spu_base.c 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Low-level SPU handling
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23
#undef DEBUG
24 25 26 27 28 29 30 31 32 33 34

#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/wait.h>

#include <asm/io.h>
#include <asm/prom.h>
35
#include <linux/mutex.h>
36
#include <asm/spu.h>
37
#include <asm/spu_priv1.h>
38 39 40 41
#include <asm/mmu_context.h>

#include "interrupt.h"

42 43 44 45
const struct spu_priv1_ops *spu_priv1_ops;

EXPORT_SYMBOL_GPL(spu_priv1_ops);

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
static int __spu_trap_invalid_dma(struct spu *spu)
{
	pr_debug("%s\n", __FUNCTION__);
	force_sig(SIGBUS, /* info, */ current);
	return 0;
}

static int __spu_trap_dma_align(struct spu *spu)
{
	pr_debug("%s\n", __FUNCTION__);
	force_sig(SIGBUS, /* info, */ current);
	return 0;
}

static int __spu_trap_error(struct spu *spu)
{
	pr_debug("%s\n", __FUNCTION__);
	force_sig(SIGILL, /* info, */ current);
	return 0;
}

static void spu_restart_dma(struct spu *spu)
{
	struct spu_priv2 __iomem *priv2 = spu->priv2;
70

71
	if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
72
		out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
73 74 75 76
}

static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
{
77 78
	struct spu_priv2 __iomem *priv2 = spu->priv2;
	struct mm_struct *mm = spu->mm;
79
	u64 esid, vsid, llp;
80 81 82

	pr_debug("%s\n", __FUNCTION__);

83
	if (test_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags)) {
84 85 86
		/* SLBs are pre-loaded for context switch, so
		 * we should never get here!
		 */
87 88 89
		printk("%s: invalid access during switch!\n", __func__);
		return 1;
	}
90 91 92 93
	if (!mm || (REGION_ID(ea) != USER_REGION_ID)) {
		/* Future: support kernel segments so that drivers
		 * can use SPUs.
		 */
94 95 96 97
		pr_debug("invalid region access at %016lx\n", ea);
		return 1;
	}

98
	esid = (ea & ESID_MASK) | SLB_ESID_V;
99
#ifdef CONFIG_HUGETLB_PAGE
100
	if (in_hugepage_area(mm->context, ea))
101 102 103 104 105 106
		llp = mmu_psize_defs[mmu_huge_psize].sllp;
	else
#endif
		llp = mmu_psize_defs[mmu_virtual_psize].sllp;
	vsid = (get_vsid(mm->context.id, ea) << SLB_VSID_SHIFT) |
			SLB_VSID_USER | llp;
107

108 109 110 111 112
	out_be64(&priv2->slb_index_W, spu->slb_replace);
	out_be64(&priv2->slb_vsid_RW, vsid);
	out_be64(&priv2->slb_esid_RW, esid);

	spu->slb_replace++;
113 114 115 116 117 118 119 120
	if (spu->slb_replace >= 8)
		spu->slb_replace = 0;

	spu_restart_dma(spu);

	return 0;
}

121
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX
122
static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
123
{
124
	pr_debug("%s, %lx, %lx\n", __FUNCTION__, dsisr, ea);
125

126 127 128 129 130 131 132 133 134
	/* Handle kernel space hash faults immediately.
	   User hash faults need to be deferred to process context. */
	if ((dsisr & MFC_DSISR_PTE_NOT_FOUND)
	    && REGION_ID(ea) != USER_REGION_ID
	    && hash_page(ea, _PAGE_PRESENT, 0x300) == 0) {
		spu_restart_dma(spu);
		return 0;
	}

135
	if (test_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags)) {
136 137 138
		printk("%s: invalid access during switch!\n", __func__);
		return 1;
	}
139

