ov7670.c 45.9 KB
Newer Older
1 2 3 4 5 6 7
/*
 * A V4L2 driver for OmniVision OV7670 cameras.
 *
 * Copyright 2006 One Laptop Per Child Association, Inc.  Written
 * by Jonathan Corbet with substantial inspiration from Mark
 * McClelland's ovcamchip code.
 *
8 9
 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
 *
10 11 12 13 14
 * This file may be distributed under the terms of the GNU General
 * Public License, version 2.
 */
#include <linux/init.h>
#include <linux/module.h>
15
#include <linux/slab.h>
16
#include <linux/i2c.h>
17
#include <linux/delay.h>
18
#include <linux/videodev2.h>
19
#include <media/v4l2-device.h>
20
#include <media/v4l2-chip-ident.h>
21
#include <media/v4l2-mediabus.h>
22
#include <media/ov7670.h>
23

D
Dave Jones 已提交
24
MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
25 26 27
MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors");
MODULE_LICENSE("GPL");

28
static bool debug;
29 30 31
module_param(debug, bool, 0644);
MODULE_PARM_DESC(debug, "Debug level (0-1)");

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Basic window sizes.  These probably belong somewhere more globally
 * useful.
 */
#define VGA_WIDTH	640
#define VGA_HEIGHT	480
#define QVGA_WIDTH	320
#define QVGA_HEIGHT	240
#define CIF_WIDTH	352
#define CIF_HEIGHT	288
#define QCIF_WIDTH	176
#define	QCIF_HEIGHT	144

/*
 * The 7670 sits on i2c with ID 0x42
 */
#define OV7670_I2C_ADDR 0x42

50 51
#define PLL_FACTOR	4

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/* Registers */
#define REG_GAIN	0x00	/* Gain lower 8 bits (rest in vref) */
#define REG_BLUE	0x01	/* blue gain */
#define REG_RED		0x02	/* red gain */
#define REG_VREF	0x03	/* Pieces of GAIN, VSTART, VSTOP */
#define REG_COM1	0x04	/* Control 1 */
#define  COM1_CCIR656	  0x40  /* CCIR656 enable */
#define REG_BAVE	0x05	/* U/B Average level */
#define REG_GbAVE	0x06	/* Y/Gb Average level */
#define REG_AECHH	0x07	/* AEC MS 5 bits */
#define REG_RAVE	0x08	/* V/R Average level */
#define REG_COM2	0x09	/* Control 2 */
#define  COM2_SSLEEP	  0x10	/* Soft sleep mode */
#define REG_PID		0x0a	/* Product ID MSB */
#define REG_VER		0x0b	/* Product ID LSB */
#define REG_COM3	0x0c	/* Control 3 */
#define  COM3_SWAP	  0x40	  /* Byte swap */
#define  COM3_SCALEEN	  0x08	  /* Enable scaling */
#define  COM3_DCWEN	  0x04	  /* Enable downsamp/crop/window */
#define REG_COM4	0x0d	/* Control 4 */
#define REG_COM5	0x0e	/* All "reserved" */
#define REG_COM6	0x0f	/* Control 6 */
#define REG_AECH	0x10	/* More bits of AEC value */
#define REG_CLKRC	0x11	/* Clocl control */
#define   CLK_EXT	  0x40	  /* Use external clock directly */
#define   CLK_SCALE	  0x3f	  /* Mask for internal clock scale */
#define REG_COM7	0x12	/* Control 7 */
#define   COM7_RESET	  0x80	  /* Register reset */
#define   COM7_FMT_MASK	  0x38
#define   COM7_FMT_VGA	  0x00
#define	  COM7_FMT_CIF	  0x20	  /* CIF format */
#define   COM7_FMT_QVGA	  0x10	  /* QVGA format */
#define   COM7_FMT_QCIF	  0x08	  /* QCIF format */
#define	  COM7_RGB	  0x04	  /* bits 0 and 2 - RGB format */
#define	  COM7_YUV	  0x00	  /* YUV */
#define	  COM7_BAYER	  0x01	  /* Bayer format */
#define	  COM7_PBAYER	  0x05	  /* "Processed bayer" */
#define REG_COM8	0x13	/* Control 8 */
#define   COM8_FASTAEC	  0x80	  /* Enable fast AGC/AEC */
#define   COM8_AECSTEP	  0x40	  /* Unlimited AEC step size */
#define   COM8_BFILT	  0x20	  /* Band filter enable */
#define   COM8_AGC	  0x04	  /* Auto gain enable */
#define   COM8_AWB	  0x02	  /* White balance enable */
#define   COM8_AEC	  0x01	  /* Auto exposure enable */
#define REG_COM9	0x14	/* Control 9  - gain ceiling */
#define REG_COM10	0x15	/* Control 10 */
#define   COM10_HSYNC	  0x40	  /* HSYNC instead of HREF */
#define   COM10_PCLK_HB	  0x20	  /* Suppress PCLK on horiz blank */
#define   COM10_HREF_REV  0x08	  /* Reverse HREF */
#define   COM10_VS_LEAD	  0x04	  /* VSYNC on clock leading edge */
#define   COM10_VS_NEG	  0x02	  /* VSYNC negative */
#define   COM10_HS_NEG	  0x01	  /* HSYNC negative */
#define REG_HSTART	0x17	/* Horiz start high bits */
#define REG_HSTOP	0x18	/* Horiz stop high bits */
#define REG_VSTART	0x19	/* Vert start high bits */
#define REG_VSTOP	0x1a	/* Vert stop high bits */
#define REG_PSHFT	0x1b	/* Pixel delay after HREF */
#define REG_MIDH	0x1c	/* Manuf. ID high */
#define REG_MIDL	0x1d	/* Manuf. ID low */
#define REG_MVFP	0x1e	/* Mirror / vflip */
#define   MVFP_MIRROR	  0x20	  /* Mirror image */
#define   MVFP_FLIP	  0x10	  /* Vertical flip */

#define REG_AEW		0x24	/* AGC upper limit */
#define REG_AEB		0x25	/* AGC lower limit */
#define REG_VPT		0x26	/* AGC/AEC fast mode op region */
#define REG_HSYST	0x30	/* HSYNC rising edge delay */
#define REG_HSYEN	0x31	/* HSYNC falling edge delay */
#define REG_HREF	0x32	/* HREF pieces */
#define REG_TSLB	0x3a	/* lots of stuff */
#define   TSLB_YLAST	  0x04	  /* UYVY or VYUY - see com13 */
#define REG_COM11	0x3b	/* Control 11 */
#define   COM11_NIGHT	  0x80	  /* NIght mode enable */
#define   COM11_NMFR	  0x60	  /* Two bit NM frame rate */
#define   COM11_HZAUTO	  0x10	  /* Auto detect 50/60 Hz */
#define	  COM11_50HZ	  0x08	  /* Manual 50Hz select */
#define   COM11_EXP	  0x02
#define REG_COM12	0x3c	/* Control 12 */
#define   COM12_HREF	  0x80	  /* HREF always */
#define REG_COM13	0x3d	/* Control 13 */
#define   COM13_GAMMA	  0x80	  /* Gamma enable */
#define	  COM13_UVSAT	  0x40	  /* UV saturation auto adjustment */
#define   COM13_UVSWAP	  0x01	  /* V before U - w/TSLB */
#define REG_COM14	0x3e	/* Control 14 */
#define   COM14_DCWEN	  0x10	  /* DCW/PCLK-scale enable */
#define REG_EDGE	0x3f	/* Edge enhancement factor */
#define REG_COM15	0x40	/* Control 15 */
#define   COM15_R10F0	  0x00	  /* Data range 10 to F0 */
#define	  COM15_R01FE	  0x80	  /*            01 to FE */
#define   COM15_R00FF	  0xc0	  /*            00 to FF */
#define   COM15_RGB565	  0x10	  /* RGB565 output */
#define   COM15_RGB555	  0x30	  /* RGB555 output */
#define REG_COM16	0x41	/* Control 16 */
#define   COM16_AWBGAIN   0x08	  /* AWB gain enable */
#define REG_COM17	0x42	/* Control 17 */
#define   COM17_AECWIN	  0xc0	  /* AEC window - must match COM4 */
#define   COM17_CBAR	  0x08	  /* DSP Color bar */

