hci_h5.c 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 *
 *  Bluetooth HCI Three-wire UART driver
 *
 *  Copyright (C) 2012  Intel Corporation
 *
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>

#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>

#include "hci_uart.h"

33 34 35
#define HCI_3WIRE_ACK_PKT	0
#define HCI_3WIRE_LINK_PKT	15

36 37 38
#define H5_TXWINSIZE	4

#define H5_ACK_TIMEOUT	msecs_to_jiffies(250)
39
#define H5_SYNC_TIMEOUT	msecs_to_jiffies(100)
40

41 42 43 44 45 46
/*
 * Maximum Three-wire packet:
 *     4 byte header + max value for 12-bit length + 2 bytes for CRC
 */
#define H5_MAX_LEN (4 + 0xfff + 2)

47 48 49 50 51 52 53 54
/* Convenience macros for reading Three-wire header values */
#define H5_HDR_SEQ(hdr)		((hdr)[0] & 0x07)
#define H5_HDR_ACK(hdr)		(((hdr)[0] >> 3) & 0x07)
#define H5_HDR_CRC(hdr)		(((hdr)[0] >> 6) & 0x01)
#define H5_HDR_RELIABLE(hdr)	(((hdr)[0] >> 7) & 0x01)
#define H5_HDR_PKT_TYPE(hdr)	((hdr)[1] & 0x0f)
#define H5_HDR_LEN(hdr)		((((hdr)[1] >> 4) & 0xff) + ((hdr)[2] << 4))

55 56 57 58 59
#define SLIP_DELIMITER	0xc0
#define SLIP_ESC	0xdb
#define SLIP_ESC_DELIM	0xdc
#define SLIP_ESC_ESC	0xdd

60
struct h5 {
61 62 63 64 65 66 67
	struct sk_buff_head	unack;		/* Unack'ed packets queue */
	struct sk_buff_head	rel;		/* Reliable packets queue */
	struct sk_buff_head	unrel;		/* Unreliable packets queue */

	struct sk_buff		*rx_skb;	/* Receive buffer */
	size_t			rx_pending;	/* Expecting more bytes */
	bool			rx_esc;		/* SLIP escape mode */
68
	u8			rx_ack;		/* Last ack number received */
69

70
	int			(*rx_func) (struct hci_uart *hu, u8 c);
71

72
	struct timer_list	timer;		/* Retransmission timer */
73

74 75
	bool			tx_ack_req;	/* Pending ack to send */
	u8			tx_seq;		/* Next seq number to send */
76
	u8			tx_ack;		/* Next ack number to send */
77

78 79 80 81 82 83
	enum {
		H5_UNINITIALIZED,
		H5_INITIALIZED,
		H5_ACTIVE,
	} state;

84
	bool			sleeping;
85 86
};

87 88
static void h5_reset_rx(struct h5 *h5);

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
static void h5_link_control(struct hci_uart *hu, const void *data, size_t len)
{
	struct h5 *h5 = hu->priv;
	struct sk_buff *nskb;

	nskb = alloc_skb(3, GFP_ATOMIC);
	if (!nskb)
		return;

	bt_cb(nskb)->pkt_type = HCI_3WIRE_LINK_PKT;

	memcpy(skb_put(nskb, len), data, len);

	skb_queue_tail(&h5->unrel, nskb);
}

105 106
static void h5_timed_event(unsigned long arg)
{
107 108
	const unsigned char sync_req[] = { 0x01, 0x7e };
	const unsigned char conf_req[] = { 0x03, 0xfc, 0x01 };
109 110 111 112 113
	struct hci_uart *hu = (struct hci_uart *) arg;
	struct h5 *h5 = hu->priv;
	struct sk_buff *skb;
	unsigned long flags;

114 115 116 117 118 119 120 121 122 123 124
	if (h5->state == H5_UNINITIALIZED)
		h5_link_control(hu, sync_req, sizeof(sync_req));

	if (h5->state == H5_INITIALIZED)
		h5_link_control(hu, conf_req, sizeof(conf_req));

	if (h5->state != H5_ACTIVE) {
		mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
		goto wakeup;
	}

125 126 127 128 129
	BT_DBG("hu %p retransmitting %u pkts", hu, h5->unack.qlen);

	spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);

	while ((skb = __skb_dequeue_tail(&h5->unack)) != NULL) {
130
		h5->tx_seq = (h5->tx_seq - 1) & 0x07;
131 132 133 134 135
		skb_queue_head(&h5->rel, skb);
	}

	spin_unlock_irqrestore(&h5->unack.lock, flags);

