umem.c 34.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
 *
 * (C) 2001 San Mehat <nettwerk@valinux.com>
 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
 *
 * This driver for the Micro Memory PCI Memory Module with Battery Backup
 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
 *
 * This driver is released to the public under the terms of the
 *  GNU GENERAL PUBLIC LICENSE version 2
 * See the file COPYING for details.
 *
 * This driver provides a standard block device interface for Micro Memory(tm)
 * PCI based RAM boards.
 * 10/05/01: Phap Nguyen - Rebuilt the driver
 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
 *                       - use stand disk partitioning (so fdisk works).
 * 08nov2001:NeilBrown	 - change driver name from "mm" to "umem"
 *			 - incorporate into main kernel
 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
 *			 - use spin_lock_bh instead of _irq
 *			 - Never block on make_request.  queue
 *			   bh's instead.
 *			 - unregister umem from devfs at mod unload
 *			 - Change version to 2.3
 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
 * 15May2002:NeilBrown   - convert to bio for 2.5
 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
 *			 - a sequence of writes that cover the card, and
 *			 - set initialised bit then.
 */

37
//#define DEBUG /* uncomment if you want debugging info (pr_debug) */
L
Linus Torvalds 已提交
38 39 40 41 42 43 44 45 46 47 48 49
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/slab.h>
50
#include <linux/dma-mapping.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

#include <linux/fcntl.h>        /* O_ACCMODE */
#include <linux/hdreg.h>  /* HDIO_GETGEO */

#include <linux/umem.h>

#include <asm/uaccess.h>
#include <asm/io.h>

#define MM_MAXCARDS 4
#define MM_RAHEAD 2      /* two sectors */
#define MM_BLKSIZE 1024  /* 1k blocks */
#define MM_HARDSECT 512  /* 512-byte hardware sectors */
#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */

/*
 * Version Information
 */

#define DRIVER_VERSION "v2.3"
#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"

static int debug;
/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
#define HW_TRACE(x)

#define DEBUG_LED_ON_TRANSFER	0x01
#define DEBUG_BATTERY_POLLING	0x02

module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug bitmask");

static int pci_read_cmd = 0x0C;		/* Read Multiple */
module_param(pci_read_cmd, int, 0);
MODULE_PARM_DESC(pci_read_cmd, "PCI read command");

static int pci_write_cmd = 0x0F;	/* Write and Invalidate */
module_param(pci_write_cmd, int, 0);
MODULE_PARM_DESC(pci_write_cmd, "PCI write command");

static int pci_cmds;

static int major_nr;

#include <linux/blkdev.h>
#include <linux/blkpg.h>

struct cardinfo {
	int		card_number;
	struct pci_dev	*dev;

	int		irq;

	unsigned long	csr_base;
	unsigned char	__iomem *csr_remap;
	unsigned long	csr_len;
	unsigned int	win_size; /* PCI window size */
	unsigned int	mm_size;  /* size in kbytes */

	unsigned int	init_size; /* initial segment, in sectors,
				    * that we know to
				    * have been written
				    */
	struct bio	*bio, *currentbio, **biotail;

	request_queue_t *queue;

	struct mm_page {
		dma_addr_t		page_dma;
		struct mm_dma_desc	*desc;
		int	 		cnt, headcnt;
		struct bio		*bio, **biotail;
	} mm_pages[2];
#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))

	int  Active, Ready;

	struct tasklet_struct	tasklet;
	unsigned int dma_status;

	struct {
		int		good;
		int		warned;
		unsigned long	last_change;
	} battery[2];

	spinlock_t 	lock;
	int		check_batteries;

	int		flags;
};

static struct cardinfo cards[MM_MAXCARDS];
static struct block_device_operations mm_fops;
static struct timer_list battery_timer;

static int num_cards = 0;

static struct gendisk *mm_gendisk[MM_MAXCARDS];

static void check_batteries(struct cardinfo *card);

/*
-----------------------------------------------------------------------------------
--                           get_userbit
-----------------------------------------------------------------------------------
*/
static int get_userbit(struct cardinfo *card, int bit)
{
	unsigned char led;

