5714
				struct btrfs_log_ctx *ctx)
{
5715
	struct btrfs_fs_info *fs_info = root->fs_info;
5716 5717 5718 5719 5720 5721
	struct btrfs_root *log = root->log_root;
	struct btrfs_path *path;
	LIST_HEAD(dir_list);
	struct btrfs_dir_list *dir_elem;
	int ret = 0;

5722 5723 5724 5725 5726 5727 5728 5729
	/*
	 * If we are logging a new name, as part of a link or rename operation,
	 * don't bother logging new dentries, as we just want to log the names
	 * of an inode and that any new parents exist.
	 */
	if (ctx->logging_new_name)
		return 0;

5730 5731 5732 5733 5734 5735 5736 5737 5738
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
	if (!dir_elem) {
		btrfs_free_path(path);
		return -ENOMEM;
	}
5739
	dir_elem->ino = btrfs_ino(start_inode);
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
	list_add_tail(&dir_elem->list, &dir_list);

	while (!list_empty(&dir_list)) {
		struct extent_buffer *leaf;
		struct btrfs_key min_key;
		int nritems;
		int i;

		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
					    list);
		if (ret)
			goto next_dir_inode;

		min_key.objectid = dir_elem->ino;
		min_key.type = BTRFS_DIR_ITEM_KEY;
		min_key.offset = 0;
again:
		btrfs_release_path(path);
		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
		if (ret < 0) {
			goto next_dir_inode;
		} else if (ret > 0) {
			ret = 0;
			goto next_dir_inode;
		}

process_leaf:
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		for (i = path->slots[0]; i < nritems; i++) {
			struct btrfs_dir_item *di;
			struct btrfs_key di_key;
			struct inode *di_inode;
			struct btrfs_dir_list *new_dir_elem;
			int log_mode = LOG_INODE_EXISTS;
			int type;

			btrfs_item_key_to_cpu(leaf, &min_key, i);
			if (min_key.objectid != dir_elem->ino ||
			    min_key.type != BTRFS_DIR_ITEM_KEY)
				goto next_dir_inode;

			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
			type = btrfs_dir_type(leaf, di);
			if (btrfs_dir_transid(leaf, di) < trans->transid &&
			    type != BTRFS_FT_DIR)
				continue;
			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
				continue;

5791
			btrfs_release_path(path);
D
David Sterba 已提交
5792
			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5793 5794 5795 5796 5797
			if (IS_ERR(di_inode)) {
				ret = PTR_ERR(di_inode);
				goto next_dir_inode;
			}

5798
			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5799
				btrfs_add_delayed_iput(di_inode);
5800
				break;
5801 5802 5803
			}

			ctx->log_new_dentries = false;
5804
			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5805
				log_mode = LOG_INODE_ALL;
5806
			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5807
					      log_mode, ctx);
5808
			btrfs_add_delayed_iput(di_inode);
5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
			if (ret)
				goto next_dir_inode;
			if (ctx->log_new_dentries) {
				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
						       GFP_NOFS);
				if (!new_dir_elem) {
					ret = -ENOMEM;
					goto next_dir_inode;
				}
				new_dir_elem->ino = di_key.objectid;
				list_add_tail(&new_dir_elem->list, &dir_list);
			}
			break;
		}
		if (i == nritems) {
			ret = btrfs_next_leaf(log, path);
			if (ret < 0) {
				goto next_dir_inode;
			} else if (ret > 0) {
				ret = 0;
				goto next_dir_inode;
			}
			goto process_leaf;
		}
		if (min_key.offset < (u64)-1) {
			min_key.offset++;
			goto again;
		}
next_dir_inode:
		list_del(&dir_elem->list);
		kfree(dir_elem);
	}

	btrfs_free_path(path);
	return ret;
}

5846
static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5847
				 struct btrfs_inode *inode,
5848 5849
				 struct btrfs_log_ctx *ctx)
{
5850
	struct btrfs_fs_info *fs_info = trans->fs_info;
5851 5852 5853
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
5854 5855
	struct btrfs_root *root = inode->root;
	const u64 ino = btrfs_ino(inode);
5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	path->skip_locking = 1;
	path->search_commit_root = 1;

	key.objectid = ino;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	while (true) {
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];
		u32 cur_offset = 0;
		u32 item_size;
		unsigned long ptr;