136
wakeup:
137 138 139
	hci_uart_tx_wakeup(hu);
}

140 141
static int h5_open(struct hci_uart *hu)
{
142
	struct h5 *h5;
143
	const unsigned char sync[] = { 0x01, 0x7e };
144 145 146 147 148 149 150 151 152 153 154 155 156

	BT_DBG("hu %p", hu);

	h5 = kzalloc(sizeof(*h5), GFP_KERNEL);
	if (!h5)
		return -ENOMEM;

	hu->priv = h5;

	skb_queue_head_init(&h5->unack);
	skb_queue_head_init(&h5->rel);
	skb_queue_head_init(&h5->unrel);

157 158
	h5_reset_rx(h5);

159 160 161 162
	init_timer(&h5->timer);
	h5->timer.function = h5_timed_event;
	h5->timer.data = (unsigned long) hu;

163 164
	set_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags);

165 166 167 168
	/* Send initial sync request */
	h5_link_control(hu, sync, sizeof(sync));
	mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);

169
	return 0;
170 171 172 173
}

static int h5_close(struct hci_uart *hu)
{
174 175 176 177 178 179
	struct h5 *h5 = hu->priv;

	skb_queue_purge(&h5->unack);
	skb_queue_purge(&h5->rel);
	skb_queue_purge(&h5->unrel);

180 181
	del_timer(&h5->timer);

182 183 184
	kfree(h5);

	return 0;
185 186
}

187 188 189 190 191 192 193 194 195 196
static void h5_pkt_cull(struct h5 *h5)
{
	struct sk_buff *skb, *tmp;
	unsigned long flags;
	int i, to_remove;
	u8 seq;

	spin_lock_irqsave(&h5->unack.lock, flags);

	to_remove = skb_queue_len(&h5->unack);
197 198
	if (to_remove == 0)
		goto unlock;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

	seq = h5->tx_seq;

	while (to_remove > 0) {
		if (h5->rx_ack == seq)
			break;

		to_remove--;
		seq = (seq - 1) % 8;
	}

	if (seq != h5->rx_ack)
		BT_ERR("Controller acked invalid packet");

	i = 0;
	skb_queue_walk_safe(&h5->unack, skb, tmp) {
		if (i++ >= to_remove)
			break;

		__skb_unlink(skb, &h5->unack);
		kfree_skb(skb);
	}

	if (skb_queue_empty(&h5->unack))
		del_timer(&h5->timer);

225
unlock:
226 227 228
	spin_unlock_irqrestore(&h5->unack.lock, flags);
}

229 230
static void h5_handle_internal_rx(struct hci_uart *hu)
{
231 232 233 234 235
	struct h5 *h5 = hu->priv;
	const unsigned char sync_req[] = { 0x01, 0x7e };
	const unsigned char sync_rsp[] = { 0x02, 0x7d };
	const unsigned char conf_req[] = { 0x03, 0xfc, 0x01 };
	const unsigned char conf_rsp[] = { 0x04, 0x7b, 0x01 };
236 237 238
	const unsigned char wakeup_req[] = { 0x05, 0xfa };
	const unsigned char woken_req[] = { 0x06, 0xf9 };
	const unsigned char sleep_req[] = { 0x07, 0x78 };
239 240 241
	const unsigned char *hdr = h5->rx_skb->data;
	const unsigned char *data = &h5->rx_skb->data[4];

242
	BT_DBG("%s", hu->hdev->name);
243 244 245 246 247 248 249 250 251 252

	if (H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT)
		return;

	if (H5_HDR_LEN(hdr) < 2)
		return;

	if (memcmp(data, sync_req, 2) == 0) {
		h5_link_control(hu, sync_rsp, 2);
	} else if (memcmp(data, sync_rsp, 2) == 0) {
253
		h5->state = H5_INITIALIZED;
254 255 256 257 258 259
		h5_link_control(hu, conf_req, 3);
	} else if (memcmp(data, conf_req, 2) == 0) {
		h5_link_control(hu, conf_rsp, 2);
		h5_link_control(hu, conf_req, 3);
	} else if (memcmp(data, conf_rsp, 2) == 0) {
		BT_DBG("Three-wire init sequence complete");
260
		h5->state = H5_ACTIVE;
261
		hci_uart_init_ready(hu);
262
		return;
263 264 265 266 267 268 269 270
	} else if (memcmp(data, sleep_req, 2) == 0) {
		BT_DBG("Peer went to sleep");
		h5->sleeping = true;
		h5_link_control(hu, wakeup_req, 2);
	} else if (memcmp(data, woken_req, 2) == 0) {
		BT_DBG("Peer woke up");
		h5->sleeping = false;
		return;
271 272 273 274 275 276
	} else {
		BT_DBG("Link Control: 0x%02hhx 0x%02hhx", data[0], data[1]);
		return;
	}

	hci_uart_tx_wakeup(hu);
277 278 279 280 281
}

static void h5_complete_rx_pkt(struct hci_uart *hu)
{
	struct h5 *h5 = hu->priv;
282
	const unsigned char *hdr = h5->rx_skb->data;
283