	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
	return led & bit;
}
/*
-----------------------------------------------------------------------------------
--                            set_userbit
-----------------------------------------------------------------------------------
*/
static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
{
	unsigned char led;

	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
	if (state)
		led |= bit;
	else
		led &= ~bit;
	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);

	return 0;
}
/*
-----------------------------------------------------------------------------------
--                             set_led
-----------------------------------------------------------------------------------
*/
/*
 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
 */
static void set_led(struct cardinfo *card, int shift, unsigned char state)
{
	unsigned char led;

	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
	if (state == LED_FLIP)
		led ^= (1<<shift);
	else {
		led &= ~(0x03 << shift);
		led |= (state << shift);
	}
	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);

}

#ifdef MM_DIAG
/*
-----------------------------------------------------------------------------------
--                              dump_regs
-----------------------------------------------------------------------------------
*/
static void dump_regs(struct cardinfo *card)
{
	unsigned char *p;
	int i, i1;

	p = card->csr_remap;
	for (i = 0; i < 8; i++) {
		printk(KERN_DEBUG "%p   ", p);

		for (i1 = 0; i1 < 16; i1++)
			printk("%02x ", *p++);

		printk("\n");
	}
}
#endif
/*
-----------------------------------------------------------------------------------
--                            dump_dmastat
-----------------------------------------------------------------------------------
*/
static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
{
	printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
	if (dmastat & DMASCR_ANY_ERR)
		printk("ANY_ERR ");
	if (dmastat & DMASCR_MBE_ERR)
		printk("MBE_ERR ");
	if (dmastat & DMASCR_PARITY_ERR_REP)
		printk("PARITY_ERR_REP ");
	if (dmastat & DMASCR_PARITY_ERR_DET)
		printk("PARITY_ERR_DET ");
	if (dmastat & DMASCR_SYSTEM_ERR_SIG)
		printk("SYSTEM_ERR_SIG ");
	if (dmastat & DMASCR_TARGET_ABT)
		printk("TARGET_ABT ");
	if (dmastat & DMASCR_MASTER_ABT)
		printk("MASTER_ABT ");
	if (dmastat & DMASCR_CHAIN_COMPLETE)
		printk("CHAIN_COMPLETE ");
	if (dmastat & DMASCR_DMA_COMPLETE)
		printk("DMA_COMPLETE ");
	printk("\n");
}

/*
 * Theory of request handling
 *
 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
 * We have two pages of mm_dma_desc, holding about 64 descriptors
 * each.  These are allocated at init time.
 * One page is "Ready" and is either full, or can have request added.
 * The other page might be "Active", which DMA is happening on it.
 *
 * Whenever IO on the active page completes, the Ready page is activated
 * and the ex-Active page is clean out and made Ready.
 * Otherwise the Ready page is only activated when it becomes full, or
 * when mm_unplug_device is called via the unplug_io_fn.
 *
 * If a request arrives while both pages a full, it is queued, and b_rdev is
 * overloaded to record whether it was a read or a write.
 *
 * The interrupt handler only polls the device to clear the interrupt.
 * The processing of the result is done in a tasklet.
 */

static void mm_start_io(struct cardinfo *card)
{
	/* we have the lock, we know there is
	 * no IO active, and we know that card->Active
	 * is set
	 */
	struct mm_dma_desc *desc;
	struct mm_page *page;
	int offset;

	/* make the last descriptor end the chain */
	page = &card->mm_pages[card->Active];
291
	pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
L
Linus Torvalds 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	desc = &page->desc[page->cnt-1];

	desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
	desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
	desc->sem_control_bits = desc->control_bits;

			       
	if (debug & DEBUG_LED_ON_TRANSFER)
		set_led(card, LED_REMOVE, LED_ON);

	desc = &page->desc[page->headcnt];
	writel(0, card->csr_remap + DMA_PCI_ADDR);
	writel(0, card->csr_remap + DMA_PCI_ADDR + 4);

	writel(0, card->csr_remap + DMA_LOCAL_ADDR);
	writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);

	writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
	writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);