140 141 142
	spu->dar = ea;
	spu->dsisr = dsisr;
	mb();
143
	spu->stop_callback(spu);
144 145 146 147 148 149 150 151 152 153
	return 0;
}

static irqreturn_t
spu_irq_class_0(int irq, void *data, struct pt_regs *regs)
{
	struct spu *spu;

	spu = data;
	spu->class_0_pending = 1;
154
	spu->stop_callback(spu);
155 156 157 158

	return IRQ_HANDLED;
}

159
int
160 161
spu_irq_class_0_bottom(struct spu *spu)
{
162
	unsigned long stat, mask;
163 164 165

	spu->class_0_pending = 0;

166 167
	mask = spu_int_mask_get(spu, 0);
	stat = spu_int_stat_get(spu, 0);
168

169 170
	stat &= mask;

171
	if (stat & 1) /* invalid DMA alignment */
172 173
		__spu_trap_dma_align(spu);

174 175 176
	if (stat & 2) /* invalid MFC DMA */
		__spu_trap_invalid_dma(spu);

177 178 179
	if (stat & 4) /* error on SPU */
		__spu_trap_error(spu);

180
	spu_int_stat_clear(spu, 0, stat);
181 182

	return (stat & 0x7) ? -EIO : 0;
183
}
184
EXPORT_SYMBOL_GPL(spu_irq_class_0_bottom);
185 186 187 188 189

static irqreturn_t
spu_irq_class_1(int irq, void *data, struct pt_regs *regs)
{
	struct spu *spu;
190
	unsigned long stat, mask, dar, dsisr;
191 192

	spu = data;
193 194 195

	/* atomically read & clear class1 status. */
	spin_lock(&spu->register_lock);
196 197 198 199
	mask  = spu_int_mask_get(spu, 1);
	stat  = spu_int_stat_get(spu, 1) & mask;
	dar   = spu_mfc_dar_get(spu);
	dsisr = spu_mfc_dsisr_get(spu);
200
	if (stat & 2) /* mapping fault */
201 202
		spu_mfc_dsisr_set(spu, 0ul);
	spu_int_stat_clear(spu, 1, stat);
203
	spin_unlock(&spu->register_lock);
204 205
	pr_debug("%s: %lx %lx %lx %lx\n", __FUNCTION__, mask, stat,
			dar, dsisr);
206 207 208 209 210

	if (stat & 1) /* segment fault */
		__spu_trap_data_seg(spu, dar);

	if (stat & 2) { /* mapping fault */
211
		__spu_trap_data_map(spu, dar, dsisr);
212 213 214 215 216 217 218 219 220 221
	}

	if (stat & 4) /* ls compare & suspend on get */
		;

	if (stat & 8) /* ls compare & suspend on put */
		;

	return stat ? IRQ_HANDLED : IRQ_NONE;
}
222
EXPORT_SYMBOL_GPL(spu_irq_class_1_bottom);
223 224 225 226 227 228

static irqreturn_t
spu_irq_class_2(int irq, void *data, struct pt_regs *regs)
{
	struct spu *spu;
	unsigned long stat;
229
	unsigned long mask;
230 231

	spu = data;
232
	spin_lock(&spu->register_lock);
233 234
	stat = spu_int_stat_get(spu, 2);
	mask = spu_int_mask_get(spu, 2);
235 236 237 238 239 240 241 242 243 244 245
	/* ignore interrupts we're not waiting for */
	stat &= mask;
	/*
	 * mailbox interrupts (0x1 and 0x10) are level triggered.
	 * mask them now before acknowledging.
	 */
	if (stat & 0x11)
		spu_int_mask_and(spu, 2, ~(stat & 0x11));
	/* acknowledge all interrupts before the callbacks */
	spu_int_stat_clear(spu, 2, stat);
	spin_unlock(&spu->register_lock);
246

