IPMI.txt 29.5 KB
Newer Older
1 2 3
=====================
The Linux IPMI Driver
=====================
L
Linus Torvalds 已提交
4

5
:Author: Corey Minyard <minyard@mvista.com> / <minyard@acm.org>
L
Linus Torvalds 已提交
6 7 8 9 10 11

The Intelligent Platform Management Interface, or IPMI, is a
standard for controlling intelligent devices that monitor a system.
It provides for dynamic discovery of sensors in the system and the
ability to monitor the sensors and be informed when the sensor's
values change or go outside certain boundaries.  It also has a
M
Matt LaPlante 已提交
12
standardized database for field-replaceable units (FRUs) and a watchdog
L
Linus Torvalds 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
timer.

To use this, you need an interface to an IPMI controller in your
system (called a Baseboard Management Controller, or BMC) and
management software that can use the IPMI system.

This document describes how to use the IPMI driver for Linux.  If you
are not familiar with IPMI itself, see the web site at
http://www.intel.com/design/servers/ipmi/index.htm.  IPMI is a big
subject and I can't cover it all here!

Configuration
-------------

C
Corey Minyard 已提交
27
The Linux IPMI driver is modular, which means you have to pick several
L
Linus Torvalds 已提交
28
things to have it work right depending on your hardware.  Most of
C
Corey Minyard 已提交
29 30
these are available in the 'Character Devices' menu then the IPMI
menu.
L
Linus Torvalds 已提交
31 32 33 34 35 36 37

No matter what, you must pick 'IPMI top-level message handler' to use
IPMI.  What you do beyond that depends on your needs and hardware.

The message handler does not provide any user-level interfaces.
Kernel code (like the watchdog) can still use it.  If you need access
from userland, you need to select 'Device interface for IPMI' if you
C
Corey Minyard 已提交
38 39 40 41 42 43
want access through a device driver.

The driver interface depends on your hardware.  If your system
properly provides the SMBIOS info for IPMI, the driver will detect it
and just work.  If you have a board with a standard interface (These
will generally be either "KCS", "SMIC", or "BT", consult your hardware
44 45 46 47 48 49 50
manual), choose the 'IPMI SI handler' option.  A driver also exists
for direct I2C access to the IPMI management controller.  Some boards
support this, but it is unknown if it will work on every board.  For
this, choose 'IPMI SMBus handler', but be ready to try to do some
figuring to see if it will work on your system if the SMBIOS/APCI
information is wrong or not present.  It is fairly safe to have both
these enabled and let the drivers auto-detect what is present.
L
Linus Torvalds 已提交
51 52

You should generally enable ACPI on your system, as systems with IPMI
C
Corey Minyard 已提交
53
can have ACPI tables describing them.
L
Linus Torvalds 已提交
54 55 56

If you have a standard interface and the board manufacturer has done
their job correctly, the IPMI controller should be automatically
C
Corey Minyard 已提交
57 58 59
detected (via ACPI or SMBIOS tables) and should just work.  Sadly,
many boards do not have this information.  The driver attempts
standard defaults, but they may not work.  If you fall into this
60 61
situation, you need to read the section below named 'The SI Driver' or
"The SMBus Driver" on how to hand-configure your system.
L
Linus Torvalds 已提交
62 63 64 65

IPMI defines a standard watchdog timer.  You can enable this with the
'IPMI Watchdog Timer' config option.  If you compile the driver into
the kernel, then via a kernel command-line option you can have the
M
Matt LaPlante 已提交
66
watchdog timer start as soon as it initializes.  It also have a lot
L
Linus Torvalds 已提交
67 68 69 70 71 72
of other options, see the 'Watchdog' section below for more details.
Note that you can also have the watchdog continue to run if it is
closed (by default it is disabled on close).  Go into the 'Watchdog
Cards' menu, enable 'Watchdog Timer Support', and enable the option
'Disable watchdog shutdown on close'.