284
	if (H5_HDR_RELIABLE(hdr)) {
285
		h5->tx_ack = (h5->tx_ack + 1) % 8;
286
		h5->tx_ack_req = true;
287
		hci_uart_tx_wakeup(hu);
288
	}
289

290 291 292 293 294
	h5->rx_ack = H5_HDR_ACK(hdr);

	h5_pkt_cull(h5);

	switch (H5_HDR_PKT_TYPE(hdr)) {
295 296 297
	case HCI_EVENT_PKT:
	case HCI_ACLDATA_PKT:
	case HCI_SCODATA_PKT:
298
		bt_cb(h5->rx_skb)->pkt_type = H5_HDR_PKT_TYPE(hdr);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

		/* Remove Three-wire header */
		skb_pull(h5->rx_skb, 4);

		hci_recv_frame(h5->rx_skb);
		h5->rx_skb = NULL;

		break;

	default:
		h5_handle_internal_rx(hu);
		break;
	}

	h5_reset_rx(h5);
}

static int h5_rx_crc(struct hci_uart *hu, unsigned char c)
{
	struct h5 *h5 = hu->priv;

	h5_complete_rx_pkt(hu);
	h5_reset_rx(h5);

	return 0;
}

static int h5_rx_payload(struct hci_uart *hu, unsigned char c)
{
	struct h5 *h5 = hu->priv;
	const unsigned char *hdr = h5->rx_skb->data;

331
	if (H5_HDR_CRC(hdr)) {
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
		h5->rx_func = h5_rx_crc;
		h5->rx_pending = 2;
	} else {
		h5_complete_rx_pkt(hu);
		h5_reset_rx(h5);
	}

	return 0;
}

static int h5_rx_3wire_hdr(struct hci_uart *hu, unsigned char c)
{
	struct h5 *h5 = hu->priv;
	const unsigned char *hdr = h5->rx_skb->data;

347 348 349 350 351
	BT_DBG("%s rx: seq %u ack %u crc %u rel %u type %u len %u",
	       hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
	       H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
	       H5_HDR_LEN(hdr));

352 353 354 355 356 357
	if (((hdr[0] + hdr[1] + hdr[2] + hdr[3]) & 0xff) != 0xff) {
		BT_ERR("Invalid header checksum");
		h5_reset_rx(h5);
		return 0;
	}

358
	if (H5_HDR_RELIABLE(hdr) && H5_HDR_SEQ(hdr) != h5->tx_ack) {
359
		BT_ERR("Out-of-order packet arrived (%u != %u)",
360
		       H5_HDR_SEQ(hdr), h5->tx_ack);
361 362 363 364
		h5_reset_rx(h5);
		return 0;
	}

365 366 367 368 369 370
	if (h5->state != H5_ACTIVE &&
	    H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT) {
		BT_ERR("Non-link packet received in non-active state");
		h5_reset_rx(h5);
	}

371
	h5->rx_func = h5_rx_payload;
372
	h5->rx_pending = H5_HDR_LEN(hdr);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

	return 0;
}

static int h5_rx_pkt_start(struct hci_uart *hu, unsigned char c)
{
	struct h5 *h5 = hu->priv;

	if (c == SLIP_DELIMITER)
		return 1;

	h5->rx_func = h5_rx_3wire_hdr;
	h5->rx_pending = 4;

	h5->rx_skb = bt_skb_alloc(H5_MAX_LEN, GFP_ATOMIC);
	if (!h5->rx_skb) {
		BT_ERR("Can't allocate mem for new packet");
		h5_reset_rx(h5);
		return -ENOMEM;
	}

	h5->rx_skb->dev = (void *) hu->hdev;

	return 0;
}

static int h5_rx_delimiter(struct hci_uart *hu, unsigned char c)
{
	struct h5 *h5 = hu->priv;

	if (c == SLIP_DELIMITER)
		h5->rx_func = h5_rx_pkt_start;