150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * This matrix defines how the colors are generated, must be
 * tweaked to adjust hue and saturation.
 *
 * Order: v-red, v-green, v-blue, u-red, u-green, u-blue
 *
 * They are nine-bit signed quantities, with the sign bit
 * stored in 0x58.  Sign for v-red is bit 0, and up from there.
 */
#define	REG_CMATRIX_BASE 0x4f
#define   CMATRIX_LEN 6
#define REG_CMATRIX_SIGN 0x58


164 165 166 167 168
#define REG_BRIGHT	0x55	/* Brightness */
#define REG_CONTRAS	0x56	/* Contrast control */

#define REG_GFIX	0x69	/* Fix gain control */

169 170 171 172 173 174
#define REG_DBLV	0x6b	/* PLL control an debugging */
#define   DBLV_BYPASS	  0x00	  /* Bypass PLL */
#define   DBLV_X4	  0x01	  /* clock x4 */
#define   DBLV_X6	  0x10	  /* clock x6 */
#define   DBLV_X8	  0x11	  /* clock x8 */

175 176 177 178
#define REG_REG76	0x76	/* OV's name */
#define   R76_BLKPCOR	  0x80	  /* Black pixel correction enable */
#define   R76_WHTPCOR	  0x40	  /* White pixel correction enable */

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
#define REG_RGB444	0x8c	/* RGB 444 control */
#define   R444_ENABLE	  0x02	  /* Turn on RGB444, overrides 5x5 */
#define   R444_RGBX	  0x01	  /* Empty nibble at end */

#define REG_HAECC1	0x9f	/* Hist AEC/AGC control 1 */
#define REG_HAECC2	0xa0	/* Hist AEC/AGC control 2 */

#define REG_BD50MAX	0xa5	/* 50hz banding step limit */
#define REG_HAECC3	0xa6	/* Hist AEC/AGC control 3 */
#define REG_HAECC4	0xa7	/* Hist AEC/AGC control 4 */
#define REG_HAECC5	0xa8	/* Hist AEC/AGC control 5 */
#define REG_HAECC6	0xa9	/* Hist AEC/AGC control 6 */
#define REG_HAECC7	0xaa	/* Hist AEC/AGC control 7 */
#define REG_BD60MAX	0xab	/* 60hz banding step limit */

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
enum ov7670_model {
	MODEL_OV7670 = 0,
	MODEL_OV7675,
};

struct ov7670_win_size {
	int	width;
	int	height;
	unsigned char com7_bit;
	int	hstart;		/* Start/stop values for the camera.  Note */
	int	hstop;		/* that they do not always make complete */
	int	vstart;		/* sense to humans, but evidently the sensor */
	int	vstop;		/* will do the right thing... */
	struct regval_list *regs; /* Regs to tweak */
};

struct ov7670_devtype {
	/* formats supported for each model */
	struct ov7670_win_size *win_sizes;
	unsigned int n_win_sizes;
214 215 216
	/* callbacks for frame rate control */
	int (*set_framerate)(struct v4l2_subdev *, struct v4l2_fract *);
	void (*get_framerate)(struct v4l2_subdev *, struct v4l2_fract *);
217
};
218

219 220 221 222 223
/*
 * Information we maintain about a known sensor.
 */
struct ov7670_format_struct;  /* coming later */
struct ov7670_info {
224
	struct v4l2_subdev sd;
225 226 227
	struct ov7670_format_struct *fmt;  /* Current format */
	unsigned char sat;		/* Saturation value */
	int hue;			/* Hue value */
228 229 230
	int min_width;			/* Filter out smaller sizes */
	int min_height;			/* Filter out smaller sizes */
	int clock_speed;		/* External clock speed (MHz) */
231
	u8 clkrc;			/* Clock divider value */
232
	bool use_smbus;			/* Use smbus I/O instead of I2C */
233
	const struct ov7670_devtype *devtype; /* Device specifics */
234 235
};

236 237 238 239
static inline struct ov7670_info *to_state(struct v4l2_subdev *sd)
{
	return container_of(sd, struct ov7670_info, sd);
}
240 241 242



243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/*
 * The default register settings, as obtained from OmniVision.  There
 * is really no making sense of most of these - lots of "reserved" values
 * and such.
 *
 * These settings give VGA YUYV.
 */

struct regval_list {
	unsigned char reg_num;
	unsigned char value;
};

static struct regval_list ov7670_default_regs[] = {
	{ REG_COM7, COM7_RESET },
/*
 * Clock scale: 3 = 15fps
 *              2 = 20fps
 *              1 = 30fps
 */
263
	{ REG_CLKRC, 0x1 },	/* OV: clock scale (30 fps) */
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	{ REG_TSLB,  0x04 },	/* OV */
	{ REG_COM7, 0 },	/* VGA */
	/*
	 * Set the hardware window.  These values from OV don't entirely
	 * make sense - hstop is less than hstart.  But they work...
	 */
	{ REG_HSTART, 0x13 },	{ REG_HSTOP, 0x01 },
	{ REG_HREF, 0xb6 },	{ REG_VSTART, 0x02 },
	{ REG_VSTOP, 0x7a },	{ REG_VREF, 0x0a },

	{ REG_COM3, 0 },	{ REG_COM14, 0 },
	/* Mystery scaling numbers */
	{ 0x70, 0x3a },		{ 0x71, 0x35 },
	{ 0x72, 0x11 },		{ 0x73, 0xf0 },
	{ 0xa2, 0x02 },		{ REG_COM10, 0x0 },

	/* Gamma curve values */
	{ 0x7a, 0x20 },		{ 0x7b, 0x10 },
	{ 0x7c, 0x1e },		{ 0x7d, 0x35 },
	{ 0x7e, 0x5a },		{ 0x7f, 0x69 },
	{ 0x80, 0x76 },		{ 0x81, 0x80 },
	{ 0x82, 0x88 },		{ 0x83, 0x8f },
	{ 0x84, 0x96 },		{ 0x85, 0xa3 },
	{ 0x86, 0xaf },		{ 0x87, 0xc4 },
	{ 0x88, 0xd7 },		{ 0x89, 0xe8 },

	/* AGC and AEC parameters.  Note we start by disabling those features,
	   then turn them only after tweaking the values. */
	{ REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT },
	{ REG_GAIN, 0 },	{ REG_AECH, 0 },
	{ REG_COM4, 0x40 }, /* magic reserved bit */
	{ REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
	{ REG_BD50MAX, 0x05 },	{ REG_BD60MAX, 0x07 },
	{ REG_AEW, 0x95 },	{ REG_AEB, 0x33 },
	{ REG_VPT, 0xe3 },	{ REG_HAECC1, 0x78 },
	{ REG_HAECC2, 0x68 },	{ 0xa1, 0x03 }, /* magic */
	{ REG_HAECC3, 0xd8 },	{ REG_HAECC4, 0xd8 },
	{ REG_HAECC5, 0xf0 },	{ REG_HAECC6, 0x90 },
	{ REG_HAECC7, 0x94 },
	{ REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC },

	/* Almost all of these are magic "reserved" values.  */
	{ REG_COM5, 0x61 },	{ REG_COM6, 0x4b },
307
	{ 0x16, 0x02 },		{ REG_MVFP, 0x07 },
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	{ 0x21, 0x02 },		{ 0x22, 0x91 },
	{ 0x29, 0x07 },		{ 0x33, 0x0b },
	{ 0x35, 0x0b },		{ 0x37, 0x1d },
	{ 0x38, 0x71 },		{ 0x39, 0x2a },
	{ REG_COM12, 0x78 },	{ 0x4d, 0x40 },
	{ 0x4e, 0x20 },		{ REG_GFIX, 0 },
	{ 0x6b, 0x4a },		{ 0x74, 0x10 },
	{ 0x8d, 0x4f },		{ 0x8e, 0 },
	{ 0x8f, 0 },		{ 0x90, 0 },
	{ 0x91, 0 },		{ 0x96, 0 },
	{ 0x9a, 0 },		{ 0xb0, 0x84 },
	{ 0xb1, 0x0c },		{ 0xb2, 0x0e },
	{ 0xb3, 0x82 },		{ 0xb8, 0x0a },

