stack-validation.txt 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Compile-time stack metadata validation
======================================


Overview
--------

The kernel CONFIG_STACK_VALIDATION option enables a host tool named
objtool which runs at compile time.  It has a "check" subcommand which
analyzes every .o file and ensures the validity of its stack metadata.
It enforces a set of rules on asm code and C inline assembly code so
that stack traces can be reliable.

For each function, it recursively follows all possible code paths and
validates the correct frame pointer state at each instruction.

It also follows code paths involving special sections, like
.altinstructions, __jump_table, and __ex_table, which can add
alternative execution paths to a given instruction (or set of
instructions).  Similarly, it knows how to follow switch statements, for
which gcc sometimes uses jump tables.

23 24 25 26
(Objtool also has an 'orc generate' subcommand which generates debuginfo
for the ORC unwinder.  See Documentation/x86/orc-unwinder.txt in the
kernel tree for more details.)

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

Why do we need stack metadata validation?
-----------------------------------------

Here are some of the benefits of validating stack metadata:

a) More reliable stack traces for frame pointer enabled kernels

   Frame pointers are used for debugging purposes.  They allow runtime
   code and debug tools to be able to walk the stack to determine the
   chain of function call sites that led to the currently executing
   code.

   For some architectures, frame pointers are enabled by
   CONFIG_FRAME_POINTER.  For some other architectures they may be
   required by the ABI (sometimes referred to as "backchain pointers").

   For C code, gcc automatically generates instructions for setting up
   frame pointers when the -fno-omit-frame-pointer option is used.

   But for asm code, the frame setup instructions have to be written by
   hand, which most people don't do.  So the end result is that
   CONFIG_FRAME_POINTER is honored for C code but not for most asm code.

   For stack traces based on frame pointers to be reliable, all
   functions which call other functions must first create a stack frame
   and update the frame pointer.  If a first function doesn't properly
   create a stack frame before calling a second function, the *caller*
   of the first function will be skipped on the stack trace.

   For example, consider the following example backtrace with frame
   pointers enabled:

     [<ffffffff81812584>] dump_stack+0x4b/0x63
     [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30
     [<ffffffff8127f568>] seq_read+0x108/0x3e0
     [<ffffffff812cce62>] proc_reg_read+0x42/0x70
     [<ffffffff81256197>] __vfs_read+0x37/0x100
     [<ffffffff81256b16>] vfs_read+0x86/0x130
     [<ffffffff81257898>] SyS_read+0x58/0xd0
     [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76

   It correctly shows that the caller of cmdline_proc_show() is
   seq_read().

   If we remove the frame pointer logic from cmdline_proc_show() by
   replacing the frame pointer related instructions with nops, here's
   what it looks like instead:

     [<ffffffff81812584>] dump_stack+0x4b/0x63
     [<ffffffff812d6dc2>] cmdline_proc_show+0x12/0x30
     [<ffffffff812cce62>] proc_reg_read+0x42/0x70
     [<ffffffff81256197>] __vfs_read+0x37/0x100
     [<ffffffff81256b16>] vfs_read+0x86/0x130
     [<ffffffff81257898>] SyS_read+0x58/0xd0
     [<ffffffff8181c1f2>] entry_SYSCALL_64_fastpath+0x12/0x76

   Notice that cmdline_proc_show()'s caller, seq_read(), has been
   skipped.  Instead the stack trace seems to show that
   cmdline_proc_show() was called by proc_reg_read().

   The benefit of objtool here is that because it ensures that *all*
   functions honor CONFIG_FRAME_POINTER, no functions will ever[*] be
   skipped on a stack trace.

   [*] unless an interrupt or exception has occurred at the very
       beginning of a function before the stack frame has been created,
       or at the very end of the function after the stack frame has been
       destroyed.  This is an inherent limitation of frame pointers.