	return 1;
}

static void h5_unslip_one_byte(struct h5 *h5, unsigned char c)
{
	const u8 delim = SLIP_DELIMITER, esc = SLIP_ESC;
	const u8 *byte = &c;

	if (!h5->rx_esc && c == SLIP_ESC) {
		h5->rx_esc = true;
		return;
	}

	if (h5->rx_esc) {
		switch (c) {
		case SLIP_ESC_DELIM:
			byte = &delim;
			break;
		case SLIP_ESC_ESC:
			byte = &esc;
			break;
		default:
			BT_ERR("Invalid esc byte 0x%02hhx", c);
			h5_reset_rx(h5);
			return;
		}

		h5->rx_esc = false;
	}

	memcpy(skb_put(h5->rx_skb, 1), byte, 1);
	h5->rx_pending--;

439
	BT_DBG("unsliped 0x%02hhx, rx_pending %zu", *byte, h5->rx_pending);
440 441 442 443 444 445 446 447 448 449 450 451 452 453
}

static void h5_reset_rx(struct h5 *h5)
{
	if (h5->rx_skb) {
		kfree_skb(h5->rx_skb);
		h5->rx_skb = NULL;
	}

	h5->rx_func = h5_rx_delimiter;
	h5->rx_pending = 0;
	h5->rx_esc = false;
}

454 455
static int h5_recv(struct hci_uart *hu, void *data, int count)
{
456 457 458
	struct h5 *h5 = hu->priv;
	unsigned char *ptr = data;

459 460
	BT_DBG("%s pending %zu count %d", hu->hdev->name, h5->rx_pending,
	       count);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	while (count > 0) {
		int processed;

		if (h5->rx_pending > 0) {
			if (*ptr == SLIP_DELIMITER) {
				BT_ERR("Too short H5 packet");
				h5_reset_rx(h5);
				continue;
			}

			h5_unslip_one_byte(h5, *ptr);

			ptr++; count--;
			continue;
		}

		processed = h5->rx_func(hu, *ptr);
		if (processed < 0)
			return processed;

		ptr += processed;
		count -= processed;
	}

	return 0;
487 488 489 490
}

static int h5_enqueue(struct hci_uart *hu, struct sk_buff *skb)
{
491 492 493 494 495 496 497 498
	struct h5 *h5 = hu->priv;

	if (skb->len > 0xfff) {
		BT_ERR("Packet too long (%u bytes)", skb->len);
		kfree_skb(skb);
		return 0;
	}

499 500 501 502 503 504
	if (h5->state != H5_ACTIVE) {
		BT_ERR("Ignoring HCI data in non-active state");
		kfree_skb(skb);
		return 0;
	}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	switch (bt_cb(skb)->pkt_type) {
	case HCI_ACLDATA_PKT:
	case HCI_COMMAND_PKT:
		skb_queue_tail(&h5->rel, skb);
		break;

	case HCI_SCODATA_PKT:
		skb_queue_tail(&h5->unrel, skb);
		break;

	default:
		BT_ERR("Unknown packet type %u", bt_cb(skb)->pkt_type);
		kfree_skb(skb);
		break;
	}

	return 0;
}

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
static void h5_slip_delim(struct sk_buff *skb)
{
	const char delim = SLIP_DELIMITER;

	memcpy(skb_put(skb, 1), &delim, 1);
}

static void h5_slip_one_byte(struct sk_buff *skb, u8 c)
{
	const char esc_delim[2] = { SLIP_ESC, SLIP_ESC_DELIM };
	const char esc_esc[2] = { SLIP_ESC, SLIP_ESC_ESC };

	switch (c) {
	case SLIP_DELIMITER:
		memcpy(skb_put(skb, 2), &esc_delim, 2);
		break;
	case SLIP_ESC:
		memcpy(skb_put(skb, 2), &esc_esc, 2);
		break;
	default:
		memcpy(skb_put(skb, 1), &c, 1);
	}
}

548
static struct sk_buff *h5_build_pkt(struct hci_uart *hu, bool rel, u8 pkt_type,
549
				    const u8 *data, size_t len)
550
{
551
	struct h5 *h5 = hu->priv;
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	struct sk_buff *nskb;
	u8 hdr[4];
	int i;

	/*
	 * Max len of packet: (original len + 4 (H5 hdr) + 2 (crc)) * 2
	 * (because bytes 0xc0 and 0xdb are escaped, worst case is when
	 * the packet is all made of 0xc0 and 0xdb) + 2 (0xc0
	 * delimiters at start and end).
	 */
	nskb = alloc_skb((len + 6) * 2 + 2, GFP_ATOMIC);
	if (!nskb)
		return NULL;

	bt_cb(nskb)->pkt_type = pkt_type;

	h5_slip_delim(nskb);