	/* More reserved magic, some of which tweaks white balance */
	{ 0x43, 0x0a },		{ 0x44, 0xf0 },
	{ 0x45, 0x34 },		{ 0x46, 0x58 },
	{ 0x47, 0x28 },		{ 0x48, 0x3a },
	{ 0x59, 0x88 },		{ 0x5a, 0x88 },
	{ 0x5b, 0x44 },		{ 0x5c, 0x67 },
	{ 0x5d, 0x49 },		{ 0x5e, 0x0e },
	{ 0x6c, 0x0a },		{ 0x6d, 0x55 },
	{ 0x6e, 0x11 },		{ 0x6f, 0x9f }, /* "9e for advance AWB" */
	{ 0x6a, 0x40 },		{ REG_BLUE, 0x40 },
	{ REG_RED, 0x60 },
	{ REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB },

	/* Matrix coefficients */
	{ 0x4f, 0x80 },		{ 0x50, 0x80 },
	{ 0x51, 0 },		{ 0x52, 0x22 },
	{ 0x53, 0x5e },		{ 0x54, 0x80 },
	{ 0x58, 0x9e },

	{ REG_COM16, COM16_AWBGAIN },	{ REG_EDGE, 0 },
	{ 0x75, 0x05 },		{ 0x76, 0xe1 },
	{ 0x4c, 0 },		{ 0x77, 0x01 },
	{ REG_COM13, 0xc3 },	{ 0x4b, 0x09 },
	{ 0xc9, 0x60 },		{ REG_COM16, 0x38 },
	{ 0x56, 0x40 },

348
	{ 0x34, 0x11 },		{ REG_COM11, COM11_EXP|COM11_HZAUTO },
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	{ 0xa4, 0x88 },		{ 0x96, 0 },
	{ 0x97, 0x30 },		{ 0x98, 0x20 },
	{ 0x99, 0x30 },		{ 0x9a, 0x84 },
	{ 0x9b, 0x29 },		{ 0x9c, 0x03 },
	{ 0x9d, 0x4c },		{ 0x9e, 0x3f },
	{ 0x78, 0x04 },

	/* Extra-weird stuff.  Some sort of multiplexor register */
	{ 0x79, 0x01 },		{ 0xc8, 0xf0 },
	{ 0x79, 0x0f },		{ 0xc8, 0x00 },
	{ 0x79, 0x10 },		{ 0xc8, 0x7e },
	{ 0x79, 0x0a },		{ 0xc8, 0x80 },
	{ 0x79, 0x0b },		{ 0xc8, 0x01 },
	{ 0x79, 0x0c },		{ 0xc8, 0x0f },
	{ 0x79, 0x0d },		{ 0xc8, 0x20 },
	{ 0x79, 0x09 },		{ 0xc8, 0x80 },
	{ 0x79, 0x02 },		{ 0xc8, 0xc0 },
	{ 0x79, 0x03 },		{ 0xc8, 0x40 },
	{ 0x79, 0x05 },		{ 0xc8, 0x30 },
	{ 0x79, 0x26 },

	{ 0xff, 0xff },	/* END MARKER */
};


/*
 * Here we'll try to encapsulate the changes for just the output
 * video format.
 *
 * RGB656 and YUV422 come from OV; RGB444 is homebrewed.
 *
 * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why.
 */


static struct regval_list ov7670_fmt_yuv422[] = {
	{ REG_COM7, 0x0 },  /* Selects YUV mode */
	{ REG_RGB444, 0 },	/* No RGB444 please */
387
	{ REG_COM1, 0 },	/* CCIR601 */
388
	{ REG_COM15, COM15_R00FF },
389
	{ REG_COM9, 0x48 }, /* 32x gain ceiling; 0x8 is reserved bit */
390 391
	{ 0x4f, 0x80 }, 	/* "matrix coefficient 1" */
	{ 0x50, 0x80 }, 	/* "matrix coefficient 2" */
392
	{ 0x51, 0    },		/* vb */
393 394 395 396 397 398 399 400 401 402
	{ 0x52, 0x22 }, 	/* "matrix coefficient 4" */
	{ 0x53, 0x5e }, 	/* "matrix coefficient 5" */
	{ 0x54, 0x80 }, 	/* "matrix coefficient 6" */
	{ REG_COM13, COM13_GAMMA|COM13_UVSAT },
	{ 0xff, 0xff },
};

static struct regval_list ov7670_fmt_rgb565[] = {
	{ REG_COM7, COM7_RGB },	/* Selects RGB mode */
	{ REG_RGB444, 0 },	/* No RGB444 please */
403
	{ REG_COM1, 0x0 },	/* CCIR601 */
404 405 406 407
	{ REG_COM15, COM15_RGB565 },
	{ REG_COM9, 0x38 }, 	/* 16x gain ceiling; 0x8 is reserved bit */
	{ 0x4f, 0xb3 }, 	/* "matrix coefficient 1" */
	{ 0x50, 0xb3 }, 	/* "matrix coefficient 2" */
408
	{ 0x51, 0    },		/* vb */
409 410 411 412 413 414 415 416 417 418
	{ 0x52, 0x3d }, 	/* "matrix coefficient 4" */
	{ 0x53, 0xa7 }, 	/* "matrix coefficient 5" */
	{ 0x54, 0xe4 }, 	/* "matrix coefficient 6" */
	{ REG_COM13, COM13_GAMMA|COM13_UVSAT },
	{ 0xff, 0xff },
};

static struct regval_list ov7670_fmt_rgb444[] = {
	{ REG_COM7, COM7_RGB },	/* Selects RGB mode */
	{ REG_RGB444, R444_ENABLE },	/* Enable xxxxrrrr ggggbbbb */
419
	{ REG_COM1, 0x0 },	/* CCIR601 */
420 421 422 423
	{ REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */
	{ REG_COM9, 0x38 }, 	/* 16x gain ceiling; 0x8 is reserved bit */
	{ 0x4f, 0xb3 }, 	/* "matrix coefficient 1" */
	{ 0x50, 0xb3 }, 	/* "matrix coefficient 2" */
424
	{ 0x51, 0    },		/* vb */
425 426 427 428 429 430 431
	{ 0x52, 0x3d }, 	/* "matrix coefficient 4" */
	{ 0x53, 0xa7 }, 	/* "matrix coefficient 5" */
	{ 0x54, 0xe4 }, 	/* "matrix coefficient 6" */
	{ REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 },  /* Magic rsvd bit */
	{ 0xff, 0xff },
};

432 433 434 435 436 437 438
static struct regval_list ov7670_fmt_raw[] = {
	{ REG_COM7, COM7_BAYER },
	{ REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */
	{ REG_COM16, 0x3d }, /* Edge enhancement, denoise */
	{ REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */
	{ 0xff, 0xff },
};
439 440 441 442 443



/*
 * Low-level register I/O.
444 445 446 447 448 449
 *
 * Note that there are two versions of these.  On the XO 1, the
 * i2c controller only does SMBUS, so that's what we use.  The
 * ov7670 is not really an SMBUS device, though, so the communication
 * is not always entirely reliable.
 */
450
static int ov7670_read_smbus(struct v4l2_subdev *sd, unsigned char reg,
451 452 453 454 455 456 457 458 459 460 461 462 463 464
		unsigned char *value)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret;

	ret = i2c_smbus_read_byte_data(client, reg);
	if (ret >= 0) {
		*value = (unsigned char)ret;
		ret = 0;
	}
	return ret;
}


465
static int ov7670_write_smbus(struct v4l2_subdev *sd, unsigned char reg,
466 467 468 469 470 471 472 473 474 475 476 477
		unsigned char value)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret = i2c_smbus_write_byte_data(client, reg, value);

	if (reg == REG_COM7 && (value & COM7_RESET))
		msleep(5);  /* Wait for reset to run */
	return ret;
}

/*
 * On most platforms, we'd rather do straight i2c I/O.
478
 */
479
static int ov7670_read_i2c(struct v4l2_subdev *sd, unsigned char reg,
480 481
		unsigned char *value)
{
482
	struct i2c_client *client = v4l2_get_subdevdata(sd);
483 484
	u8 data = reg;
	struct i2c_msg msg;
485 486
	int ret;

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	/*
	 * Send out the register address...
	 */
	msg.addr = client->addr;
	msg.flags = 0;
	msg.len = 1;
	msg.buf = &data;
	ret = i2c_transfer(client->adapter, &msg, 1);
	if (ret < 0) {
		printk(KERN_ERR "Error %d on register write\n", ret);
		return ret;
	}
	/*
	 * ...then read back the result.
	 */
	msg.flags = I2C_M_RD;
	ret = i2c_transfer(client->adapter, &msg, 1);
504
	if (ret >= 0) {
505
		*value = data;
506 507
		ret = 0;
	}
508 509 510 511
	return ret;
}