247
	pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
248 249

	if (stat & 1)  /* PPC core mailbox */
250
		spu->ibox_callback(spu);
251 252

	if (stat & 2) /* SPU stop-and-signal */
253
		spu->stop_callback(spu);
254 255

	if (stat & 4) /* SPU halted */
256
		spu->stop_callback(spu);
257 258

	if (stat & 8) /* DMA tag group complete */
259
		spu->mfc_callback(spu);
260 261

	if (stat & 0x10) /* SPU mailbox threshold */
262
		spu->wbox_callback(spu);
263 264 265 266 267 268 269 270 271 272 273 274 275 276

	return stat ? IRQ_HANDLED : IRQ_NONE;
}

static int
spu_request_irqs(struct spu *spu)
{
	int ret;
	int irq_base;

	irq_base = IIC_NODE_STRIDE * spu->node + IIC_SPE_OFFSET;

	snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0", spu->number);
	ret = request_irq(irq_base + spu->isrc,
277
		 spu_irq_class_0, IRQF_DISABLED, spu->irq_c0, spu);
278 279 280 281 282
	if (ret)
		goto out;

	snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1", spu->number);
	ret = request_irq(irq_base + IIC_CLASS_STRIDE + spu->isrc,
283
		 spu_irq_class_1, IRQF_DISABLED, spu->irq_c1, spu);
284 285 286 287 288
	if (ret)
		goto out1;

	snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2", spu->number);
	ret = request_irq(irq_base + 2*IIC_CLASS_STRIDE + spu->isrc,
289
		 spu_irq_class_2, IRQF_DISABLED, spu->irq_c2, spu);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	if (ret)
		goto out2;
	goto out;

out2:
	free_irq(irq_base + IIC_CLASS_STRIDE + spu->isrc, spu);
out1:
	free_irq(irq_base + spu->isrc, spu);
out:
	return ret;
}

static void
spu_free_irqs(struct spu *spu)
{
	int irq_base;

	irq_base = IIC_NODE_STRIDE * spu->node + IIC_SPE_OFFSET;

	free_irq(irq_base + spu->isrc, spu);
	free_irq(irq_base + IIC_CLASS_STRIDE + spu->isrc, spu);
	free_irq(irq_base + 2*IIC_CLASS_STRIDE + spu->isrc, spu);
}

static LIST_HEAD(spu_list);
315
static DEFINE_MUTEX(spu_mutex);
316 317 318 319 320 321 322 323 324 325 326 327 328 329

static void spu_init_channels(struct spu *spu)
{
	static const struct {
		 unsigned channel;
		 unsigned count;
	} zero_list[] = {
		{ 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
		{ 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
	}, count_list[] = {
		{ 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
		{ 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
		{ 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
	};
330
	struct spu_priv2 __iomem *priv2;
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	int i;

	priv2 = spu->priv2;

	/* initialize all channel data to zero */
	for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
		int count;

		out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
		for (count = 0; count < zero_list[i].count; count++)
			out_be64(&priv2->spu_chnldata_RW, 0);
	}

	/* initialize channel counts to meaningful values */
	for (i = 0; i < ARRAY_SIZE(count_list); i++) {
		out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
		out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
	}
}

struct spu *spu_alloc(void)
{
	struct spu *spu;

355
	mutex_lock(&spu_mutex);
356 357 358 359 360 361 362 363
	if (!list_empty(&spu_list)) {
		spu = list_entry(spu_list.next, struct spu, list);
		list_del_init(&spu->list);
		pr_debug("Got SPU %x %d\n", spu->isrc, spu->number);
	} else {
		pr_debug("No SPU left\n");
		spu = NULL;
	}
364
	mutex_unlock(&spu_mutex);
365

366
	if (spu)
367 368 369 370
		spu_init_channels(spu);

	return spu;
}
371
EXPORT_SYMBOL_GPL(spu_alloc);
372 373 374

void spu_free(struct spu *spu)
{
375
	mutex_lock(&spu_mutex);
376
	list_add_tail(&spu->list, &spu_list);
377
	mutex_unlock(&spu_mutex);
378
}
379
EXPORT_SYMBOL_GPL(spu_free);
380 381 382 383 384 385 386 387

static int spu_handle_mm_fault(struct spu *spu)
{
	struct mm_struct *mm = spu->mm;
	struct vm_area_struct *vma;
	u64 ea, dsisr, is_write;
	int ret;