97
b) ORC (Oops Rewind Capability) unwind table generation
98

99 100 101 102
   An alternative to frame pointers and DWARF, ORC unwind data can be
   used to walk the stack.  Unlike frame pointers, ORC data is out of
   band.  So it doesn't affect runtime performance and it can be
   reliable even when interrupts or exceptions are involved.
103

104
   For more details, see Documentation/x86/orc-unwinder.txt.
105 106 107

c) Higher live patching compatibility rate

108 109 110 111
   Livepatch has an optional "consistency model", which is needed for
   more complex patches.  In order for the consistency model to work,
   stack traces need to be reliable (or an unreliable condition needs to
   be detectable).  Objtool makes that possible.
112

113 114
   For more details, see the livepatch documentation in the Linux kernel
   source tree at Documentation/livepatch/livepatch.txt.
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

Rules
-----

To achieve the validation, objtool enforces the following rules:

1. Each callable function must be annotated as such with the ELF
   function type.  In asm code, this is typically done using the
   ENTRY/ENDPROC macros.  If objtool finds a return instruction
   outside of a function, it flags an error since that usually indicates
   callable code which should be annotated accordingly.

   This rule is needed so that objtool can properly identify each
   callable function in order to analyze its stack metadata.

2. Conversely, each section of code which is *not* callable should *not*
   be annotated as an ELF function.  The ENDPROC macro shouldn't be used
   in this case.

   This rule is needed so that objtool can ignore non-callable code.
   Such code doesn't have to follow any of the other rules.

3. Each callable function which calls another function must have the
   correct frame pointer logic, if required by CONFIG_FRAME_POINTER or
   the architecture's back chain rules.  This can by done in asm code
   with the FRAME_BEGIN/FRAME_END macros.

   This rule ensures that frame pointer based stack traces will work as
   designed.  If function A doesn't create a stack frame before calling
   function B, the _caller_ of function A will be skipped on the stack
   trace.

4. Dynamic jumps and jumps to undefined symbols are only allowed if:

   a) the jump is part of a switch statement; or

   b) the jump matches sibling call semantics and the frame pointer has
      the same value it had on function entry.

   This rule is needed so that objtool can reliably analyze all of a
   function's code paths.  If a function jumps to code in another file,
   and it's not a sibling call, objtool has no way to follow the jump
   because it only analyzes a single file at a time.

5. A callable function may not execute kernel entry/exit instructions.
   The only code which needs such instructions is kernel entry code,
   which shouldn't be be in callable functions anyway.

   This rule is just a sanity check to ensure that callable functions
   return normally.


167 168
Objtool warnings
----------------
169

170 171 172 173 174 175 176 177
For asm files, if you're getting an error which doesn't make sense,
first make sure that the affected code follows the above rules.

For C files, the common culprits are inline asm statements and calls to
"noreturn" functions.  See below for more details.

Another possible cause for errors in C code is if the Makefile removes
-fno-omit-frame-pointer or adds -fomit-frame-pointer to the gcc options.
178 179 180 181 182

Here are some examples of common warnings reported by objtool, what
they mean, and suggestions for how to fix them.


183
1. file.o: warning: objtool: func()+0x128: call without frame pointer save/setup
184 185

   The func() function made a function call without first saving and/or
186
   updating the frame pointer, and CONFIG_FRAME_POINTER is enabled.
187

188 189 190 191
   If the error is for an asm file, and func() is indeed a callable
   function, add proper frame pointer logic using the FRAME_BEGIN and
   FRAME_END macros.  Otherwise, if it's not a callable function, remove
   its ELF function annotation by changing ENDPROC to END, and instead
192
   use the manual unwind hint macros in asm/unwind_hints.h.
193

194 195 196
   If it's a GCC-compiled .c file, the error may be because the function
   uses an inline asm() statement which has a "call" instruction.  An
   asm() statement with a call instruction must declare the use of the
197 198
   stack pointer in its output operand.  On x86_64, this means adding
   the ASM_CALL_CONSTRAINT as an output constraint:
199