C
Corey Minyard 已提交
73 74 75 76 77 78 79 80 81 82 83 84
IPMI systems can often be powered off using IPMI commands.  Select
'IPMI Poweroff' to do this.  The driver will auto-detect if the system
can be powered off by IPMI.  It is safe to enable this even if your
system doesn't support this option.  This works on ATCA systems, the
Radisys CPI1 card, and any IPMI system that supports standard chassis
management commands.

If you want the driver to put an event into the event log on a panic,
enable the 'Generate a panic event to all BMCs on a panic' option.  If
you want the whole panic string put into the event log using OEM
events, enable the 'Generate OEM events containing the panic string'
option.
L
Linus Torvalds 已提交
85 86 87 88 89 90 91

Basic Design
------------

The Linux IPMI driver is designed to be very modular and flexible, you
only need to take the pieces you need and you can use it in many
different ways.  Because of that, it's broken into many chunks of
C
Corey Minyard 已提交
92
code.  These chunks (by module name) are:
L
Linus Torvalds 已提交
93 94 95 96 97 98 99 100 101 102 103 104

ipmi_msghandler - This is the central piece of software for the IPMI
system.  It handles all messages, message timing, and responses.  The
IPMI users tie into this, and the IPMI physical interfaces (called
System Management Interfaces, or SMIs) also tie in here.  This
provides the kernelland interface for IPMI, but does not provide an
interface for use by application processes.

ipmi_devintf - This provides a userland IOCTL interface for the IPMI
driver, each open file for this device ties in to the message handler
as an IPMI user.

C
Corey Minyard 已提交
105
ipmi_si - A driver for various system interfaces.  This supports KCS,
106 107 108 109 110 111
SMIC, and BT interfaces.  Unless you have an SMBus interface or your
own custom interface, you probably need to use this.

ipmi_ssif - A driver for accessing BMCs on the SMBus. It uses the
I2C kernel driver's SMBus interfaces to send and receive IPMI messages
over the SMBus.
L
Linus Torvalds 已提交
112

C
Corey Minyard 已提交
113 114
ipmi_powernv - A driver for access BMCs on POWERNV systems.

C
Corey Minyard 已提交
115 116 117 118 119 120 121
ipmi_watchdog - IPMI requires systems to have a very capable watchdog
timer.  This driver implements the standard Linux watchdog timer
interface on top of the IPMI message handler.

ipmi_poweroff - Some systems support the ability to be turned off via
IPMI commands.

C
Corey Minyard 已提交
122 123 124
bt-bmc - This is not part of the main driver, but instead a driver for
accessing a BMC-side interface of a BT interface.  It is used on BMCs
running Linux to provide an interface to the host.
L
Linus Torvalds 已提交
125

C
Corey Minyard 已提交
126
These are all individually selectable via configuration options.
L
Linus Torvalds 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

Much documentation for the interface is in the include files.  The
IPMI include files are:

linux/ipmi.h - Contains the user interface and IOCTL interface for IPMI.

linux/ipmi_smi.h - Contains the interface for system management interfaces
(things that interface to IPMI controllers) to use.

linux/ipmi_msgdefs.h - General definitions for base IPMI messaging.


Addressing
----------

The IPMI addressing works much like IP addresses, you have an overlay
143
to handle the different address types.  The overlay is::
L
Linus Torvalds 已提交
144 145 146 147 148 149 150 151 152 153 154

  struct ipmi_addr
  {
	int   addr_type;
	short channel;
	char  data[IPMI_MAX_ADDR_SIZE];
  };

The addr_type determines what the address really is.  The driver
currently understands two different types of addresses.

155
"System Interface" addresses are defined as::
L
Linus Torvalds 已提交
156 157 158 159 160 161 162 163 164 165 166 167

  struct ipmi_system_interface_addr
  {
	int   addr_type;
	short channel;
  };

and the type is IPMI_SYSTEM_INTERFACE_ADDR_TYPE.  This is used for talking
straight to the BMC on the current card.  The channel must be
IPMI_BMC_CHANNEL.

Messages that are destined to go out on the IPMB bus use the
168
IPMI_IPMB_ADDR_TYPE address type.  The format is::
L
Linus Torvalds 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

  struct ipmi_ipmb_addr
  {
	int           addr_type;
	short         channel;
	unsigned char slave_addr;
	unsigned char lun;
  };

The "channel" here is generally zero, but some devices support more
than one channel, it corresponds to the channel as defined in the IPMI
spec.