388 389
	ea = spu->dar;
	dsisr = spu->dsisr;
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
#if 0
	if (!IS_VALID_EA(ea)) {
		return -EFAULT;
	}
#endif /* XXX */
	if (mm == NULL) {
		return -EFAULT;
	}
	if (mm->pgd == NULL) {
		return -EFAULT;
	}

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, ea);
	if (!vma)
		goto bad_area;
	if (vma->vm_start <= ea)
		goto good_area;
	if (!(vma->vm_flags & VM_GROWSDOWN))
		goto bad_area;
#if 0
	if (expand_stack(vma, ea))
		goto bad_area;
#endif /* XXX */
good_area:
	is_write = dsisr & MFC_DSISR_ACCESS_PUT;
	if (is_write) {
		if (!(vma->vm_flags & VM_WRITE))
			goto bad_area;
	} else {
		if (dsisr & MFC_DSISR_ACCESS_DENIED)
			goto bad_area;
		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
			goto bad_area;
	}
	ret = 0;
	switch (handle_mm_fault(mm, vma, ea, is_write)) {
	case VM_FAULT_MINOR:
		current->min_flt++;
		break;
	case VM_FAULT_MAJOR:
		current->maj_flt++;
		break;
	case VM_FAULT_SIGBUS:
		ret = -EFAULT;
		goto bad_area;
	case VM_FAULT_OOM:
		ret = -ENOMEM;
		goto bad_area;
	default:
		BUG();
	}
	up_read(&mm->mmap_sem);
	return ret;

bad_area:
	up_read(&mm->mmap_sem);
	return -EFAULT;
}

450
int spu_irq_class_1_bottom(struct spu *spu)
451 452 453 454
{
	u64 ea, dsisr, access, error = 0UL;
	int ret = 0;

455 456
	ea = spu->dar;
	dsisr = spu->dsisr;
457
	if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED)) {
458 459
		u64 flags;

460 461
		access = (_PAGE_PRESENT | _PAGE_USER);
		access |= (dsisr & MFC_DSISR_ACCESS_PUT) ? _PAGE_RW : 0UL;
462
		local_irq_save(flags);
463 464
		if (hash_page(ea, access, 0x300) != 0)
			error |= CLASS1_ENABLE_STORAGE_FAULT_INTR;
465
		local_irq_restore(flags);
466
	}
467
	if (error & CLASS1_ENABLE_STORAGE_FAULT_INTR) {
468 469 470 471 472
		if ((ret = spu_handle_mm_fault(spu)) != 0)
			error |= CLASS1_ENABLE_STORAGE_FAULT_INTR;
		else
			error &= ~CLASS1_ENABLE_STORAGE_FAULT_INTR;
	}
473 474 475
	spu->dar = 0UL;
	spu->dsisr = 0UL;
	if (!error) {
476
		spu_restart_dma(spu);
477 478 479
	} else {
		__spu_trap_invalid_dma(spu);
	}
480 481 482
	return ret;
}

483 484 485 486 487 488 489 490 491
static int __init find_spu_node_id(struct device_node *spe)
{
	unsigned int *id;
	struct device_node *cpu;
	cpu = spe->parent->parent;
	id = (unsigned int *)get_property(cpu, "node-id", NULL);
	return id ? *id : 0;
}

492 493
static int __init cell_spuprop_present(struct spu *spu, struct device_node *spe,
		const char *prop)
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
	static DEFINE_MUTEX(add_spumem_mutex);

	struct address_prop {
		unsigned long address;
		unsigned int len;
	} __attribute__((packed)) *p;
	int proplen;

	unsigned long start_pfn, nr_pages;
	struct pglist_data *pgdata;
	struct zone *zone;
	int ret;

	p = (void*)get_property(spe, prop, &proplen);
	WARN_ON(proplen != sizeof (*p));

	start_pfn = p->address >> PAGE_SHIFT;
	nr_pages = ((unsigned long)p->len + PAGE_SIZE - 1) >> PAGE_SHIFT;