512
static int ov7670_write_i2c(struct v4l2_subdev *sd, unsigned char reg,
513 514
		unsigned char value)
{
515
	struct i2c_client *client = v4l2_get_subdevdata(sd);
516 517 518
	struct i2c_msg msg;
	unsigned char data[2] = { reg, value };
	int ret;
519

520 521 522 523 524 525 526
	msg.addr = client->addr;
	msg.flags = 0;
	msg.len = 2;
	msg.buf = data;
	ret = i2c_transfer(client->adapter, &msg, 1);
	if (ret > 0)
		ret = 0;
527
	if (reg == REG_COM7 && (value & COM7_RESET))
528
		msleep(5);  /* Wait for reset to run */
529
	return ret;
530 531
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
		unsigned char *value)
{
	struct ov7670_info *info = to_state(sd);
	if (info->use_smbus)
		return ov7670_read_smbus(sd, reg, value);
	else
		return ov7670_read_i2c(sd, reg, value);
}

static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
		unsigned char value)
{
	struct ov7670_info *info = to_state(sd);
	if (info->use_smbus)
		return ov7670_write_smbus(sd, reg, value);
	else
		return ov7670_write_i2c(sd, reg, value);
}
551 552 553 554

/*
 * Write a list of register settings; ff/ff stops the process.
 */
555
static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals)
556 557
{
	while (vals->reg_num != 0xff || vals->value != 0xff) {
558
		int ret = ov7670_write(sd, vals->reg_num, vals->value);
559 560 561 562 563 564 565 566 567 568 569
		if (ret < 0)
			return ret;
		vals++;
	}
	return 0;
}


/*
 * Stuff that knows about the sensor.
 */
570
static int ov7670_reset(struct v4l2_subdev *sd, u32 val)
571
{
572
	ov7670_write(sd, REG_COM7, COM7_RESET);
573
	msleep(1);
574
	return 0;
575 576 577
}


578
static int ov7670_init(struct v4l2_subdev *sd, u32 val)
579
{
580
	return ov7670_write_array(sd, ov7670_default_regs);
581 582 583 584
}



585
static int ov7670_detect(struct v4l2_subdev *sd)
586 587 588 589
{
	unsigned char v;
	int ret;

590
	ret = ov7670_init(sd, 0);
591 592
	if (ret < 0)
		return ret;
593
	ret = ov7670_read(sd, REG_MIDH, &v);
594 595 596 597
	if (ret < 0)
		return ret;
	if (v != 0x7f) /* OV manuf. id. */
		return -ENODEV;
598
	ret = ov7670_read(sd, REG_MIDL, &v);
599 600 601 602 603 604 605
	if (ret < 0)
		return ret;
	if (v != 0xa2)
		return -ENODEV;
	/*
	 * OK, we know we have an OmniVision chip...but which one?
	 */
606
	ret = ov7670_read(sd, REG_PID, &v);
607 608 609 610
	if (ret < 0)
		return ret;
	if (v != 0x76)  /* PID + VER = 0x76 / 0x73 */
		return -ENODEV;
611
	ret = ov7670_read(sd, REG_VER, &v);
612 613 614 615 616 617 618 619
	if (ret < 0)
		return ret;
	if (v != 0x73)  /* PID + VER = 0x76 / 0x73 */
		return -ENODEV;
	return 0;
}


620 621 622
/*
 * Store information about the video data format.  The color matrix
 * is deeply tied into the format, so keep the relevant values here.
623
 * The magic matrix numbers come from OmniVision.
624
 */
625
static struct ov7670_format_struct {
626 627
	enum v4l2_mbus_pixelcode mbus_code;
	enum v4l2_colorspace colorspace;
628
	struct regval_list *regs;
629
	int cmatrix[CMATRIX_LEN];
630 631
} ov7670_formats[] = {
	{
632 633
		.mbus_code	= V4L2_MBUS_FMT_YUYV8_2X8,
		.colorspace	= V4L2_COLORSPACE_JPEG,
634
		.regs 		= ov7670_fmt_yuv422,
635
		.cmatrix	= { 128, -128, 0, -34, -94, 128 },
636 637
	},
	{
638 639
		.mbus_code	= V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
		.colorspace	= V4L2_COLORSPACE_SRGB,
640
		.regs		= ov7670_fmt_rgb444,
641
		.cmatrix	= { 179, -179, 0, -61, -176, 228 },
642 643
	},
	{
644 645
		.mbus_code	= V4L2_MBUS_FMT_RGB565_2X8_LE,
		.colorspace	= V4L2_COLORSPACE_SRGB,
646
		.regs		= ov7670_fmt_rgb565,
647
		.cmatrix	= { 179, -179, 0, -61, -176, 228 },
648 649
	},
	{
650 651
		.mbus_code	= V4L2_MBUS_FMT_SBGGR8_1X8,
		.colorspace	= V4L2_COLORSPACE_SRGB,
652 653
		.regs 		= ov7670_fmt_raw,
		.cmatrix	= { 0, 0, 0, 0, 0, 0 },
654 655
	},
};
656
#define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats)
657 658 659 660 661


/*
 * Then there is the issue of window sizes.  Try to capture the info here.
 */
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687

/*
 * QCIF mode is done (by OV) in a very strange way - it actually looks like
 * VGA with weird scaling options - they do *not* use the canned QCIF mode
 * which is allegedly provided by the sensor.  So here's the weird register
 * settings.
 */
static struct regval_list ov7670_qcif_regs[] = {
	{ REG_COM3, COM3_SCALEEN|COM3_DCWEN },
	{ REG_COM3, COM3_DCWEN },
	{ REG_COM14, COM14_DCWEN | 0x01},
	{ 0x73, 0xf1 },
	{ 0xa2, 0x52 },
	{ 0x7b, 0x1c },
	{ 0x7c, 0x28 },
	{ 0x7d, 0x3c },
	{ 0x7f, 0x69 },
	{ REG_COM9, 0x38 },
	{ 0xa1, 0x0b },
	{ 0x74, 0x19 },
	{ 0x9a, 0x80 },
	{ 0x43, 0x14 },
	{ REG_COM13, 0xc0 },
	{ 0xff, 0xff },
};

688
static struct ov7670_win_size ov7670_win_sizes[] = {
689 690 691 692 693
	/* VGA */
	{
		.width		= VGA_WIDTH,
		.height		= VGA_HEIGHT,
		.com7_bit	= COM7_FMT_VGA,
694 695
		.hstart		= 158,	/* These values from */
		.hstop		=  14,	/* Omnivision */
696 697
		.vstart		=  10,
		.vstop		= 490,
698
		.regs		= NULL,
699 700 701 702 703 704
	},
	/* CIF */
	{
		.width		= CIF_WIDTH,
		.height		= CIF_HEIGHT,
		.com7_bit	= COM7_FMT_CIF,
705
		.hstart		= 170,	/* Empirically determined */
706 707 708
		.hstop		=  90,
		.vstart		=  14,
		.vstop		= 494,
709
		.regs		= NULL,
710 711 712 713 714 715
	},
	/* QVGA */
	{
		.width		= QVGA_WIDTH,
		.height		= QVGA_HEIGHT,
		.com7_bit	= COM7_FMT_QVGA,
716
		.hstart		= 168,	/* Empirically determined */
717 718 719
		.hstop		=  24,
		.vstart		=  12,
		.vstop		= 492,
720
		.regs		= NULL,
721 722 723 724 725 726
	},
	/* QCIF */
	{
		.width		= QCIF_WIDTH,
		.height		= QCIF_HEIGHT,
		.com7_bit	= COM7_FMT_VGA, /* see comment above */
727
		.hstart		= 456,	/* Empirically determined */
728 729 730
		.hstop		=  24,
		.vstart		=  14,
		.vstop		= 494,
731 732
		.regs		= ov7670_qcif_regs,
	}
733 734
};

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
static struct ov7670_win_size ov7675_win_sizes[] = {
	/*
	 * Currently, only VGA is supported. Theoretically it could be possible
	 * to support CIF, QVGA and QCIF too. Taking values for ov7670 as a
	 * base and tweak them empirically could be required.
	 */
	{
		.width		= VGA_WIDTH,
		.height		= VGA_HEIGHT,
		.com7_bit	= COM7_FMT_VGA,
		.hstart		= 158,	/* These values from */
		.hstop		=  14,	/* Omnivision */
		.vstart		=  14,  /* Empirically determined */
		.vstop		= 494,
		.regs		= NULL,
	}
};
752