		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);
		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
			break;

		item_size = btrfs_item_size_nr(leaf, slot);
		ptr = btrfs_item_ptr_offset(leaf, slot);
		while (cur_offset < item_size) {
			struct btrfs_key inode_key;
			struct inode *dir_inode;

			inode_key.type = BTRFS_INODE_ITEM_KEY;
			inode_key.offset = 0;

			if (key.type == BTRFS_INODE_EXTREF_KEY) {
				struct btrfs_inode_extref *extref;

				extref = (struct btrfs_inode_extref *)
					(ptr + cur_offset);
				inode_key.objectid = btrfs_inode_extref_parent(
					leaf, extref);
				cur_offset += sizeof(*extref);
				cur_offset += btrfs_inode_extref_name_len(leaf,
					extref);
			} else {
				inode_key.objectid = key.offset;
				cur_offset = item_size;
			}

D
David Sterba 已提交
5915 5916
			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
					       root);
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
			/*
			 * If the parent inode was deleted, return an error to
			 * fallback to a transaction commit. This is to prevent
			 * getting an inode that was moved from one parent A to
			 * a parent B, got its former parent A deleted and then
			 * it got fsync'ed, from existing at both parents after
			 * a log replay (and the old parent still existing).
			 * Example:
			 *
			 * mkdir /mnt/A
			 * mkdir /mnt/B
			 * touch /mnt/B/bar
			 * sync
			 * mv /mnt/B/bar /mnt/A/bar
			 * mv -T /mnt/A /mnt/B
			 * fsync /mnt/B/bar
			 * <power fail>
			 *
			 * If we ignore the old parent B which got deleted,
			 * after a log replay we would have file bar linked
			 * at both parents and the old parent B would still
			 * exist.
			 */
			if (IS_ERR(dir_inode)) {
				ret = PTR_ERR(dir_inode);
				goto out;
			}
5944

5945 5946 5947 5948 5949
			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
				btrfs_add_delayed_iput(dir_inode);
				continue;
			}

5950
			ctx->log_new_dentries = false;
5951
			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5952
					      LOG_INODE_ALL, ctx);
5953
			if (!ret && ctx->log_new_dentries)
5954
				ret = log_new_dir_dentries(trans, root,
5955
						   BTRFS_I(dir_inode), ctx);
5956
			btrfs_add_delayed_iput(dir_inode);
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
			if (ret)
				goto out;
		}
		path->slots[0]++;
	}
	ret = 0;
out:
	btrfs_free_path(path);
	return ret;
}

5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
static int log_new_ancestors(struct btrfs_trans_handle *trans,
			     struct btrfs_root *root,
			     struct btrfs_path *path,
			     struct btrfs_log_ctx *ctx)
{
	struct btrfs_key found_key;

	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);

	while (true) {
		struct btrfs_fs_info *fs_info = root->fs_info;
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];
		struct btrfs_key search_key;
		struct inode *inode;
D
David Sterba 已提交
5983
		u64 ino;
5984 5985 5986 5987
		int ret = 0;

		btrfs_release_path(path);

D
David Sterba 已提交
5988 5989
		ino = found_key.offset;

5990 5991 5992
		search_key.objectid = found_key.offset;
		search_key.type = BTRFS_INODE_ITEM_KEY;
		search_key.offset = 0;
D
David Sterba 已提交
5993
		inode = btrfs_iget(fs_info->sb, ino, root);
5994 5995 5996
		if (IS_ERR(inode))
			return PTR_ERR(inode);

5997 5998
		if (BTRFS_I(inode)->generation >= trans->transid &&
		    need_log_inode(trans, BTRFS_I(inode)))
5999
			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
6000
					      LOG_INODE_EXISTS, ctx);
6001
		btrfs_add_delayed_iput(inode);
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051
		if (ret)
			return ret;

		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
			break;

		search_key.type = BTRFS_INODE_REF_KEY;
		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
		if (ret < 0)
			return ret;

		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				return ret;
			else if (ret > 0)
				return -ENOENT;
			leaf = path->nodes[0];
			slot = path->slots[0];
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);
		if (found_key.objectid != search_key.objectid ||
		    found_key.type != BTRFS_INODE_REF_KEY)
			return -ENOENT;
	}
	return 0;
}

static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
				  struct btrfs_inode *inode,
				  struct dentry *parent,
				  struct btrfs_log_ctx *ctx)
{
	struct btrfs_root *root = inode->root;
	struct dentry *old_parent = NULL;
	struct super_block *sb = inode->vfs_inode.i_sb;
	int ret = 0;

	while (true) {
		if (!parent || d_really_is_negative(parent) ||
		    sb != parent->d_sb)
			break;

		inode = BTRFS_I(d_inode(parent));
		if (root != inode->root)
			break;