Messages
--------

186
Messages are defined as::
L
Linus Torvalds 已提交
187

188 189
  struct ipmi_msg
  {
L
Linus Torvalds 已提交
190 191 192 193 194
	unsigned char netfn;
	unsigned char lun;
	unsigned char cmd;
	unsigned char *data;
	int           data_len;
195
  };
L
Linus Torvalds 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209

The driver takes care of adding/stripping the header information.  The
data portion is just the data to be send (do NOT put addressing info
here) or the response.  Note that the completion code of a response is
the first item in "data", it is not stripped out because that is how
all the messages are defined in the spec (and thus makes counting the
offsets a little easier :-).

When using the IOCTL interface from userland, you must provide a block
of data for "data", fill it, and set data_len to the length of the
block of data, even when receiving messages.  Otherwise the driver
will have no place to put the message.

Messages coming up from the message handler in kernelland will come in
210
as::
L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

  struct ipmi_recv_msg
  {
	struct list_head link;

	/* The type of message as defined in the "Receive Types"
           defines above. */
	int         recv_type;

	ipmi_user_t      *user;
	struct ipmi_addr addr;
	long             msgid;
	struct ipmi_msg  msg;

	/* Call this when done with the message.  It will presumably free
	   the message and do any other necessary cleanup. */
	void (*done)(struct ipmi_recv_msg *msg);

	/* Place-holder for the data, don't make any assumptions about
	   the size or existence of this, since it may change. */
	unsigned char   msg_data[IPMI_MAX_MSG_LENGTH];
  };

You should look at the receive type and handle the message
appropriately.


The Upper Layer Interface (Message Handler)
-------------------------------------------

The upper layer of the interface provides the users with a consistent
view of the IPMI interfaces.  It allows multiple SMI interfaces to be
addressed (because some boards actually have multiple BMCs on them)
and the user should not have to care what type of SMI is below them.


C
Corey Minyard 已提交
247
Watching For Interfaces
248
^^^^^^^^^^^^^^^^^^^^^^^
C
Corey Minyard 已提交
249 250 251 252 253 254 255 256 257

When your code comes up, the IPMI driver may or may not have detected
if IPMI devices exist.  So you might have to defer your setup until
the device is detected, or you might be able to do it immediately.
To handle this, and to allow for discovery, you register an SMI
watcher with ipmi_smi_watcher_register() to iterate over interfaces
and tell you when they come and go.


L
Linus Torvalds 已提交
258
Creating the User
259
^^^^^^^^^^^^^^^^^
L
Linus Torvalds 已提交
260

261
To use the message handler, you must first create a user using
L
Linus Torvalds 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275
ipmi_create_user.  The interface number specifies which SMI you want
to connect to, and you must supply callback functions to be called
when data comes in.  The callback function can run at interrupt level,
so be careful using the callbacks.  This also allows to you pass in a
piece of data, the handler_data, that will be passed back to you on
all calls.

Once you are done, call ipmi_destroy_user() to get rid of the user.

From userland, opening the device automatically creates a user, and
closing the device automatically destroys the user.


Messaging
276
^^^^^^^^^
L
Linus Torvalds 已提交
277

C
Corey Minyard 已提交
278
To send a message from kernel-land, the ipmi_request_settime() call does
L
Linus Torvalds 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
pretty much all message handling.  Most of the parameter are
self-explanatory.  However, it takes a "msgid" parameter.  This is NOT
the sequence number of messages.  It is simply a long value that is
passed back when the response for the message is returned.  You may
use it for anything you like.

Responses come back in the function pointed to by the ipmi_recv_hndl
field of the "handler" that you passed in to ipmi_create_user().
Remember again, these may be running at interrupt level.  Remember to
look at the receive type, too.