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static void ov7675_get_framerate(struct v4l2_subdev *sd,
				 struct v4l2_fract *tpf)
{
	struct ov7670_info *info = to_state(sd);
	u32 clkrc = info->clkrc;
	u32 pll_factor = PLL_FACTOR;

	clkrc++;
	if (info->fmt->mbus_code == V4L2_MBUS_FMT_SBGGR8_1X8)
		clkrc = (clkrc >> 1);

	tpf->numerator = 1;
	tpf->denominator = (5 * pll_factor * info->clock_speed) /
			(4 * clkrc);
}

static int ov7675_set_framerate(struct v4l2_subdev *sd,
				 struct v4l2_fract *tpf)
{
	struct ov7670_info *info = to_state(sd);
	u32 clkrc;
	u32 pll_factor = PLL_FACTOR;
	int ret;

	/*
	 * The formula is fps = 5/4*pixclk for YUV/RGB and
	 * fps = 5/2*pixclk for RAW.
	 *
	 * pixclk = clock_speed / (clkrc + 1) * PLLfactor
	 *
	 */
	if (tpf->numerator == 0 || tpf->denominator == 0) {
		clkrc = 0;
	} else {
		clkrc = (5 * pll_factor * info->clock_speed * tpf->numerator) /
			(4 * tpf->denominator);
		if (info->fmt->mbus_code == V4L2_MBUS_FMT_SBGGR8_1X8)
			clkrc = (clkrc << 1);
		clkrc--;
	}

	/*
	 * The datasheet claims that clkrc = 0 will divide the input clock by 1
	 * but we've checked with an oscilloscope that it divides by 2 instead.
	 * So, if clkrc = 0 just bypass the divider.
	 */
	if (clkrc <= 0)
		clkrc = CLK_EXT;
	else if (clkrc > CLK_SCALE)
		clkrc = CLK_SCALE;
	info->clkrc = clkrc;

	/* Recalculate frame rate */
	ov7675_get_framerate(sd, tpf);

	ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
	if (ret < 0)
		return ret;
	return ov7670_write(sd, REG_DBLV, DBLV_X4);
}

static void ov7670_get_framerate_legacy(struct v4l2_subdev *sd,
				 struct v4l2_fract *tpf)
{
	struct ov7670_info *info = to_state(sd);

	tpf->numerator = 1;
	tpf->denominator = info->clock_speed;
	if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1)
		tpf->denominator /= (info->clkrc & CLK_SCALE);
}

static int ov7670_set_framerate_legacy(struct v4l2_subdev *sd,
					struct v4l2_fract *tpf)
{
	struct ov7670_info *info = to_state(sd);
	int div;

	if (tpf->numerator == 0 || tpf->denominator == 0)
		div = 1;  /* Reset to full rate */
	else
		div = (tpf->numerator * info->clock_speed) / tpf->denominator;
	if (div == 0)
		div = 1;
	else if (div > CLK_SCALE)
		div = CLK_SCALE;
	info->clkrc = (info->clkrc & 0x80) | div;
	tpf->numerator = 1;
	tpf->denominator = info->clock_speed / div;
	return ov7670_write(sd, REG_CLKRC, info->clkrc);
}

845 846 847
/*
 * Store a set of start/stop values into the camera.
 */
848
static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop,
849 850 851 852 853 854 855 856 857
		int vstart, int vstop)
{
	int ret;
	unsigned char v;
/*
 * Horizontal: 11 bits, top 8 live in hstart and hstop.  Bottom 3 of
 * hstart are in href[2:0], bottom 3 of hstop in href[5:3].  There is
 * a mystery "edge offset" value in the top two bits of href.
 */
858 859 860
	ret =  ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff);
	ret += ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff);
	ret += ov7670_read(sd, REG_HREF, &v);
861 862
	v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7);
	msleep(10);
863
	ret += ov7670_write(sd, REG_HREF, v);
864 865 866
/*
 * Vertical: similar arrangement, but only 10 bits.
 */
867 868 869
	ret += ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff);
	ret += ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff);
	ret += ov7670_read(sd, REG_VREF, &v);
870 871
	v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3);
	msleep(10);
872
	ret += ov7670_write(sd, REG_VREF, v);
873 874 875 876
	return ret;
}


877 878 879 880 881 882 883 884 885
static int ov7670_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index,
					enum v4l2_mbus_pixelcode *code)
{
	if (index >= N_OV7670_FMTS)
		return -EINVAL;

	*code = ov7670_formats[index].mbus_code;
	return 0;
}
886

887
static int ov7670_try_fmt_internal(struct v4l2_subdev *sd,
888
		struct v4l2_mbus_framefmt *fmt,
889 890 891
		struct ov7670_format_struct **ret_fmt,
		struct ov7670_win_size **ret_wsize)
{
892
	int index, i;
893
	struct ov7670_win_size *wsize;
894 895
	struct ov7670_info *info = to_state(sd);
	unsigned int n_win_sizes = info->devtype->n_win_sizes;
896
	unsigned int win_sizes_limit = n_win_sizes;
897 898

	for (index = 0; index < N_OV7670_FMTS; index++)
899
		if (ov7670_formats[index].mbus_code == fmt->code)
900
			break;
901 902 903
	if (index >= N_OV7670_FMTS) {
		/* default to first format */
		index = 0;
904
		fmt->code = ov7670_formats[0].mbus_code;
905
	}
906 907 908 909 910
	if (ret_fmt != NULL)
		*ret_fmt = ov7670_formats + index;
	/*
	 * Fields: the OV devices claim to be progressive.
	 */
911
	fmt->field = V4L2_FIELD_NONE;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

	/*
	 * Don't consider values that don't match min_height and min_width
	 * constraints.
	 */
	if (info->min_width || info->min_height)
		for (i = 0; i < n_win_sizes; i++) {
			wsize = info->devtype->win_sizes + i;

			if (wsize->width < info->min_width ||
				wsize->height < info->min_height) {
				win_sizes_limit = i;
				break;
			}
		}
927 928 929 930
	/*
	 * Round requested image size down to the nearest
	 * we support, but not below the smallest.
	 */
931
	for (wsize = info->devtype->win_sizes;
932
	     wsize < info->devtype->win_sizes + win_sizes_limit; wsize++)
933
		if (fmt->width >= wsize->width && fmt->height >= wsize->height)
934
			break;
935
	if (wsize >= info->devtype->win_sizes + win_sizes_limit)
936 937 938 939 940 941
		wsize--;   /* Take the smallest one */
	if (ret_wsize != NULL)
		*ret_wsize = wsize;
	/*
	 * Note the size we'll actually handle.
	 */
942 943 944
	fmt->width = wsize->width;
	fmt->height = wsize->height;
	fmt->colorspace = ov7670_formats[index].colorspace;
945 946 947
	return 0;
}

948 949
static int ov7670_try_mbus_fmt(struct v4l2_subdev *sd,
			    struct v4l2_mbus_framefmt *fmt)
950 951 952 953
{
	return ov7670_try_fmt_internal(sd, fmt, NULL, NULL);
}

954 955 956
/*
 * Set a format.
 */
957 958
static int ov7670_s_mbus_fmt(struct v4l2_subdev *sd,
			  struct v4l2_mbus_framefmt *fmt)
959 960 961
{
	struct ov7670_format_struct *ovfmt;
	struct ov7670_win_size *wsize;
962
	struct ov7670_info *info = to_state(sd);
963
	unsigned char com7;
964
	int ret;
965

966
	ret = ov7670_try_fmt_internal(sd, fmt, &ovfmt, &wsize);
967

968 969 970 971 972 973 974 975 976 977
	if (ret)
		return ret;
	/*
	 * COM7 is a pain in the ass, it doesn't like to be read then
	 * quickly written afterward.  But we have everything we need
	 * to set it absolutely here, as long as the format-specific
	 * register sets list it first.
	 */
	com7 = ovfmt->regs[0].value;
	com7 |= wsize->com7_bit;
978
	ov7670_write(sd, REG_COM7, com7);
979 980 981
	/*
	 * Now write the rest of the array.  Also store start/stops
	 */
982 983
	ov7670_write_array(sd, ovfmt->regs + 1);
	ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart,
984
			wsize->vstop);
985 986
	ret = 0;
	if (wsize->regs)
987
		ret = ov7670_write_array(sd, wsize->regs);
988
	info->fmt = ovfmt;
989