570
	hdr[0] = h5->tx_ack << 3;
571
	h5->tx_ack_req = false;
572 573 574

	if (rel) {
		hdr[0] |= 1 << 7;
575 576
		hdr[0] |= h5->tx_seq;
		h5->tx_seq = (h5->tx_seq + 1) % 8;
577 578 579 580 581 582
	}

	hdr[1] = pkt_type | ((len & 0x0f) << 4);
	hdr[2] = len >> 4;
	hdr[3] = ~((hdr[0] + hdr[1] + hdr[2]) & 0xff);

583 584 585 586 587
	BT_DBG("%s tx: seq %u ack %u crc %u rel %u type %u len %u",
	       hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
	       H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
	       H5_HDR_LEN(hdr));

588 589 590 591 592 593 594 595 596 597 598
	for (i = 0; i < 4; i++)
		h5_slip_one_byte(nskb, hdr[i]);

	for (i = 0; i < len; i++)
		h5_slip_one_byte(nskb, data[i]);

	h5_slip_delim(nskb);

	return nskb;
}

599
static struct sk_buff *h5_prepare_pkt(struct hci_uart *hu, u8 pkt_type,
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
				      const u8 *data, size_t len)
{
	bool rel;

	switch (pkt_type) {
	case HCI_ACLDATA_PKT:
	case HCI_COMMAND_PKT:
		rel = true;
		break;
	case HCI_SCODATA_PKT:
	case HCI_3WIRE_LINK_PKT:
	case HCI_3WIRE_ACK_PKT:
		rel = false;
		break;
	default:
		BT_ERR("Unknown packet type %u", pkt_type);
		return NULL;
	}

619
	return h5_build_pkt(hu, rel, pkt_type, data, len);
620 621 622 623
}

static struct sk_buff *h5_dequeue(struct hci_uart *hu)
{
624
	struct h5 *h5 = hu->priv;
625
	unsigned long flags;
626 627 628
	struct sk_buff *skb, *nskb;

	if ((skb = skb_dequeue(&h5->unrel)) != NULL) {
629
		nskb = h5_prepare_pkt(hu, bt_cb(skb)->pkt_type,
630
				      skb->data, skb->len);
631 632 633 634 635 636 637 638 639
		if (nskb) {
			kfree_skb(skb);
			return nskb;
		}

		skb_queue_head(&h5->unrel, skb);
		BT_ERR("Could not dequeue pkt because alloc_skb failed");
	}

640 641 642 643 644 645
	spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING);

	if (h5->unack.qlen >= H5_TXWINSIZE)
		goto unlock;

	if ((skb = skb_dequeue(&h5->rel)) != NULL) {
646
		nskb = h5_prepare_pkt(hu, bt_cb(skb)->pkt_type,
647
				      skb->data, skb->len);
648 649 650 651 652 653 654 655 656 657 658 659 660 661
		if (nskb) {
			__skb_queue_tail(&h5->unack, skb);
			mod_timer(&h5->timer, jiffies + H5_ACK_TIMEOUT);
			spin_unlock_irqrestore(&h5->unack.lock, flags);
			return nskb;
		}

		skb_queue_head(&h5->rel, skb);
		BT_ERR("Could not dequeue pkt because alloc_skb failed");
	}

unlock:
	spin_unlock_irqrestore(&h5->unack.lock, flags);

662
	if (h5->tx_ack_req)
663
		return h5_prepare_pkt(hu, HCI_3WIRE_ACK_PKT, NULL, 0);
664

665 666 667 668 669
	return NULL;
}

static int h5_flush(struct hci_uart *hu)
{
670 671
	BT_DBG("hu %p", hu);
	return 0;
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
}

static struct hci_uart_proto h5p = {
	.id		= HCI_UART_3WIRE,
	.open		= h5_open,
	.close		= h5_close,
	.recv		= h5_recv,
	.enqueue	= h5_enqueue,
	.dequeue	= h5_dequeue,
	.flush		= h5_flush,
};

int __init h5_init(void)
{
	int err = hci_uart_register_proto(&h5p);

	if (!err)
		BT_INFO("HCI Three-wire UART (H5) protocol initialized");
	else
		BT_ERR("HCI Three-wire UART (H5) protocol init failed");

	return err;
}

int __exit h5_deinit(void)
{
	return hci_uart_unregister_proto(&h5p);
}