6052 6053
		if (inode->generation >= trans->transid &&
		    need_log_inode(trans, inode)) {
6054
			ret = btrfs_log_inode(trans, root, inode,
6055
					      LOG_INODE_EXISTS, ctx);
6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
			if (ret)
				break;
		}
		if (IS_ROOT(parent))
			break;

		parent = dget_parent(parent);
		dput(old_parent);
		old_parent = parent;
	}
	dput(old_parent);

	return ret;
}

static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
				 struct btrfs_inode *inode,
				 struct dentry *parent,
				 struct btrfs_log_ctx *ctx)
{
	struct btrfs_root *root = inode->root;
	const u64 ino = btrfs_ino(inode);
	struct btrfs_path *path;
	struct btrfs_key search_key;
	int ret;

	/*
	 * For a single hard link case, go through a fast path that does not
	 * need to iterate the fs/subvolume tree.
	 */
	if (inode->vfs_inode.i_nlink < 2)
		return log_new_ancestors_fast(trans, inode, parent, ctx);

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	search_key.objectid = ino;
	search_key.type = BTRFS_INODE_REF_KEY;
	search_key.offset = 0;
again:
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret == 0)
		path->slots[0]++;

	while (true) {
		struct extent_buffer *leaf = path->nodes[0];
		int slot = path->slots[0];
		struct btrfs_key found_key;

		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);
		if (found_key.objectid != ino ||
		    found_key.type > BTRFS_INODE_EXTREF_KEY)
			break;

		/*
		 * Don't deal with extended references because they are rare
		 * cases and too complex to deal with (we would need to keep
		 * track of which subitem we are processing for each item in
		 * this loop, etc). So just return some error to fallback to
		 * a transaction commit.
		 */
		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
			ret = -EMLINK;
			goto out;
		}

		/*
		 * Logging ancestors needs to do more searches on the fs/subvol
		 * tree, so it releases the path as needed to avoid deadlocks.
		 * Keep track of the last inode ref key and resume from that key
		 * after logging all new ancestors for the current hard link.
		 */
		memcpy(&search_key, &found_key, sizeof(search_key));

		ret = log_new_ancestors(trans, root, path, ctx);
		if (ret)
			goto out;
		btrfs_release_path(path);
		goto again;
	}
	ret = 0;
out:
	btrfs_free_path(path);
	return ret;
}

6154 6155 6156 6157 6158 6159
/*
 * helper function around btrfs_log_inode to make sure newly created
 * parent directories also end up in the log.  A minimal inode and backref
 * only logging is done of any parent directories that are older than
 * the last committed transaction
 */
6160
static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6161
				  struct btrfs_inode *inode,
6162
				  struct dentry *parent,
6163
				  int inode_only,
6164
				  struct btrfs_log_ctx *ctx)
6165
{
6166
	struct btrfs_root *root = inode->root;
6167
	struct btrfs_fs_info *fs_info = root->fs_info;
6168
	int ret = 0;
6169
	bool log_dentries = false;
6170

6171
	if (btrfs_test_opt(fs_info, NOTREELOG)) {
S
Sage Weil 已提交
6172 6173 6174 6175
		ret = 1;
		goto end_no_trans;
	}

6176
	if (btrfs_root_refs(&root->root_item) == 0) {
6177 6178 6179 6180
		ret = 1;
		goto end_no_trans;
	}

6181 6182 6183 6184 6185
	/*
	 * Skip already logged inodes or inodes corresponding to tmpfiles
	 * (since logging them is pointless, a link count of 0 means they
	 * will never be accessible).
	 */
6186 6187
	if ((btrfs_inode_in_log(inode, trans->transid) &&
	     list_empty(&ctx->ordered_extents)) ||
6188
	    inode->vfs_inode.i_nlink == 0) {
6189 6190 6191 6192
		ret = BTRFS_NO_LOG_SYNC;
		goto end_no_trans;
	}

6193
	ret = start_log_trans(trans, root, ctx);
6194
	if (ret)
6195
		goto end_no_trans;
6196

6197
	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6198 6199
	if (ret)
		goto end_trans;
6200