From userland, you fill out an ipmi_req_t structure and use the
IPMICTL_SEND_COMMAND ioctl.  For incoming stuff, you can use select()
or poll() to wait for messages to come in.  However, you cannot use
read() to get them, you must call the IPMICTL_RECEIVE_MSG with the
ipmi_recv_t structure to actually get the message.  Remember that you
must supply a pointer to a block of data in the msg.data field, and
you must fill in the msg.data_len field with the size of the data.
This gives the receiver a place to actually put the message.

If the message cannot fit into the data you provide, you will get an
EMSGSIZE error and the driver will leave the data in the receive
queue.  If you want to get it and have it truncate the message, us
the IPMICTL_RECEIVE_MSG_TRUNC ioctl.

When you send a command (which is defined by the lowest-order bit of
the netfn per the IPMI spec) on the IPMB bus, the driver will
automatically assign the sequence number to the command and save the
command.  If the response is not receive in the IPMI-specified 5
seconds, it will generate a response automatically saying the command
timed out.  If an unsolicited response comes in (if it was after 5
seconds, for instance), that response will be ignored.

In kernelland, after you receive a message and are done with it, you
MUST call ipmi_free_recv_msg() on it, or you will leak messages.  Note
that you should NEVER mess with the "done" field of a message, that is
required to properly clean up the message.

Note that when sending, there is an ipmi_request_supply_msgs() call
that lets you supply the smi and receive message.  This is useful for
pieces of code that need to work even if the system is out of buffers
(the watchdog timer uses this, for instance).  You supply your own
buffer and own free routines.  This is not recommended for normal use,
though, since it is tricky to manage your own buffers.


Events and Incoming Commands
326
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
L
Linus Torvalds 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

The driver takes care of polling for IPMI events and receiving
commands (commands are messages that are not responses, they are
commands that other things on the IPMB bus have sent you).  To receive
these, you must register for them, they will not automatically be sent
to you.

To receive events, you must call ipmi_set_gets_events() and set the
"val" to non-zero.  Any events that have been received by the driver
since startup will immediately be delivered to the first user that
registers for events.  After that, if multiple users are registered
for events, they will all receive all events that come in.

For receiving commands, you have to individually register commands you
want to receive.  Call ipmi_register_for_cmd() and supply the netfn
342 343 344 345 346 347
and command name for each command you want to receive.  You also
specify a bitmask of the channels you want to receive the command from
(or use IPMI_CHAN_ALL for all channels if you don't care).  Only one
user may be registered for each netfn/cmd/channel, but different users
may register for different commands, or the same command if the
channel bitmasks do not overlap.
L
Linus Torvalds 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

From userland, equivalent IOCTLs are provided to do these functions.


The Lower Layer (SMI) Interface
-------------------------------

As mentioned before, multiple SMI interfaces may be registered to the
message handler, each of these is assigned an interface number when
they register with the message handler.  They are generally assigned
in the order they register, although if an SMI unregisters and then
another one registers, all bets are off.

The ipmi_smi.h defines the interface for management interfaces, see
that for more details.


The SI Driver
-------------

C
Corey Minyard 已提交
368 369 370 371 372
The SI driver allows KCS, BT, and SMIC interfaces to be configured
in the system.  It discovers interfaces through a host of different
methods, depending on the system.

You can specify up to four interfaces on the module load line and
373
control some module parameters::
L
Linus Torvalds 已提交
374 375 376

  modprobe ipmi_si.o type=<type1>,<type2>....
       ports=<port1>,<port2>... addrs=<addr1>,<addr2>...
377
       irqs=<irq1>,<irq2>...
L
Linus Torvalds 已提交
378 379 380
       regspacings=<sp1>,<sp2>,... regsizes=<size1>,<size2>,...
       regshifts=<shift1>,<shift2>,...
       slave_addrs=<addr1>,<addr2>,...
381
       force_kipmid=<enable1>,<enable2>,...
382
       kipmid_max_busy_us=<ustime1>,<ustime2>,...
383
       unload_when_empty=[0|1]
C
Corey Minyard 已提交
384
       trydmi=[0|1] tryacpi=[0|1]
385
       tryplatform=[0|1] trypci=[0|1]
L
Linus Torvalds 已提交
386

387
Each of these except try... items is a list, the first item for the
L
Linus Torvalds 已提交
388 389 390 391 392
first interface, second item for the second interface, etc.