	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);

	offset = ((char*)desc) - ((char*)page->desc);
	writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
	       card->csr_remap + DMA_DESCRIPTOR_ADDR);
	/* Force the value to u64 before shifting otherwise >> 32 is undefined C
	 * and on some ports will do nothing ! */
	writel(cpu_to_le32(((u64)page->page_dma)>>32),
	       card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);

	/* Go, go, go */
	writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
	       card->csr_remap + DMA_STATUS_CTRL);
}

static int add_bio(struct cardinfo *card);

static void activate(struct cardinfo *card)
{
	/* if No page is Active, and Ready is 
	 * not empty, then switch Ready page
	 * to active and start IO.
	 * Then add any bh's that are available to Ready
	 */

	do {
		while (add_bio(card))
			;

		if (card->Active == -1 &&
		    card->mm_pages[card->Ready].cnt > 0) {
			card->Active = card->Ready;
			card->Ready = 1-card->Ready;
			mm_start_io(card);
		}

	} while (card->Active == -1 && add_bio(card));
}

static inline void reset_page(struct mm_page *page)
{
	page->cnt = 0;
	page->headcnt = 0;
	page->bio = NULL;
	page->biotail = & page->bio;
}

static void mm_unplug_device(request_queue_t *q)
{
	struct cardinfo *card = q->queuedata;
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	if (blk_remove_plug(q))
		activate(card);
	spin_unlock_irqrestore(&card->lock, flags);
}

/* 
 * If there is room on Ready page, take
 * one bh off list and add it.
 * return 1 if there was room, else 0.
 */
static int add_bio(struct cardinfo *card)
{
	struct mm_page *p;
	struct mm_dma_desc *desc;
	dma_addr_t dma_handle;
	int offset;
	struct bio *bio;
	int rw;
	int len;

	bio = card->currentbio;
	if (!bio && card->bio) {
		card->currentbio = card->bio;
		card->bio = card->bio->bi_next;
		if (card->bio == NULL)
			card->biotail = &card->bio;
		card->currentbio->bi_next = NULL;
		return 1;
	}
	if (!bio)
		return 0;

	rw = bio_rw(bio);
	if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
		return 0;

	len = bio_iovec(bio)->bv_len;
	dma_handle = pci_map_page(card->dev, 
				  bio_page(bio),
				  bio_offset(bio),
				  len,
				  (rw==READ) ?
				  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);

	p = &card->mm_pages[card->Ready];
	desc = &p->desc[p->cnt];
	p->cnt++;
	if ((p->biotail) != &bio->bi_next) {
		*(p->biotail) = bio;
		p->biotail = &(bio->bi_next);
		bio->bi_next = NULL;
	}

	desc->data_dma_handle = dma_handle;

	desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
	desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
	desc->transfer_size = cpu_to_le32(len);
	offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
	desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
	desc->zero1 = desc->zero2 = 0;
	offset = ( ((char*)(desc+1)) - ((char*)p->desc));
	desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
	desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
					 DMASCR_PARITY_INT_EN|
					 DMASCR_CHAIN_EN |
					 DMASCR_SEM_EN |
					 pci_cmds);
	if (rw == WRITE)
		desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
	desc->sem_control_bits = desc->control_bits;

	bio->bi_sector += (len>>9);
	bio->bi_size -= len;
	bio->bi_idx++;
	if (bio->bi_idx >= bio->bi_vcnt) 
		card->currentbio = NULL;

	return 1;
}

static void process_page(unsigned long data)
{
	/* check if any of the requests in the page are DMA_COMPLETE,
	 * and deal with them appropriately.
	 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
	 * dma must have hit an error on that descriptor, so use dma_status instead
	 * and assume that all following descriptors must be re-tried.
	 */
	struct mm_page *page;
	struct bio *return_bio=NULL;
	struct cardinfo *card = (struct cardinfo *)data;
	unsigned int dma_status = card->dma_status;