200
     asm volatile("call func" : ASM_CALL_CONSTRAINT);
201

202
   Otherwise the stack frame may not get created before the call.
203 204


205
2. file.o: warning: objtool: .text+0x53: unreachable instruction
206

207
   Objtool couldn't find a code path to reach the instruction.
208

209 210 211
   If the error is for an asm file, and the instruction is inside (or
   reachable from) a callable function, the function should be annotated
   with the ENTRY/ENDPROC macros (ENDPROC is the important one).
212 213
   Otherwise, the code should probably be annotated with the unwind hint
   macros in asm/unwind_hints.h so objtool and the unwinder can know the
214
   stack state associated with the code.
215

216 217 218
   If you're 100% sure the code won't affect stack traces, or if you're
   a just a bad person, you can tell objtool to ignore it.  See the
   "Adding exceptions" section below.
219 220 221 222 223

   If it's not actually in a callable function (e.g. kernel entry code),
   change ENDPROC to END.


224
4. file.o: warning: objtool: func(): can't find starting instruction
225
   or
226
   file.o: warning: objtool: func()+0x11dd: can't decode instruction
227

228
   Does the file have data in a text section?  If so, that can confuse
229 230 231 232
   objtool's instruction decoder.  Move the data to a more appropriate
   section like .data or .rodata.


233
5. file.o: warning: objtool: func()+0x6: unsupported instruction in callable function
234

235 236 237 238
   This is a kernel entry/exit instruction like sysenter or iret.  Such
   instructions aren't allowed in a callable function, and are most
   likely part of the kernel entry code.  They should usually not have
   the callable function annotation (ENDPROC) and should always be
239
   annotated with the unwind hint macros in asm/unwind_hints.h.
240 241


242
6. file.o: warning: objtool: func()+0x26: sibling call from callable instruction with modified stack frame
243

244
   This is a dynamic jump or a jump to an undefined symbol.  Objtool
245 246 247 248 249 250 251
   assumed it's a sibling call and detected that the frame pointer
   wasn't first restored to its original state.

   If it's not really a sibling call, you may need to move the
   destination code to the local file.

   If the instruction is not actually in a callable function (e.g.
252
   kernel entry code), change ENDPROC to END and annotate manually with
253
   the unwind hint macros in asm/unwind_hints.h.
254 255


256
7. file: warning: objtool: func()+0x5c: stack state mismatch
257 258 259 260

   The instruction's frame pointer state is inconsistent, depending on
   which execution path was taken to reach the instruction.

261 262 263 264 265
   Make sure that, when CONFIG_FRAME_POINTER is enabled, the function
   pushes and sets up the frame pointer (for x86_64, this means rbp) at
   the beginning of the function and pops it at the end of the function.
   Also make sure that no other code in the function touches the frame
   pointer.
266

267 268
   Another possibility is that the code has some asm or inline asm which
   does some unusual things to the stack or the frame pointer.  In such
269 270
   cases it's probably appropriate to use the unwind hint macros in
   asm/unwind_hints.h.
271 272


273
8. file.o: warning: objtool: funcA() falls through to next function funcB()
274

275 276 277 278
   This means that funcA() doesn't end with a return instruction or an
   unconditional jump, and that objtool has determined that the function
   can fall through into the next function.  There could be different
   reasons for this:
279

280 281 282 283
   1) funcA()'s last instruction is a call to a "noreturn" function like
      panic().  In this case the noreturn function needs to be added to
      objtool's hard-coded global_noreturns array.  Feel free to bug the
      objtool maintainer, or you can submit a patch.
284

285 286 287 288 289 290 291
   2) funcA() uses the unreachable() annotation in a section of code
      that is actually reachable.

   3) If funcA() calls an inline function, the object code for funcA()
      might be corrupt due to a gcc bug.  For more details, see:
      https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70646

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

If the error doesn't seem to make sense, it could be a bug in objtool.
Feel free to ask the objtool maintainer for help.


Adding exceptions
-----------------

If you _really_ need objtool to ignore something, and are 100% sure
that it won't affect kernel stack traces, you can tell objtool to
ignore it:

- To skip validation of a function, use the STACK_FRAME_NON_STANDARD
  macro.

- To skip validation of a file, add

    OBJECT_FILES_NON_STANDARD_filename.o := n

  to the Makefile.

- To skip validation of a directory, add

    OBJECT_FILES_NON_STANDARD := y

  to the Makefile.