The si_type may be either "kcs", "smic", or "bt".  If you leave it blank, it
defaults to "kcs".

393
If you specify addrs as non-zero for an interface, the driver will
L
Linus Torvalds 已提交
394 395 396
use the memory address given as the address of the device.  This
overrides si_ports.

397
If you specify ports as non-zero for an interface, the driver will
L
Linus Torvalds 已提交
398 399
use the I/O port given as the device address.

400
If you specify irqs as non-zero for an interface, the driver will
L
Linus Torvalds 已提交
401 402
attempt to use the given interrupt for the device.

403 404 405 406
The other try... items disable discovery by their corresponding
names.  These are all enabled by default, set them to zero to disable
them.  The tryplatform disables openfirmware.

L
Linus Torvalds 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
The next three parameters have to do with register layout.  The
registers used by the interfaces may not appear at successive
locations and they may not be in 8-bit registers.  These parameters
allow the layout of the data in the registers to be more precisely
specified.

The regspacings parameter give the number of bytes between successive
register start addresses.  For instance, if the regspacing is set to 4
and the start address is 0xca2, then the address for the second
register would be 0xca6.  This defaults to 1.

The regsizes parameter gives the size of a register, in bytes.  The
data used by IPMI is 8-bits wide, but it may be inside a larger
register.  This parameter allows the read and write type to specified.
It may be 1, 2, 4, or 8.  The default is 1.

Since the register size may be larger than 32 bits, the IPMI data may not
be in the lower 8 bits.  The regshifts parameter give the amount to shift
the data to get to the actual IPMI data.

The slave_addrs specifies the IPMI address of the local BMC.  This is
usually 0x20 and the driver defaults to that, but in case it's not, it
can be specified when the driver starts up.

431 432 433 434 435 436
The force_ipmid parameter forcefully enables (if set to 1) or disables
(if set to 0) the kernel IPMI daemon.  Normally this is auto-detected
by the driver, but systems with broken interrupts might need an enable,
or users that don't want the daemon (don't need the performance, don't
want the CPU hit) can disable it.

437 438 439 440 441
If unload_when_empty is set to 1, the driver will be unloaded if it
doesn't find any interfaces or all the interfaces fail to work.  The
default is one.  Setting to 0 is useful with the hotmod, but is
obviously only useful for modules.

442
When compiled into the kernel, the parameters can be specified on the
443
kernel command line as::
L
Linus Torvalds 已提交
444 445 446

  ipmi_si.type=<type1>,<type2>...
       ipmi_si.ports=<port1>,<port2>... ipmi_si.addrs=<addr1>,<addr2>...
C
Corey Minyard 已提交
447
       ipmi_si.irqs=<irq1>,<irq2>...
L
Linus Torvalds 已提交
448 449 450 451
       ipmi_si.regspacings=<sp1>,<sp2>,...
       ipmi_si.regsizes=<size1>,<size2>,...
       ipmi_si.regshifts=<shift1>,<shift2>,...
       ipmi_si.slave_addrs=<addr1>,<addr2>,...
452
       ipmi_si.force_kipmid=<enable1>,<enable2>,...
453
       ipmi_si.kipmid_max_busy_us=<ustime1>,<ustime2>,...
L
Linus Torvalds 已提交
454 455 456

It works the same as the module parameters of the same names.

C
Corey Minyard 已提交
457 458 459 460 461 462 463
If your IPMI interface does not support interrupts and is a KCS or
SMIC interface, the IPMI driver will start a kernel thread for the
interface to help speed things up.  This is a low-priority kernel
thread that constantly polls the IPMI driver while an IPMI operation
is in progress.  The force_kipmid module parameter will all the user to
force this thread on or off.  If you force it off and don't have
interrupts, the driver will run VERY slowly.  Don't blame me,
L
Linus Torvalds 已提交
464 465
these interfaces suck.