	spin_lock_bh(&card->lock);
	if (card->Active < 0)
		goto out_unlock;
	page = &card->mm_pages[card->Active];
	
	while (page->headcnt < page->cnt) {
		struct bio *bio = page->bio;
		struct mm_dma_desc *desc = &page->desc[page->headcnt];
		int control = le32_to_cpu(desc->sem_control_bits);
		int last=0;
		int idx;

		if (!(control & DMASCR_DMA_COMPLETE)) {
			control = dma_status;
			last=1; 
		}
		page->headcnt++;
		idx = bio->bi_phys_segments;
		bio->bi_phys_segments++;
		if (bio->bi_phys_segments >= bio->bi_vcnt)
			page->bio = bio->bi_next;

		pci_unmap_page(card->dev, desc->data_dma_handle, 
			       bio_iovec_idx(bio,idx)->bv_len,
				 (control& DMASCR_TRANSFER_READ) ?
				PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
		if (control & DMASCR_HARD_ERROR) {
			/* error */
			clear_bit(BIO_UPTODATE, &bio->bi_flags);
			printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
			       card->card_number, 
			       le32_to_cpu(desc->local_addr)>>9,
			       le32_to_cpu(desc->transfer_size));
			dump_dmastat(card, control);
		} else if (test_bit(BIO_RW, &bio->bi_rw) &&
			   le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
			card->init_size += le32_to_cpu(desc->transfer_size)>>9;
			if (card->init_size>>1 >= card->mm_size) {
				printk(KERN_INFO "MM%d: memory now initialised\n",
				       card->card_number);
				set_userbit(card, MEMORY_INITIALIZED, 1);
			}
		}
		if (bio != page->bio) {
			bio->bi_next = return_bio;
			return_bio = bio;
		}

		if (last) break;
	}

	if (debug & DEBUG_LED_ON_TRANSFER)
		set_led(card, LED_REMOVE, LED_OFF);

	if (card->check_batteries) {
		card->check_batteries = 0;
		check_batteries(card);
	}
	if (page->headcnt >= page->cnt) {
		reset_page(page);
		card->Active = -1;
		activate(card);
	} else {
		/* haven't finished with this one yet */
524
		pr_debug("do some more\n");
L
Linus Torvalds 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
		mm_start_io(card);
	}
 out_unlock:
	spin_unlock_bh(&card->lock);

	while(return_bio) {
		struct bio *bio = return_bio;

		return_bio = bio->bi_next;
		bio->bi_next = NULL;
		bio_endio(bio, bio->bi_size, 0);
	}
}

/*
-----------------------------------------------------------------------------------
--                              mm_make_request
-----------------------------------------------------------------------------------
*/
static int mm_make_request(request_queue_t *q, struct bio *bio)
{
	struct cardinfo *card = q->queuedata;
547 548
	pr_debug("mm_make_request %llu %u\n",
		 (unsigned long long)bio->bi_sector, bio->bi_size);
L
Linus Torvalds 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

	bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
	spin_lock_irq(&card->lock);
	*card->biotail = bio;
	bio->bi_next = NULL;
	card->biotail = &bio->bi_next;
	blk_plug_device(q);
	spin_unlock_irq(&card->lock);

	return 0;
}

/*
-----------------------------------------------------------------------------------
--                              mm_interrupt
-----------------------------------------------------------------------------------
*/
566
static irqreturn_t mm_interrupt(int irq, void *__card)
L
Linus Torvalds 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
{
	struct cardinfo *card = (struct cardinfo *) __card;
	unsigned int dma_status;
	unsigned short cfg_status;

HW_TRACE(0x30);

	dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));

	if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
		/* interrupt wasn't for me ... */
		return IRQ_NONE;
        }

	/* clear COMPLETION interrupts */
	if (card->flags & UM_FLAG_NO_BYTE_STATUS)
		writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
		       card->csr_remap+ DMA_STATUS_CTRL);
	else
		writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
		       card->csr_remap+ DMA_STATUS_CTRL + 2);
	