514
	pgdata = NODE_DATA(spu->nid);
515 516 517 518 519 520 521 522 523 524
	zone = pgdata->node_zones;

	/* XXX rethink locking here */
	mutex_lock(&add_spumem_mutex);
	ret = __add_pages(zone, start_pfn, nr_pages);
	mutex_unlock(&add_spumem_mutex);

	return ret;
}

525 526
static void __iomem * __init map_spe_prop(struct spu *spu,
		struct device_node *n, const char *name)
527 528 529 530 531 532 533 534
{
	struct address_prop {
		unsigned long address;
		unsigned int len;
	} __attribute__((packed)) *prop;

	void *p;
	int proplen;
535 536
	void* ret = NULL;
	int err = 0;
537 538 539 540 541 542 543

	p = get_property(n, name, &proplen);
	if (proplen != sizeof (struct address_prop))
		return NULL;

	prop = p;

544
	err = cell_spuprop_present(spu, n, name);
545 546 547 548 549 550 551
	if (err && (err != -EEXIST))
		goto out;

	ret = ioremap(prop->address, prop->len);

 out:
	return ret;
552 553 554 555 556 557 558 559 560 561
}

static void spu_unmap(struct spu *spu)
{
	iounmap(spu->priv2);
	iounmap(spu->priv1);
	iounmap(spu->problem);
	iounmap((u8 __iomem *)spu->local_store);
}

562
static int __init spu_map_device(struct spu *spu, struct device_node *node)
563 564 565 566 567
{
	char *prop;
	int ret;

	ret = -ENODEV;
568
	prop = get_property(node, "isrc", NULL);
569 570 571 572
	if (!prop)
		goto out;
	spu->isrc = *(unsigned int *)prop;

573
	spu->name = get_property(node, "name", NULL);
574 575 576
	if (!spu->name)
		goto out;

577
	prop = get_property(node, "local-store", NULL);
578 579 580 581 582
	if (!prop)
		goto out;
	spu->local_store_phys = *(unsigned long *)prop;

	/* we use local store as ram, not io memory */
583 584
	spu->local_store = (void __force *)
		map_spe_prop(spu, node, "local-store");
585 586 587
	if (!spu->local_store)
		goto out;

588
	prop = get_property(node, "problem", NULL);
589 590 591 592
	if (!prop)
		goto out_unmap;
	spu->problem_phys = *(unsigned long *)prop;

593
	spu->problem= map_spe_prop(spu, node, "problem");
594 595 596
	if (!spu->problem)
		goto out_unmap;

597
	spu->priv1= map_spe_prop(spu, node, "priv1");
598
	/* priv1 is not available on a hypervisor */
599

600
	spu->priv2= map_spe_prop(spu, node, "priv2");
601 602 603 604 605 606 607 608 609 610 611
	if (!spu->priv2)
		goto out_unmap;
	ret = 0;
	goto out;

out_unmap:
	spu_unmap(spu);
out:
	return ret;
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
struct sysdev_class spu_sysdev_class = {
	set_kset_name("spu")
};

static ssize_t spu_show_isrc(struct sys_device *sysdev, char *buf)
{
	struct spu *spu = container_of(sysdev, struct spu, sysdev);
	return sprintf(buf, "%d\n", spu->isrc);

}
static SYSDEV_ATTR(isrc, 0400, spu_show_isrc, NULL);

extern int attach_sysdev_to_node(struct sys_device *dev, int nid);

static int spu_create_sysdev(struct spu *spu)
{
	int ret;

	spu->sysdev.id = spu->number;
	spu->sysdev.cls = &spu_sysdev_class;
	ret = sysdev_register(&spu->sysdev);
	if (ret) {
		printk(KERN_ERR "Can't register SPU %d with sysfs\n",
				spu->number);
		return ret;
	}

	sysdev_create_file(&spu->sysdev, &attr_isrc);
	sysfs_add_device_to_node(&spu->sysdev, spu->nid);

	return 0;
}

static void spu_destroy_sysdev(struct spu *spu)
{
	sysdev_remove_file(&spu->sysdev, &attr_isrc);
	sysfs_remove_device_from_node(&spu->sysdev, spu->nid);
	sysdev_unregister(&spu->sysdev);
}