990 991 992 993 994
	/*
	 * If we're running RGB565, we must rewrite clkrc after setting
	 * the other parameters or the image looks poor.  If we're *not*
	 * doing RGB565, we must not rewrite clkrc or the image looks
	 * *really* poor.
995 996 997 998
	 *
	 * (Update) Now that we retain clkrc state, we should be able
	 * to write it unconditionally, and that will make the frame
	 * rate persistent too.
999
	 */
1000
	if (ret == 0)
1001
		ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
1002 1003 1004
	return 0;
}

1005 1006 1007 1008
/*
 * Implement G/S_PARM.  There is a "high quality" mode we could try
 * to do someday; for now, we just do the frame rate tweak.
 */
1009
static int ov7670_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
1010 1011
{
	struct v4l2_captureparm *cp = &parms->parm.capture;
1012
	struct ov7670_info *info = to_state(sd);
1013 1014 1015

	if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
		return -EINVAL;
1016

1017 1018
	memset(cp, 0, sizeof(struct v4l2_captureparm));
	cp->capability = V4L2_CAP_TIMEPERFRAME;
1019 1020
	info->devtype->get_framerate(sd, &cp->timeperframe);

1021 1022 1023
	return 0;
}

1024
static int ov7670_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
1025 1026 1027
{
	struct v4l2_captureparm *cp = &parms->parm.capture;
	struct v4l2_fract *tpf = &cp->timeperframe;
1028
	struct ov7670_info *info = to_state(sd);
1029 1030 1031 1032 1033

	if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
		return -EINVAL;
	if (cp->extendedmode != 0)
		return -EINVAL;
1034

1035
	return info->devtype->set_framerate(sd, tpf);
1036 1037 1038
}


1039
/*
1040 1041 1042
 * Frame intervals.  Since frame rates are controlled with the clock
 * divider, we can only do 30/n for integer n values.  So no continuous
 * or stepwise options.  Here we just pick a handful of logical values.
1043 1044
 */

1045
static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 };
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static int ov7670_enum_frameintervals(struct v4l2_subdev *sd,
		struct v4l2_frmivalenum *interval)
{
	if (interval->index >= ARRAY_SIZE(ov7670_frame_rates))
		return -EINVAL;
	interval->type = V4L2_FRMIVAL_TYPE_DISCRETE;
	interval->discrete.numerator = 1;
	interval->discrete.denominator = ov7670_frame_rates[interval->index];
	return 0;
}
1057

1058 1059 1060 1061 1062 1063
/*
 * Frame size enumeration
 */
static int ov7670_enum_framesizes(struct v4l2_subdev *sd,
		struct v4l2_frmsizeenum *fsize)
{
1064 1065 1066
	struct ov7670_info *info = to_state(sd);
	int i;
	int num_valid = -1;
1067
	__u32 index = fsize->index;
1068
	unsigned int n_win_sizes = info->devtype->n_win_sizes;
1069

1070 1071 1072 1073
	/*
	 * If a minimum width/height was requested, filter out the capture
	 * windows that fall outside that.
	 */
1074 1075
	for (i = 0; i < n_win_sizes; i++) {
		struct ov7670_win_size *win = &info->devtype->win_sizes[index];
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		if (info->min_width && win->width < info->min_width)
			continue;
		if (info->min_height && win->height < info->min_height)
			continue;
		if (index == ++num_valid) {
			fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
			fsize->discrete.width = win->width;
			fsize->discrete.height = win->height;
			return 0;
		}
	}

	return -EINVAL;
1089 1090
}

1091 1092 1093
/*
 * Code for dealing with controls.
 */
1094

1095
static int ov7670_store_cmatrix(struct v4l2_subdev *sd,
1096 1097 1098
		int matrix[CMATRIX_LEN])
{
	int i, ret;
1099
	unsigned char signbits = 0;
1100 1101 1102 1103 1104

	/*
	 * Weird crap seems to exist in the upper part of
	 * the sign bits register, so let's preserve it.
	 */
1105
	ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	signbits &= 0xc0;

	for (i = 0; i < CMATRIX_LEN; i++) {
		unsigned char raw;

		if (matrix[i] < 0) {
			signbits |= (1 << i);
			if (matrix[i] < -255)
				raw = 0xff;
			else
				raw = (-1 * matrix[i]) & 0xff;
		}
		else {
			if (matrix[i] > 255)
				raw = 0xff;
			else
				raw = matrix[i] & 0xff;
		}
1124
		ret += ov7670_write(sd, REG_CMATRIX_BASE + i, raw);
1125
	}
1126
	ret += ov7670_write(sd, REG_CMATRIX_SIGN, signbits);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	return ret;
}


/*
 * Hue also requires messing with the color matrix.  It also requires
 * trig functions, which tend not to be well supported in the kernel.
 * So here is a simple table of sine values, 0-90 degrees, in steps
 * of five degrees.  Values are multiplied by 1000.
 *
 * The following naive approximate trig functions require an argument
 * carefully limited to -180 <= theta <= 180.
 */
#define SIN_STEP 5
static const int ov7670_sin_table[] = {
	   0,	 87,   173,   258,   342,   422,
	 499,	573,   642,   707,   766,   819,
	 866,	906,   939,   965,   984,   996,
	1000
};

static int ov7670_sine(int theta)
{
	int chs = 1;
	int sine;

	if (theta < 0) {
		theta = -theta;
		chs = -1;
	}
	if (theta <= 90)
		sine = ov7670_sin_table[theta/SIN_STEP];
	else {
		theta -= 90;
		sine = 1000 - ov7670_sin_table[theta/SIN_STEP];
	}
	return sine*chs;
}

static int ov7670_cosine(int theta)
{
	theta = 90 - theta;
	if (theta > 180)
		theta -= 360;
	else if (theta < -180)
		theta += 360;
	return ov7670_sine(theta);
}




static void ov7670_calc_cmatrix(struct ov7670_info *info,
		int matrix[CMATRIX_LEN])
{
	int i;
	/*
	 * Apply the current saturation setting first.
	 */
	for (i = 0; i < CMATRIX_LEN; i++)
		matrix[i] = (info->fmt->cmatrix[i]*info->sat) >> 7;
	/*
	 * Then, if need be, rotate the hue value.
	 */
	if (info->hue != 0) {
		int sinth, costh, tmpmatrix[CMATRIX_LEN];

		memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int));
		sinth = ov7670_sine(info->hue);
		costh = ov7670_cosine(info->hue);

		matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000;
		matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000;
		matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000;
		matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000;
		matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000;
		matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000;
	}
}



1209
static int ov7670_s_sat(struct v4l2_subdev *sd, int value)
1210
{
1211
	struct ov7670_info *info = to_state(sd);
1212 1213 1214 1215 1216
	int matrix[CMATRIX_LEN];
	int ret;

	info->sat = value;
	ov7670_calc_cmatrix(info, matrix);
1217
	ret = ov7670_store_cmatrix(sd, matrix);
1218 1219 1220
	return ret;
}

1221
static int ov7670_g_sat(struct v4l2_subdev *sd, __s32 *value)
1222
{
1223
	struct ov7670_info *info = to_state(sd);
1224 1225 1226 1227 1228

	*value = info->sat;
	return 0;
}

1229
static int ov7670_s_hue(struct v4l2_subdev *sd, int value)
1230
{
1231
	struct ov7670_info *info = to_state(sd);
1232 1233 1234 1235 1236 1237 1238
	int matrix[CMATRIX_LEN];
	int ret;

	if (value < -180 || value > 180)
		return -EINVAL;
	info->hue = value;
	ov7670_calc_cmatrix(info, matrix);
1239
	ret = ov7670_store_cmatrix(sd, matrix);
1240 1241 1242 1243
	return ret;
}


1244
static int ov7670_g_hue(struct v4l2_subdev *sd, __s32 *value)
1245
{
1246
	struct ov7670_info *info = to_state(sd);
1247 1248 1249 1250 1251 1252