466 467 468 469 470 471 472 473 474 475
Unfortunately, this thread can use a lot of CPU depending on the
interface's performance.  This can waste a lot of CPU and cause
various issues with detecting idle CPU and using extra power.  To
avoid this, the kipmid_max_busy_us sets the maximum amount of time, in
microseconds, that kipmid will spin before sleeping for a tick.  This
value sets a balance between performance and CPU waste and needs to be
tuned to your needs.  Maybe, someday, auto-tuning will be added, but
that's not a simple thing and even the auto-tuning would need to be
tuned to the user's desired performance.

476 477
The driver supports a hot add and remove of interfaces.  This way,
interfaces can be added or removed after the kernel is up and running.
C
Corey Minyard 已提交
478 479
This is done using /sys/modules/ipmi_si/parameters/hotmod, which is a
write-only parameter.  You write a string to this interface.  The string
480 481
has the format::

482
   <op1>[:op2[:op3...]]
483 484 485

The "op"s are::

486
   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
487 488 489

You can specify more than one interface on the line.  The "opt"s are::

490 491 492 493 494
   rsp=<regspacing>
   rsi=<regsize>
   rsh=<regshift>
   irq=<irq>
   ipmb=<ipmb slave addr>
495

496 497 498 499 500
and these have the same meanings as discussed above.  Note that you
can also use this on the kernel command line for a more compact format
for specifying an interface.  Note that when removing an interface,
only the first three parameters (si type, address type, and address)
are used for the comparison.  Any options are ignored for removing.
L
Linus Torvalds 已提交
501

502 503 504 505 506 507
The SMBus Driver (SSIF)
-----------------------

The SMBus driver allows up to 4 SMBus devices to be configured in the
system.  By default, the driver will only register with something it
finds in DMI or ACPI tables.  You can change this
508
at module load time (for a module) with::
509 510 511 512 513

  modprobe ipmi_ssif.o
	addr=<i2caddr1>[,<i2caddr2>[,...]]
	adapter=<adapter1>[,<adapter2>[...]]
	dbg=<flags1>,<flags2>...
C
Corey Minyard 已提交
514 515
	slave_addrs=<addr1>,<addr2>,...
	tryacpi=[0|1] trydmi=[0|1]
516 517 518 519
	[dbg_probe=1]

The addresses are normal I2C addresses.  The adapter is the string
name of the adapter, as shown in /sys/class/i2c-adapter/i2c-<n>/name.
520 521 522 523
It is *NOT* i2c-<n> itself.  Also, the comparison is done ignoring
spaces, so if the name is "This is an I2C chip" you can say
adapter_name=ThisisanI2cchip.  This is because it's hard to pass in
spaces in kernel parameters.
524 525 526 527

The debug flags are bit flags for each BMC found, they are:
IPMI messages: 1, driver state: 2, timing: 4, I2C probe: 8

C
Corey Minyard 已提交
528 529 530
The tryxxx parameters can be used to disable detecting interfaces
from various sources.

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
Setting dbg_probe to 1 will enable debugging of the probing and
detection process for BMCs on the SMBusses.

The slave_addrs specifies the IPMI address of the local BMC.  This is
usually 0x20 and the driver defaults to that, but in case it's not, it
can be specified when the driver starts up.

Discovering the IPMI compliant BMC on the SMBus can cause devices on
the I2C bus to fail. The SMBus driver writes a "Get Device ID" IPMI
message as a block write to the I2C bus and waits for a response.
This action can be detrimental to some I2C devices. It is highly
recommended that the known I2C address be given to the SMBus driver in
the smb_addr parameter unless you have DMI or ACPI data to tell the
driver what to use.

When compiled into the kernel, the addresses can be specified on the
547
kernel command line as::
548 549 550 551 552

  ipmb_ssif.addr=<i2caddr1>[,<i2caddr2>[...]]
	ipmi_ssif.adapter=<adapter1>[,<adapter2>[...]]
	ipmi_ssif.dbg=<flags1>[,<flags2>[...]]
	ipmi_ssif.dbg_probe=1
C
Corey Minyard 已提交
553 554
	ipmi_ssif.slave_addrs=<addr1>[,<addr2>[...]]
	ipmi_ssif.tryacpi=[0|1] ipmi_ssif.trydmi=[0|1]
555 556 557 558 559 560 561 562 563 564 565

These are the same options as on the module command line.