	/* log errors and clear interrupt status */
	if (dma_status & DMASCR_ANY_ERR) {
		unsigned int	data_log1, data_log2;
		unsigned int	addr_log1, addr_log2;
		unsigned char	stat, count, syndrome, check;

		stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);

		data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
		data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
		addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
		addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);

		count = readb(card->csr_remap + ERROR_COUNT);
		syndrome = readb(card->csr_remap + ERROR_SYNDROME);
		check = readb(card->csr_remap + ERROR_CHECK);

		dump_dmastat(card, dma_status);

		if (stat & 0x01)
			printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
				card->card_number, count);
		if (stat & 0x02)
			printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
				card->card_number);

		printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
			card->card_number, addr_log2, addr_log1, data_log2, data_log1);
		printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
			card->card_number, check, syndrome);

		writeb(0, card->csr_remap + ERROR_COUNT);
	}

	if (dma_status & DMASCR_PARITY_ERR_REP) {
		printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
	}

	if (dma_status & DMASCR_PARITY_ERR_DET) {
		printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number); 
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
	}

	if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
		printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number); 
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
	}

	if (dma_status & DMASCR_TARGET_ABT) {
		printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number); 
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
	}

	if (dma_status & DMASCR_MASTER_ABT) {
		printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number); 
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
	}

	/* and process the DMA descriptors */
	card->dma_status = dma_status;
	tasklet_schedule(&card->tasklet);

HW_TRACE(0x36);

	return IRQ_HANDLED; 
}
/*
-----------------------------------------------------------------------------------
--                         set_fault_to_battery_status
-----------------------------------------------------------------------------------
*/
/*
 * If both batteries are good, no LED
 * If either battery has been warned, solid LED
 * If both batteries are bad, flash the LED quickly
 * If either battery is bad, flash the LED semi quickly
 */
static void set_fault_to_battery_status(struct cardinfo *card)
{
	if (card->battery[0].good && card->battery[1].good)
		set_led(card, LED_FAULT, LED_OFF);
	else if (card->battery[0].warned || card->battery[1].warned)
		set_led(card, LED_FAULT, LED_ON);
	else if (!card->battery[0].good && !card->battery[1].good)
		set_led(card, LED_FAULT, LED_FLASH_7_0);
	else
		set_led(card, LED_FAULT, LED_FLASH_3_5);
}

static void init_battery_timer(void);


/*
-----------------------------------------------------------------------------------
--                            check_battery
-----------------------------------------------------------------------------------
*/
static int check_battery(struct cardinfo *card, int battery, int status)
{
	if (status != card->battery[battery].good) {
		card->battery[battery].good = !card->battery[battery].good;
		card->battery[battery].last_change = jiffies;

		if (card->battery[battery].good) {
			printk(KERN_ERR "MM%d: Battery %d now good\n",
				card->card_number, battery + 1);
			card->battery[battery].warned = 0;
		} else
			printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
				card->card_number, battery + 1);

		return 1;
	} else if (!card->battery[battery].good &&
		   !card->battery[battery].warned &&
		   time_after_eq(jiffies, card->battery[battery].last_change +
				 (HZ * 60 * 60 * 5))) {
		printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
			card->card_number, battery + 1);
		card->battery[battery].warned = 1;

		return 1;
	}

	return 0;
}
/*
-----------------------------------------------------------------------------------
--                              check_batteries
-----------------------------------------------------------------------------------
*/
static void check_batteries(struct cardinfo *card)
{
	/* NOTE: this must *never* be called while the card
	 * is doing (bus-to-card) DMA, or you will need the
	 * reset switch
	 */
	unsigned char status;
	int ret1, ret2;

	status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
	if (debug & DEBUG_BATTERY_POLLING)
		printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
		       card->card_number,
		       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
		       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");

	ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
	ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));

	if (ret1 || ret2)
		set_fault_to_battery_status(card);
}

static void check_all_batteries(unsigned long ptr)
{
	int i;

	for (i = 0; i < num_cards; i++) 
		if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
			struct cardinfo *card = &cards[i];
			spin_lock_bh(&card->lock);
			if (card->Active >= 0)
				card->check_batteries = 1;
			else
				check_batteries(card);
			spin_unlock_bh(&card->lock);
		}

	init_battery_timer();
}
/*
-----------------------------------------------------------------------------------
--                            init_battery_timer
-----------------------------------------------------------------------------------
*/
static void init_battery_timer(void)
{
	init_timer(&battery_timer);
	battery_timer.function = check_all_batteries;
	battery_timer.expires = jiffies + (HZ * 60);
	add_timer(&battery_timer);
}
/*
-----------------------------------------------------------------------------------
--                              del_battery_timer
-----------------------------------------------------------------------------------
*/
static void del_battery_timer(void)
{
	del_timer(&battery_timer);
}
/*
-----------------------------------------------------------------------------------
--                                mm_revalidate
-----------------------------------------------------------------------------------
*/
/*
 * Note no locks taken out here.  In a worst case scenario, we could drop
 * a chunk of system memory.  But that should never happen, since validation
 * happens at open or mount time, when locks are held.
 *
 *	That's crap, since doing that while some partitions are opened
 * or mounted will give you really nasty results.
 */
static int mm_revalidate(struct gendisk *disk)
{
	struct cardinfo *card = disk->private_data;
	set_capacity(disk, card->mm_size << 1);
	return 0;
}
805 806

static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
L
Linus Torvalds 已提交
807
{
808 809
	struct cardinfo *card = bdev->bd_disk->private_data;
	int size = card->mm_size * (1024 / MM_HARDSECT);
L
Linus Torvalds 已提交
810

811 812 813 814 815 816 817 818 819
	/*
	 * get geometry: we have to fake one...  trim the size to a
	 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
	 * whatever cylinders.
	 */
	geo->heads     = 64;
	geo->sectors   = 32;
	geo->cylinders = size / (geo->heads * geo->sectors);
	return 0;
L
Linus Torvalds 已提交
820
}
821

L
Linus Torvalds 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
/*
-----------------------------------------------------------------------------------
--                                mm_check_change
-----------------------------------------------------------------------------------
  Future support for removable devices
*/
static int mm_check_change(struct gendisk *disk)
{
/*  struct cardinfo *dev = disk->private_data; */
	return 0;
}
/*
-----------------------------------------------------------------------------------
--                             mm_fops
-----------------------------------------------------------------------------------
*/
static struct block_device_operations mm_fops = {
	.owner		= THIS_MODULE,
840
	.getgeo		= mm_getgeo,
L
Linus Torvalds 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
	.revalidate_disk= mm_revalidate,
	.media_changed	= mm_check_change,
};
/*
-----------------------------------------------------------------------------------
--                                mm_pci_probe
-----------------------------------------------------------------------------------
*/
static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int ret = -ENODEV;
	struct cardinfo *card = &cards[num_cards];
	unsigned char	mem_present;
	unsigned char	batt_status;
	unsigned int	saved_bar, data;
	int		magic_number;

	if (pci_enable_device(dev) < 0)
		return -ENODEV;

	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
	pci_set_master(dev);

	card->dev         = dev;
	card->card_number = num_cards;

	card->csr_base = pci_resource_start(dev, 0);
	card->csr_len  = pci_resource_len(dev, 0);

	printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
	       card->card_number, dev->bus->number, dev->devfn);