6201 6202 6203 6204 6205 6206
	/*
	 * for regular files, if its inode is already on disk, we don't
	 * have to worry about the parents at all.  This is because
	 * we can use the last_unlink_trans field to record renames
	 * and other fun in this file.
	 */
6207
	if (S_ISREG(inode->vfs_inode.i_mode) &&
6208 6209
	    inode->generation < trans->transid &&
	    inode->last_unlink_trans < trans->transid) {
6210 6211 6212
		ret = 0;
		goto end_trans;
	}
6213

6214
	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
6215 6216
		log_dentries = true;

6217
	/*
6218
	 * On unlink we must make sure all our current and old parent directory
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
	 * inodes are fully logged. This is to prevent leaving dangling
	 * directory index entries in directories that were our parents but are
	 * not anymore. Not doing this results in old parent directory being
	 * impossible to delete after log replay (rmdir will always fail with
	 * error -ENOTEMPTY).
	 *
	 * Example 1:
	 *
	 * mkdir testdir
	 * touch testdir/foo
	 * ln testdir/foo testdir/bar
	 * sync
	 * unlink testdir/bar
	 * xfs_io -c fsync testdir/foo
	 * <power failure>
	 * mount fs, triggers log replay
	 *
	 * If we don't log the parent directory (testdir), after log replay the
	 * directory still has an entry pointing to the file inode using the bar
	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
	 * the file inode has a link count of 1.
	 *
	 * Example 2:
	 *
	 * mkdir testdir
	 * touch foo
	 * ln foo testdir/foo2
	 * ln foo testdir/foo3
	 * sync
	 * unlink testdir/foo3
	 * xfs_io -c fsync foo
	 * <power failure>
	 * mount fs, triggers log replay
	 *
	 * Similar as the first example, after log replay the parent directory
	 * testdir still has an entry pointing to the inode file with name foo3
	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
	 * and has a link count of 2.
	 */
6258
	if (inode->last_unlink_trans >= trans->transid) {
6259
		ret = btrfs_log_all_parents(trans, inode, ctx);
6260 6261 6262 6263
		if (ret)
			goto end_trans;
	}

6264 6265
	ret = log_all_new_ancestors(trans, inode, parent, ctx);
	if (ret)
6266
		goto end_trans;
6267

6268
	if (log_dentries)
6269
		ret = log_new_dir_dentries(trans, root, inode, ctx);
6270 6271
	else
		ret = 0;
6272 6273
end_trans:
	if (ret < 0) {
6274
		btrfs_set_log_full_commit(trans);
6275 6276
		ret = 1;
	}
6277 6278 6279

	if (ret)
		btrfs_remove_log_ctx(root, ctx);
6280 6281 6282
	btrfs_end_log_trans(root);
end_no_trans:
	return ret;
6283 6284 6285 6286 6287 6288 6289 6290 6291
}

/*
 * it is not safe to log dentry if the chunk root has added new
 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
 * If this returns 1, you must commit the transaction to safely get your
 * data on disk.
 */
int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6292
			  struct dentry *dentry,
6293
			  struct btrfs_log_ctx *ctx)
6294
{
6295 6296 6297
	struct dentry *parent = dget_parent(dentry);
	int ret;

6298
	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6299
				     LOG_INODE_ALL, ctx);
6300 6301 6302
	dput(parent);

	return ret;
6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
}

/*
 * should be called during mount to recover any replay any log trees
 * from the FS
 */
int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_trans_handle *trans;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_root *log;
	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
	struct walk_control wc = {
		.process_func = process_one_buffer,
6320
		.stage = LOG_WALK_PIN_ONLY,
6321 6322 6323
	};

	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
6324 6325 6326
	if (!path)
		return -ENOMEM;

6327
	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6328

6329
	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6330 6331 6332 6333
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto error;
	}
6334 6335 6336 6337

	wc.trans = trans;
	wc.pin = 1;

T
Tsutomu Itoh 已提交
6338
	ret = walk_log_tree(trans, log_root_tree, &wc);
6339
	if (ret) {
J
Jeff Mahoney 已提交
6340 6341
		btrfs_handle_fs_error(fs_info, ret,
			"Failed to pin buffers while recovering log root tree.");
6342 6343
		goto error;
	}
6344 6345 6346 6347

again:
	key.objectid = BTRFS_TREE_LOG_OBJECTID;
	key.offset = (u64)-1;
6348
	key.type = BTRFS_ROOT_ITEM_KEY;
6349