The I2C driver does not support non-blocking access or polling, so
this driver cannod to IPMI panic events, extend the watchdog at panic
time, or other panic-related IPMI functions without special kernel
patches and driver modifications.  You can get those at the openipmi
web page.

The driver supports a hot add and remove of interfaces through the I2C
sysfs interface.
L
Linus Torvalds 已提交
566 567 568 569

Other Pieces
------------

570 571 572 573 574 575 576
Get the detailed info related with the IPMI device
--------------------------------------------------

Some users need more detailed information about a device, like where
the address came from or the raw base device for the IPMI interface.
You can use the IPMI smi_watcher to catch the IPMI interfaces as they
come or go, and to grab the information, you can use the function
577
ipmi_get_smi_info(), which returns the following structure::
578

579
  struct ipmi_smi_info {
580 581 582 583 584 585 586
	enum ipmi_addr_src addr_src;
	struct device *dev;
	union {
		struct {
			void *acpi_handle;
		} acpi_info;
	} addr_info;
587
  };
588 589 590 591 592 593 594 595 596

Currently special info for only for SI_ACPI address sources is
returned.  Others may be added as necessary.

Note that the dev pointer is included in the above structure, and
assuming ipmi_smi_get_info returns success, you must call put_device
on the dev pointer.


L
Linus Torvalds 已提交
597 598 599 600 601
Watchdog
--------

A watchdog timer is provided that implements the Linux-standard
watchdog timer interface.  It has three module parameters that can be
602
used to control it::
L
Linus Torvalds 已提交
603 604 605

  modprobe ipmi_watchdog timeout=<t> pretimeout=<t> action=<action type>
      preaction=<preaction type> preop=<preop type> start_now=x
606
      nowayout=x ifnum_to_use=n panic_wdt_timeout=<t>
607 608 609

ifnum_to_use specifies which interface the watchdog timer should use.
The default is -1, which means to pick the first one registered.
L
Linus Torvalds 已提交
610 611 612 613 614 615

The timeout is the number of seconds to the action, and the pretimeout
is the amount of seconds before the reset that the pre-timeout panic will
occur (if pretimeout is zero, then pretimeout will not be enabled).  Note
that the pretimeout is the time before the final timeout.  So if the
timeout is 50 seconds and the pretimeout is 10 seconds, then the pretimeout
616 617 618
will occur in 40 second (10 seconds before the timeout). The panic_wdt_timeout
is the value of timeout which is set on kernel panic, in order to let actions
such as kdump to occur during panic.
L
Linus Torvalds 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

The action may be "reset", "power_cycle", or "power_off", and
specifies what to do when the timer times out, and defaults to
"reset".

The preaction may be "pre_smi" for an indication through the SMI
interface, "pre_int" for an indication through the SMI with an
interrupts, and "pre_nmi" for a NMI on a preaction.  This is how
the driver is informed of the pretimeout.

The preop may be set to "preop_none" for no operation on a pretimeout,
"preop_panic" to set the preoperation to panic, or "preop_give_data"
to provide data to read from the watchdog device when the pretimeout
occurs.  A "pre_nmi" setting CANNOT be used with "preop_give_data"
because you can't do data operations from an NMI.

When preop is set to "preop_give_data", one byte comes ready to read
on the device when the pretimeout occurs.  Select and fasync work on
the device, as well.

If start_now is set to 1, the watchdog timer will start running as
soon as the driver is loaded.

If nowayout is set to 1, the watchdog timer will not stop when the
watchdog device is closed.  The default value of nowayout is true
if the CONFIG_WATCHDOG_NOWAYOUT option is enabled, or false if not.

When compiled into the kernel, the kernel command line is available
647
for configuring the watchdog::
L
Linus Torvalds 已提交
648 649 650 651 652 653 654

  ipmi_watchdog.timeout=<t> ipmi_watchdog.pretimeout=<t>
	ipmi_watchdog.action=<action type>
	ipmi_watchdog.preaction=<preaction type>
	ipmi_watchdog.preop=<preop type>
	ipmi_watchdog.start_now=x
	ipmi_watchdog.nowayout=x
655
	ipmi_watchdog.panic_wdt_timeout=<t>
L
Linus Torvalds 已提交
656 657 658 659 660 661 662

The options are the same as the module parameter options.