	*value = info->hue;
	return 0;
}


1253 1254 1255 1256 1257 1258 1259
/*
 * Some weird registers seem to store values in a sign/magnitude format!
 */
static unsigned char ov7670_sm_to_abs(unsigned char v)
{
	if ((v & 0x80) == 0)
		return v + 128;
1260
	return 128 - (v & 0x7f);
1261 1262 1263 1264 1265 1266 1267
}


static unsigned char ov7670_abs_to_sm(unsigned char v)
{
	if (v > 127)
		return v & 0x7f;
1268
	return (128 - v) | 0x80;
1269 1270
}

1271
static int ov7670_s_brightness(struct v4l2_subdev *sd, int value)
1272
{
1273
	unsigned char com8 = 0, v;
1274 1275
	int ret;

1276
	ov7670_read(sd, REG_COM8, &com8);
1277
	com8 &= ~COM8_AEC;
1278
	ov7670_write(sd, REG_COM8, com8);
1279
	v = ov7670_abs_to_sm(value);
1280
	ret = ov7670_write(sd, REG_BRIGHT, v);
1281 1282 1283
	return ret;
}

1284
static int ov7670_g_brightness(struct v4l2_subdev *sd, __s32 *value)
1285
{
1286
	unsigned char v = 0;
1287
	int ret = ov7670_read(sd, REG_BRIGHT, &v);
1288 1289

	*value = ov7670_sm_to_abs(v);
1290 1291 1292
	return ret;
}

1293
static int ov7670_s_contrast(struct v4l2_subdev *sd, int value)
1294
{
1295
	return ov7670_write(sd, REG_CONTRAS, (unsigned char) value);
1296 1297
}

1298
static int ov7670_g_contrast(struct v4l2_subdev *sd, __s32 *value)
1299
{
1300
	unsigned char v = 0;
1301
	int ret = ov7670_read(sd, REG_CONTRAS, &v);
1302 1303 1304

	*value = v;
	return ret;
1305 1306
}

1307
static int ov7670_g_hflip(struct v4l2_subdev *sd, __s32 *value)
1308 1309
{
	int ret;
1310
	unsigned char v = 0;
1311

1312
	ret = ov7670_read(sd, REG_MVFP, &v);
1313 1314 1315 1316 1317
	*value = (v & MVFP_MIRROR) == MVFP_MIRROR;
	return ret;
}


1318
static int ov7670_s_hflip(struct v4l2_subdev *sd, int value)
1319
{
1320
	unsigned char v = 0;
1321 1322
	int ret;

1323
	ret = ov7670_read(sd, REG_MVFP, &v);
1324 1325 1326 1327 1328
	if (value)
		v |= MVFP_MIRROR;
	else
		v &= ~MVFP_MIRROR;
	msleep(10);  /* FIXME */
1329
	ret += ov7670_write(sd, REG_MVFP, v);
1330 1331 1332 1333 1334
	return ret;
}



1335
static int ov7670_g_vflip(struct v4l2_subdev *sd, __s32 *value)
1336 1337
{
	int ret;
1338
	unsigned char v = 0;
1339

1340
	ret = ov7670_read(sd, REG_MVFP, &v);
1341 1342 1343 1344 1345
	*value = (v & MVFP_FLIP) == MVFP_FLIP;
	return ret;
}


1346
static int ov7670_s_vflip(struct v4l2_subdev *sd, int value)
1347
{
1348
	unsigned char v = 0;
1349 1350
	int ret;

1351
	ret = ov7670_read(sd, REG_MVFP, &v);
1352 1353 1354 1355 1356
	if (value)
		v |= MVFP_FLIP;
	else
		v &= ~MVFP_FLIP;
	msleep(10);  /* FIXME */
1357
	ret += ov7670_write(sd, REG_MVFP, v);
1358 1359 1360
	return ret;
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/*
 * GAIN is split between REG_GAIN and REG_VREF[7:6].  If one believes
 * the data sheet, the VREF parts should be the most significant, but
 * experience shows otherwise.  There seems to be little value in
 * messing with the VREF bits, so we leave them alone.
 */
static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
	int ret;
	unsigned char gain;

	ret = ov7670_read(sd, REG_GAIN, &gain);
	*value = gain;
	return ret;
}

static int ov7670_s_gain(struct v4l2_subdev *sd, int value)
{
	int ret;
	unsigned char com8;

	ret = ov7670_write(sd, REG_GAIN, value & 0xff);
	/* Have to turn off AGC as well */
	if (ret == 0) {
		ret = ov7670_read(sd, REG_COM8, &com8);
		ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC);
	}
	return ret;
}

/*
 * Tweak autogain.
 */
static int ov7670_g_autogain(struct v4l2_subdev *sd, __s32 *value)
{
	int ret;
	unsigned char com8;

	ret = ov7670_read(sd, REG_COM8, &com8);
	*value = (com8 & COM8_AGC) != 0;
	return ret;
}

static int ov7670_s_autogain(struct v4l2_subdev *sd, int value)
{
	int ret;
	unsigned char com8;

	ret = ov7670_read(sd, REG_COM8, &com8);
	if (ret == 0) {
		if (value)
			com8 |= COM8_AGC;
		else
			com8 &= ~COM8_AGC;
		ret = ov7670_write(sd, REG_COM8, com8);
	}
	return ret;
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
/*
 * Exposure is spread all over the place: top 6 bits in AECHH, middle
 * 8 in AECH, and two stashed in COM1 just for the hell of it.
 */
static int ov7670_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
	int ret;
	unsigned char com1, aech, aechh;

	ret = ov7670_read(sd, REG_COM1, &com1) +
		ov7670_read(sd, REG_AECH, &aech) +
		ov7670_read(sd, REG_AECHH, &aechh);
	*value = ((aechh & 0x3f) << 10) | (aech << 2) | (com1 & 0x03);
	return ret;
}

static int ov7670_s_exp(struct v4l2_subdev *sd, int value)
{
	int ret;
	unsigned char com1, com8, aech, aechh;

	ret = ov7670_read(sd, REG_COM1, &com1) +
		ov7670_read(sd, REG_COM8, &com8);
		ov7670_read(sd, REG_AECHH, &aechh);
	if (ret)
		return ret;

	com1 = (com1 & 0xfc) | (value & 0x03);
	aech = (value >> 2) & 0xff;
	aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f);
	ret = ov7670_write(sd, REG_COM1, com1) +
		ov7670_write(sd, REG_AECH, aech) +
		ov7670_write(sd, REG_AECHH, aechh);
	/* Have to turn off AEC as well */
	if (ret == 0)
		ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC);
	return ret;
}

/*
 * Tweak autoexposure.
 */
static int ov7670_g_autoexp(struct v4l2_subdev *sd, __s32 *value)
{
	int ret;
	unsigned char com8;
	enum v4l2_exposure_auto_type *atype = (enum v4l2_exposure_auto_type *) value;

	ret = ov7670_read(sd, REG_COM8, &com8);
	if (com8 & COM8_AEC)
1470
		*atype = V4L2_EXPOSURE_AUTO;
1471
	else
1472
		*atype = V4L2_EXPOSURE_MANUAL;
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	return ret;
}

static int ov7670_s_autoexp(struct v4l2_subdev *sd,
		enum v4l2_exposure_auto_type value)
{
	int ret;
	unsigned char com8;

	ret = ov7670_read(sd, REG_COM8, &com8);
	if (ret == 0) {
		if (value == V4L2_EXPOSURE_AUTO)
			com8 |= COM8_AEC;
		else
			com8 &= ~COM8_AEC;
		ret = ov7670_write(sd, REG_COM8, com8);
	}
	return ret;
}

1493 1494


1495
static int ov7670_queryctrl(struct v4l2_subdev *sd,
1496 1497
		struct v4l2_queryctrl *qc)
{
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	/* Fill in min, max, step and default value for these controls. */
	switch (qc->id) {
	case V4L2_CID_BRIGHTNESS:
		return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
	case V4L2_CID_CONTRAST:
		return v4l2_ctrl_query_fill(qc, 0, 127, 1, 64);
	case V4L2_CID_VFLIP:
	case V4L2_CID_HFLIP:
		return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
	case V4L2_CID_SATURATION:
		return v4l2_ctrl_query_fill(qc, 0, 256, 1, 128);
	case V4L2_CID_HUE:
		return v4l2_ctrl_query_fill(qc, -180, 180, 5, 0);
1511 1512 1513 1514
	case V4L2_CID_GAIN:
		return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
	case V4L2_CID_AUTOGAIN:
		return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1);
1515 1516 1517 1518
	case V4L2_CID_EXPOSURE:
		return v4l2_ctrl_query_fill(qc, 0, 65535, 1, 500);
	case V4L2_CID_EXPOSURE_AUTO:
		return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
1519 1520
	}
	return -EINVAL;
1521 1522
}