C
Chris Mason 已提交
6350
	while (1) {
6351
		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6352 6353

		if (ret < 0) {
6354
			btrfs_handle_fs_error(fs_info, ret,
6355 6356 6357
				    "Couldn't find tree log root.");
			goto error;
		}
6358 6359 6360 6361 6362 6363 6364
		if (ret > 0) {
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		}
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
6365
		btrfs_release_path(path);
6366 6367 6368
		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
			break;

6369
		log = btrfs_read_tree_root(log_root_tree, &found_key);
6370 6371
		if (IS_ERR(log)) {
			ret = PTR_ERR(log);
6372
			btrfs_handle_fs_error(fs_info, ret,
6373 6374 6375
				    "Couldn't read tree log root.");
			goto error;
		}
6376

D
David Sterba 已提交
6377 6378
		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
						   true);
6379 6380
		if (IS_ERR(wc.replay_dest)) {
			ret = PTR_ERR(wc.replay_dest);
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393

			/*
			 * We didn't find the subvol, likely because it was
			 * deleted.  This is ok, simply skip this log and go to
			 * the next one.
			 *
			 * We need to exclude the root because we can't have
			 * other log replays overwriting this log as we'll read
			 * it back in a few more times.  This will keep our
			 * block from being modified, and we'll just bail for
			 * each subsequent pass.
			 */
			if (ret == -ENOENT)
6394
				ret = btrfs_pin_extent_for_log_replay(trans,
6395 6396
							log->node->start,
							log->node->len);
6397
			btrfs_put_root(log);
6398 6399 6400

			if (!ret)
				goto next;
J
Jeff Mahoney 已提交
6401 6402
			btrfs_handle_fs_error(fs_info, ret,
				"Couldn't read target root for tree log recovery.");
6403 6404
			goto error;
		}
6405

Y
Yan Zheng 已提交
6406
		wc.replay_dest->log_root = log;
6407 6408 6409 6410 6411 6412 6413
		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
		if (ret)
			/* The loop needs to continue due to the root refs */
			btrfs_handle_fs_error(fs_info, ret,
				"failed to record the log root in transaction");
		else
			ret = walk_log_tree(trans, log, &wc);
6414

6415
		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6416 6417 6418 6419
			ret = fixup_inode_link_counts(trans, wc.replay_dest,
						      path);
		}

6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
			struct btrfs_root *root = wc.replay_dest;

			btrfs_release_path(path);

			/*
			 * We have just replayed everything, and the highest
			 * objectid of fs roots probably has changed in case
			 * some inode_item's got replayed.
			 *
			 * root->objectid_mutex is not acquired as log replay
			 * could only happen during mount.
			 */
6433
			ret = btrfs_init_root_free_objectid(root);
6434 6435
		}

Y
Yan Zheng 已提交
6436
		wc.replay_dest->log_root = NULL;
6437 6438
		btrfs_put_root(wc.replay_dest);
		btrfs_put_root(log);
6439

6440 6441
		if (ret)
			goto error;
6442
next:
6443 6444
		if (found_key.offset == 0)
			break;
6445
		key.offset = found_key.offset - 1;
6446
	}
6447
	btrfs_release_path(path);
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463

	/* step one is to pin it all, step two is to replay just inodes */
	if (wc.pin) {
		wc.pin = 0;
		wc.process_func = replay_one_buffer;
		wc.stage = LOG_WALK_REPLAY_INODES;
		goto again;
	}
	/* step three is to replay everything */
	if (wc.stage < LOG_WALK_REPLAY_ALL) {
		wc.stage++;
		goto again;
	}

	btrfs_free_path(path);

6464
	/* step 4: commit the transaction, which also unpins the blocks */
6465
	ret = btrfs_commit_transaction(trans);
6466 6467 6468
	if (ret)
		return ret;

6469
	log_root_tree->log_root = NULL;
6470
	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6471
	btrfs_put_root(log_root_tree);
6472

6473
	return 0;
6474
error:
6475
	if (wc.trans)
6476
		btrfs_end_transaction(wc.trans);
6477
	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6478 6479
	btrfs_free_path(path);
	return ret;
6480
}
6481 6482 6483 6484 6485 6486 6487 6488