652 653 654 655 656 657 658
static int __init create_spu(struct device_node *spe)
{
	struct spu *spu;
	int ret;
	static int number;

	ret = -ENOMEM;
659
	spu = kzalloc(sizeof (*spu), GFP_KERNEL);
660 661 662 663 664 665 666 667
	if (!spu)
		goto out;

	ret = spu_map_device(spu, spe);
	if (ret)
		goto out_free;

	spu->node = find_spu_node_id(spe);
668 669 670
	spu->nid = of_node_to_nid(spe);
	if (spu->nid == -1)
		spu->nid = 0;
671
	spin_lock_init(&spu->register_lock);
672 673
	spu_mfc_sdr_set(spu, mfspr(SPRN_SDR1));
	spu_mfc_sr1_set(spu, 0x33);
674
	mutex_lock(&spu_mutex);
675

676 677 678 679 680
	spu->number = number++;
	ret = spu_request_irqs(spu);
	if (ret)
		goto out_unmap;

681 682 683 684
	ret = spu_create_sysdev(spu);
	if (ret)
		goto out_free_irqs;

685
	list_add(&spu->list, &spu_list);
686
	mutex_unlock(&spu_mutex);
687 688 689 690 691 692

	pr_debug(KERN_DEBUG "Using SPE %s %02x %p %p %p %p %d\n",
		spu->name, spu->isrc, spu->local_store,
		spu->problem, spu->priv1, spu->priv2, spu->number);
	goto out;

693 694 695
out_free_irqs:
	spu_free_irqs(spu);

696
out_unmap:
697
	mutex_unlock(&spu_mutex);
698 699 700 701 702 703 704 705 706 707 708
	spu_unmap(spu);
out_free:
	kfree(spu);
out:
	return ret;
}

static void destroy_spu(struct spu *spu)
{
	list_del_init(&spu->list);

709
	spu_destroy_sysdev(spu);
710 711 712 713 714 715 716 717
	spu_free_irqs(spu);
	spu_unmap(spu);
	kfree(spu);
}

static void cleanup_spu_base(void)
{
	struct spu *spu, *tmp;
718
	mutex_lock(&spu_mutex);
719 720
	list_for_each_entry_safe(spu, tmp, &spu_list, list)
		destroy_spu(spu);
721
	mutex_unlock(&spu_mutex);
722
	sysdev_class_unregister(&spu_sysdev_class);
723 724 725 726 727 728 729 730
}
module_exit(cleanup_spu_base);

static int __init init_spu_base(void)
{
	struct device_node *node;
	int ret;

731 732 733 734 735
	/* create sysdev class for spus */
	ret = sysdev_class_register(&spu_sysdev_class);
	if (ret)
		return ret;

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	ret = -ENODEV;
	for (node = of_find_node_by_type(NULL, "spe");
			node; node = of_find_node_by_type(node, "spe")) {
		ret = create_spu(node);
		if (ret) {
			printk(KERN_WARNING "%s: Error initializing %s\n",
				__FUNCTION__, node->name);
			cleanup_spu_base();
			break;
		}
	}
	/* in some old firmware versions, the spe is called 'spc', so we
	   look for that as well */
	for (node = of_find_node_by_type(NULL, "spc");
			node; node = of_find_node_by_type(node, "spc")) {
		ret = create_spu(node);
		if (ret) {
			printk(KERN_WARNING "%s: Error initializing %s\n",
				__FUNCTION__, node->name);
			cleanup_spu_base();
			break;
		}
	}
	return ret;
}
module_init(init_spu_base);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");