1523
static int ov7670_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
1524
{
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		return ov7670_g_brightness(sd, &ctrl->value);
	case V4L2_CID_CONTRAST:
		return ov7670_g_contrast(sd, &ctrl->value);
	case V4L2_CID_SATURATION:
		return ov7670_g_sat(sd, &ctrl->value);
	case V4L2_CID_HUE:
		return ov7670_g_hue(sd, &ctrl->value);
	case V4L2_CID_VFLIP:
		return ov7670_g_vflip(sd, &ctrl->value);
	case V4L2_CID_HFLIP:
		return ov7670_g_hflip(sd, &ctrl->value);
1538 1539 1540 1541
	case V4L2_CID_GAIN:
		return ov7670_g_gain(sd, &ctrl->value);
	case V4L2_CID_AUTOGAIN:
		return ov7670_g_autogain(sd, &ctrl->value);
1542 1543 1544 1545
	case V4L2_CID_EXPOSURE:
		return ov7670_g_exp(sd, &ctrl->value);
	case V4L2_CID_EXPOSURE_AUTO:
		return ov7670_g_autoexp(sd, &ctrl->value);
1546 1547
	}
	return -EINVAL;
1548 1549
}

1550
static int ov7670_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
1551
{
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		return ov7670_s_brightness(sd, ctrl->value);
	case V4L2_CID_CONTRAST:
		return ov7670_s_contrast(sd, ctrl->value);
	case V4L2_CID_SATURATION:
		return ov7670_s_sat(sd, ctrl->value);
	case V4L2_CID_HUE:
		return ov7670_s_hue(sd, ctrl->value);
	case V4L2_CID_VFLIP:
		return ov7670_s_vflip(sd, ctrl->value);
	case V4L2_CID_HFLIP:
		return ov7670_s_hflip(sd, ctrl->value);
1565 1566 1567 1568
	case V4L2_CID_GAIN:
		return ov7670_s_gain(sd, ctrl->value);
	case V4L2_CID_AUTOGAIN:
		return ov7670_s_autogain(sd, ctrl->value);
1569 1570 1571 1572 1573
	case V4L2_CID_EXPOSURE:
		return ov7670_s_exp(sd, ctrl->value);
	case V4L2_CID_EXPOSURE_AUTO:
		return ov7670_s_autoexp(sd,
				(enum v4l2_exposure_auto_type) ctrl->value);
1574 1575
	}
	return -EINVAL;
1576 1577
}

1578 1579 1580 1581 1582 1583 1584 1585
static int ov7670_g_chip_ident(struct v4l2_subdev *sd,
		struct v4l2_dbg_chip_ident *chip)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_OV7670, 0);
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	unsigned char val = 0;
	int ret;

	if (!v4l2_chip_match_i2c_client(client, &reg->match))
		return -EINVAL;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	ret = ov7670_read(sd, reg->reg & 0xff, &val);
	reg->val = val;
	reg->size = 1;
	return ret;
}

static int ov7670_s_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	if (!v4l2_chip_match_i2c_client(client, &reg->match))
		return -EINVAL;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff);
	return 0;
}
#endif

1616
/* ----------------------------------------------------------------------- */
1617

1618 1619 1620 1621 1622 1623 1624
static const struct v4l2_subdev_core_ops ov7670_core_ops = {
	.g_chip_ident = ov7670_g_chip_ident,
	.g_ctrl = ov7670_g_ctrl,
	.s_ctrl = ov7670_s_ctrl,
	.queryctrl = ov7670_queryctrl,
	.reset = ov7670_reset,
	.init = ov7670_init,
1625 1626 1627 1628
#ifdef CONFIG_VIDEO_ADV_DEBUG
	.g_register = ov7670_g_register,
	.s_register = ov7670_s_register,
#endif
1629
};
1630

1631
static const struct v4l2_subdev_video_ops ov7670_video_ops = {
1632 1633 1634
	.enum_mbus_fmt = ov7670_enum_mbus_fmt,
	.try_mbus_fmt = ov7670_try_mbus_fmt,
	.s_mbus_fmt = ov7670_s_mbus_fmt,
1635 1636
	.s_parm = ov7670_s_parm,
	.g_parm = ov7670_g_parm,
1637
	.enum_frameintervals = ov7670_enum_frameintervals,
1638
	.enum_framesizes = ov7670_enum_framesizes,
1639
};
1640

1641 1642 1643 1644
static const struct v4l2_subdev_ops ov7670_ops = {
	.core = &ov7670_core_ops,
	.video = &ov7670_video_ops,
};
1645

1646
/* ----------------------------------------------------------------------- */
1647

1648 1649 1650 1651
static const struct ov7670_devtype ov7670_devdata[] = {
	[MODEL_OV7670] = {
		.win_sizes = ov7670_win_sizes,
		.n_win_sizes = ARRAY_SIZE(ov7670_win_sizes),
1652 1653
		.set_framerate = ov7670_set_framerate_legacy,
		.get_framerate = ov7670_get_framerate_legacy,
1654 1655 1656 1657
	},
	[MODEL_OV7675] = {
		.win_sizes = ov7675_win_sizes,
		.n_win_sizes = ARRAY_SIZE(ov7675_win_sizes),
1658 1659
		.set_framerate = ov7675_set_framerate,
		.get_framerate = ov7675_get_framerate,
1660 1661 1662
	},
};

1663 1664
static int ov7670_probe(struct i2c_client *client,
			const struct i2c_device_id *id)
1665
{
1666
	struct v4l2_fract tpf;
1667
	struct v4l2_subdev *sd;
1668
	struct ov7670_info *info;
1669
	int ret;
1670

1671 1672
	info = kzalloc(sizeof(struct ov7670_info), GFP_KERNEL);
	if (info == NULL)
1673
		return -ENOMEM;
1674 1675 1676
	sd = &info->sd;
	v4l2_i2c_subdev_init(sd, client, &ov7670_ops);

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	info->clock_speed = 30; /* default: a guess */
	if (client->dev.platform_data) {
		struct ov7670_config *config = client->dev.platform_data;

		/*
		 * Must apply configuration before initializing device, because it
		 * selects I/O method.
		 */
		info->min_width = config->min_width;
		info->min_height = config->min_height;
		info->use_smbus = config->use_smbus;

		if (config->clock_speed)
			info->clock_speed = config->clock_speed;
	}

	/* Make sure it's an ov7670 */
	ret = ov7670_detect(sd);
	if (ret) {
		v4l_dbg(1, debug, client,
			"chip found @ 0x%x (%s) is not an ov7670 chip.\n",
			client->addr << 1, client->adapter->name);
		kfree(info);
		return ret;
	}
	v4l_info(client, "chip found @ 0x%02x (%s)\n",
			client->addr << 1, client->adapter->name);

1705
	info->devtype = &ov7670_devdata[id->driver_data];
1706 1707
	info->fmt = &ov7670_formats[0];
	info->sat = 128;	/* Review this */
1708 1709 1710 1711 1712 1713 1714
	info->clkrc = 0;

	/* Set default frame rate to 30 fps */
	tpf.numerator = 1;
	tpf.denominator = 30;
	info->devtype->set_framerate(sd, &tpf);

1715 1716 1717 1718
	return 0;
}


1719
static int ov7670_remove(struct i2c_client *client)
1720
{
1721
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1722

1723 1724 1725
	v4l2_device_unregister_subdev(sd);
	kfree(to_state(sd));
	return 0;
1726 1727
}

1728
static const struct i2c_device_id ov7670_id[] = {
1729 1730
	{ "ov7670", MODEL_OV7670 },
	{ "ov7675", MODEL_OV7675 },
1731 1732 1733 1734
	{ }
};
MODULE_DEVICE_TABLE(i2c, ov7670_id);

1735 1736 1737 1738 1739 1740 1741 1742
static struct i2c_driver ov7670_driver = {
	.driver = {
		.owner	= THIS_MODULE,
		.name	= "ov7670",
	},
	.probe		= ov7670_probe,
	.remove		= ov7670_remove,
	.id_table	= ov7670_id,
1743
};
1744

1745
module_i2c_driver(ov7670_driver);