/*
 * there are some corner cases where we want to force a full
 * commit instead of allowing a directory to be logged.
 *
 * They revolve around files there were unlinked from the directory, and
 * this function updates the parent directory so that a full commit is
 * properly done if it is fsync'd later after the unlinks are done.
6489 6490 6491
 *
 * Must be called before the unlink operations (updates to the subvolume tree,
 * inodes, etc) are done.
6492 6493
 */
void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6494
			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6495 6496
			     int for_rename)
{
6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
	/*
	 * when we're logging a file, if it hasn't been renamed
	 * or unlinked, and its inode is fully committed on disk,
	 * we don't have to worry about walking up the directory chain
	 * to log its parents.
	 *
	 * So, we use the last_unlink_trans field to put this transid
	 * into the file.  When the file is logged we check it and
	 * don't log the parents if the file is fully on disk.
	 */
6507 6508 6509
	mutex_lock(&inode->log_mutex);
	inode->last_unlink_trans = trans->transid;
	mutex_unlock(&inode->log_mutex);
6510

6511 6512 6513 6514
	/*
	 * if this directory was already logged any new
	 * names for this file/dir will get recorded
	 */
6515
	if (dir->logged_trans == trans->transid)
6516 6517 6518 6519 6520 6521
		return;

	/*
	 * if the inode we're about to unlink was logged,
	 * the log will be properly updated for any new names
	 */
6522
	if (inode->logged_trans == trans->transid)
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
		return;

	/*
	 * when renaming files across directories, if the directory
	 * there we're unlinking from gets fsync'd later on, there's
	 * no way to find the destination directory later and fsync it
	 * properly.  So, we have to be conservative and force commits
	 * so the new name gets discovered.
	 */
	if (for_rename)
		goto record;

	/* we can safely do the unlink without any special recording */
	return;

record:
6539 6540 6541
	mutex_lock(&dir->log_mutex);
	dir->last_unlink_trans = trans->transid;
	mutex_unlock(&dir->log_mutex);
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
}

/*
 * Make sure that if someone attempts to fsync the parent directory of a deleted
 * snapshot, it ends up triggering a transaction commit. This is to guarantee
 * that after replaying the log tree of the parent directory's root we will not
 * see the snapshot anymore and at log replay time we will not see any log tree
 * corresponding to the deleted snapshot's root, which could lead to replaying
 * it after replaying the log tree of the parent directory (which would replay
 * the snapshot delete operation).
6552 6553 6554
 *
 * Must be called before the actual snapshot destroy operation (updates to the
 * parent root and tree of tree roots trees, etc) are done.
6555 6556
 */
void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6557
				   struct btrfs_inode *dir)
6558
{
6559 6560 6561
	mutex_lock(&dir->log_mutex);
	dir->last_unlink_trans = trans->transid;
	mutex_unlock(&dir->log_mutex);
6562 6563 6564 6565 6566 6567
}

/*
 * Call this after adding a new name for a file and it will properly
 * update the log to reflect the new name.
 */
6568
void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6569
			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6570
			struct dentry *parent)
6571
{
6572
	struct btrfs_log_ctx ctx;
6573

6574 6575 6576 6577
	/*
	 * this will force the logging code to walk the dentry chain
	 * up for the file
	 */
6578
	if (!S_ISDIR(inode->vfs_inode.i_mode))
6579
		inode->last_unlink_trans = trans->transid;
6580

6581 6582 6583 6584
	/*
	 * if this inode hasn't been logged and directory we're renaming it
	 * from hasn't been logged, we don't need to log it
	 */
6585 6586
	if (!inode_logged(trans, inode) &&
	    (!old_dir || !inode_logged(trans, old_dir)))
6587
		return;
6588

6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606
	/*
	 * If we are doing a rename (old_dir is not NULL) from a directory that
	 * was previously logged, make sure the next log attempt on the directory
	 * is not skipped and logs the inode again. This is because the log may
	 * not currently be authoritative for a range including the old
	 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
	 * sure after a log replay we do not end up with both the new and old
	 * dentries around (in case the inode is a directory we would have a
	 * directory with two hard links and 2 inode references for different
	 * parents). The next log attempt of old_dir will happen at
	 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
	 * below, because we have previously set inode->last_unlink_trans to the
	 * current transaction ID, either here or at btrfs_record_unlink_dir() in
	 * case inode is a directory.
	 */
	if (old_dir)
		old_dir->logged_trans = 0;

6607 6608 6609 6610 6611 6612 6613 6614 6615
	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
	ctx.logging_new_name = true;
	/*
	 * We don't care about the return value. If we fail to log the new name
	 * then we know the next attempt to sync the log will fallback to a full
	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
	 * we don't need to worry about getting a log committed that has an
	 * inconsistent state after a rename operation.
	 */
6616
	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6617 6618
}