873 874
	if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
	    pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
L
Linus Torvalds 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
		return  -ENOMEM;
	}
	if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
		printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
		ret = -ENOMEM;

		goto failed_req_csr;
	}

	card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
	if (!card->csr_remap) {
		printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
		ret = -ENOMEM;

		goto failed_remap_csr;
	}

	printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
	       card->csr_base, card->csr_remap, card->csr_len);

	switch(card->dev->device) {
	case 0x5415:
		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
		magic_number = 0x59;
		break;

	case 0x5425:
		card->flags |= UM_FLAG_NO_BYTE_STATUS;
		magic_number = 0x5C;
		break;

	case 0x6155:
		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
		magic_number = 0x99;
		break;

	default:
		magic_number = 0x100;
		break;
	}

	if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
		printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
		ret = -ENOMEM;
		goto failed_magic;
	}

	card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
						      PAGE_SIZE*2,
						      &card->mm_pages[0].page_dma);
	card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
						      PAGE_SIZE*2,
						      &card->mm_pages[1].page_dma);
	if (card->mm_pages[0].desc == NULL ||
	    card->mm_pages[1].desc == NULL) {
		printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
		goto failed_alloc;
	}
	reset_page(&card->mm_pages[0]);
	reset_page(&card->mm_pages[1]);
	card->Ready = 0;	/* page 0 is ready */
	card->Active = -1;	/* no page is active */
	card->bio = NULL;
	card->biotail = &card->bio;

	card->queue = blk_alloc_queue(GFP_KERNEL);
	if (!card->queue)
		goto failed_alloc;

	blk_queue_make_request(card->queue, mm_make_request);
	card->queue->queuedata = card;
	card->queue->unplug_fn = mm_unplug_device;

	tasklet_init(&card->tasklet, process_page, (unsigned long)card);

	card->check_batteries = 0;
	
	mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
	switch (mem_present) {
	case MEM_128_MB:
		card->mm_size = 1024 * 128;
		break;
	case MEM_256_MB:
		card->mm_size = 1024 * 256;
		break;
	case MEM_512_MB:
		card->mm_size = 1024 * 512;
		break;
	case MEM_1_GB:
		card->mm_size = 1024 * 1024;
		break;
	case MEM_2_GB:
		card->mm_size = 1024 * 2048;
		break;
	default:
		card->mm_size = 0;
		break;
	}

	/* Clear the LED's we control */
	set_led(card, LED_REMOVE, LED_OFF);
	set_led(card, LED_FAULT, LED_OFF);

	batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);

	card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
	card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
	card->battery[0].last_change = card->battery[1].last_change = jiffies;

	if (card->flags & UM_FLAG_NO_BATT) 
		printk(KERN_INFO "MM%d: Size %d KB\n",
		       card->card_number, card->mm_size);
	else {
		printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
		       card->card_number, card->mm_size,
		       (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
		       card->battery[0].good ? "OK" : "FAILURE",
		       (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
		       card->battery[1].good ? "OK" : "FAILURE");

		set_fault_to_battery_status(card);
	}

	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
	data = 0xffffffff;
	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
	data &= 0xfffffff0;
	data = ~data;
	data += 1;

	card->win_size = data;


1011
	if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, "pci-umem", card)) {
L
Linus Torvalds 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
		ret = -ENODEV;

		goto failed_req_irq;
	}

	card->irq = dev->irq;
	printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
	       card->win_size, card->irq);

        spin_lock_init(&card->lock);

	pci_set_drvdata(dev, card);

	if (pci_write_cmd != 0x0F) 	/* If not Memory Write & Invalidate */
		pci_write_cmd = 0x07;	/* then Memory Write command */

	if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
		unsigned short cfg_command;
		pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
		cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
		pci_write_config_word(dev, PCI_COMMAND, cfg_command);
	}
	pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);

	num_cards++;

	if (!get_userbit(card, MEMORY_INITIALIZED)) {
		printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
		card->init_size = 0;
	} else {
		printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
		card->init_size = card->mm_size;
	}

	/* Enable ECC */
	writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);

	return 0;

 failed_req_irq:
 failed_alloc:
	if (card->mm_pages[0].desc)
		pci_free_consistent(card->dev, PAGE_SIZE*2,
				    card->mm_pages[0].desc,
				    card->mm_pages[0].page_dma);
	if (card->mm_pages[1].desc)
		pci_free_consistent(card->dev, PAGE_SIZE*2,
				    card->mm_pages[1].desc,
				    card->mm_pages[1].page_dma);
 failed_magic:
	iounmap(card->csr_remap);
 failed_remap_csr:
	release_mem_region(card->csr_base, card->csr_len);
 failed_req_csr:

	return ret;
}
/*
-----------------------------------------------------------------------------------
--                              mm_pci_remove
-----------------------------------------------------------------------------------
*/
static void mm_pci_remove(struct pci_dev *dev)
{
	struct cardinfo *card = pci_get_drvdata(dev);

	tasklet_kill(&card->tasklet);
	iounmap(card->csr_remap);
	release_mem_region(card->csr_base, card->csr_len);
	free_irq(card->irq, card);

	if (card->mm_pages[0].desc)
		pci_free_consistent(card->dev, PAGE_SIZE*2,
				    card->mm_pages[0].desc,
				    card->mm_pages[0].page_dma);
	if (card->mm_pages[1].desc)
		pci_free_consistent(card->dev, PAGE_SIZE*2,
				    card->mm_pages[1].desc,
				    card->mm_pages[1].page_dma);
1092
	blk_cleanup_queue(card->queue);
L
Linus Torvalds 已提交
1093 1094
}

1095 1096 1097 1098 1099
static const struct pci_device_id mm_pci_ids[] = {
    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_6155)},
    {
L
Linus Torvalds 已提交
1100 1101 1102 1103 1104 1105
	.vendor	=	0x8086,
	.device	=	0xB555,
	.subvendor=	0x1332,
	.subdevice=	0x5460,
	.class	=	0x050000,
	.class_mask=	0,
1106
    }, { /* end: all zeroes */ }
L
Linus Torvalds 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
};

MODULE_DEVICE_TABLE(pci, mm_pci_ids);

static struct pci_driver mm_pci_driver = {
	.name =		"umem",
	.id_table =	mm_pci_ids,
	.probe =	mm_pci_probe,
	.remove =	mm_pci_remove,
};
/*
-----------------------------------------------------------------------------------
--                               mm_init
-----------------------------------------------------------------------------------
*/

static int __init mm_init(void)
{
	int retval, i;
	int err;

	printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");

1130
	retval = pci_register_driver(&mm_pci_driver);
L
Linus Torvalds 已提交
1131 1132 1133 1134
	if (retval)
		return -ENOMEM;

	err = major_nr = register_blkdev(0, "umem");
1135 1136
	if (err < 0) {
		pci_unregister_driver(&mm_pci_driver);
L
Linus Torvalds 已提交
1137
		return -EIO;
1138
	}
L
Linus Torvalds 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	for (i = 0; i < num_cards; i++) {
		mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
		if (!mm_gendisk[i])
			goto out;
	}

	for (i = 0; i < num_cards; i++) {
		struct gendisk *disk = mm_gendisk[i];
		sprintf(disk->disk_name, "umem%c", 'a'+i);
		spin_lock_init(&cards[i].lock);
		disk->major = major_nr;
		disk->first_minor  = i << MM_SHIFT;
		disk->fops = &mm_fops;
		disk->private_data = &cards[i];
		disk->queue = cards[i].queue;
		set_capacity(disk, cards[i].mm_size << 1);
		add_disk(disk);
	}

	init_battery_timer();
	printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
/* printk("mm_init: Done. 10-19-01 9:00\n"); */
	return 0;

out:
1165
	pci_unregister_driver(&mm_pci_driver);
L
Linus Torvalds 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	unregister_blkdev(major_nr, "umem");
	while (i--)
		put_disk(mm_gendisk[i]);
	return -ENOMEM;
}
/*
-----------------------------------------------------------------------------------
--                             mm_cleanup
-----------------------------------------------------------------------------------
*/
static void __exit mm_cleanup(void)
{
	int i;

	del_battery_timer();

	for (i=0; i < num_cards ; i++) {
		del_gendisk(mm_gendisk[i]);
		put_disk(mm_gendisk[i]);
	}

	pci_unregister_driver(&mm_pci_driver);

	unregister_blkdev(major_nr, "umem");
}

module_init(mm_init);
module_exit(mm_cleanup);

MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");