The watchdog will panic and start a 120 second reset timeout if it
gets a pre-action.  During a panic or a reboot, the watchdog will
start a 120 timer if it is running to make sure the reboot occurs.

C
Corey Minyard 已提交
663 664 665 666 667
Note that if you use the NMI preaction for the watchdog, you MUST NOT
use the nmi watchdog.  There is no reasonable way to tell if an NMI
comes from the IPMI controller, so it must assume that if it gets an
otherwise unhandled NMI, it must be from IPMI and it will panic
immediately.
L
Linus Torvalds 已提交
668 669 670 671 672

Once you open the watchdog timer, you must write a 'V' character to the
device to close it, or the timer will not stop.  This is a new semantic
for the driver, but makes it consistent with the rest of the watchdog
drivers in Linux.
C
Corey Minyard 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686


Panic Timeouts
--------------

The OpenIPMI driver supports the ability to put semi-custom and custom
events in the system event log if a panic occurs.  if you enable the
'Generate a panic event to all BMCs on a panic' option, you will get
one event on a panic in a standard IPMI event format.  If you enable
the 'Generate OEM events containing the panic string' option, you will
also get a bunch of OEM events holding the panic string.


The field settings of the events are:
687

C
Corey Minyard 已提交
688 689 690 691 692 693 694 695
* Generator ID: 0x21 (kernel)
* EvM Rev: 0x03 (this event is formatting in IPMI 1.0 format)
* Sensor Type: 0x20 (OS critical stop sensor)
* Sensor #: The first byte of the panic string (0 if no panic string)
* Event Dir | Event Type: 0x6f (Assertion, sensor-specific event info)
* Event Data 1: 0xa1 (Runtime stop in OEM bytes 2 and 3)
* Event data 2: second byte of panic string
* Event data 3: third byte of panic string
696

C
Corey Minyard 已提交
697 698 699 700 701
See the IPMI spec for the details of the event layout.  This event is
always sent to the local management controller.  It will handle routing
the message to the right place

Other OEM events have the following format:
702 703 704 705 706 707 708 709

* Record ID (bytes 0-1): Set by the SEL.
* Record type (byte 2): 0xf0 (OEM non-timestamped)
* byte 3: The slave address of the card saving the panic
* byte 4: A sequence number (starting at zero)
  The rest of the bytes (11 bytes) are the panic string.  If the panic string
  is longer than 11 bytes, multiple messages will be sent with increasing
  sequence numbers.
C
Corey Minyard 已提交
710 711 712 713 714 715 716 717 718 719

Because you cannot send OEM events using the standard interface, this
function will attempt to find an SEL and add the events there.  It
will first query the capabilities of the local management controller.
If it has an SEL, then they will be stored in the SEL of the local
management controller.  If not, and the local management controller is
an event generator, the event receiver from the local management
controller will be queried and the events sent to the SEL on that
device.  Otherwise, the events go nowhere since there is nowhere to
send them.
720 721 722 723 724 725 726 727 728 729 730


Poweroff
--------

If the poweroff capability is selected, the IPMI driver will install
a shutdown function into the standard poweroff function pointer.  This
is in the ipmi_poweroff module.  When the system requests a powerdown,
it will send the proper IPMI commands to do this.  This is supported on
several platforms.

731 732 733 734 735 736 737
There is a module parameter named "poweroff_powercycle" that may
either be zero (do a power down) or non-zero (do a power cycle, power
the system off, then power it on in a few seconds).  Setting
ipmi_poweroff.poweroff_control=x will do the same thing on the kernel
command line.  The parameter is also available via the proc filesystem
in /proc/sys/dev/ipmi/poweroff_powercycle.  Note that if the system
does not support power cycling, it will always do the power off.
738

739 740 741 742
The "ifnum_to_use" parameter specifies which interface the poweroff
code should use.  The default is -1, which means to pick the first one
registered.

743 744
Note that if you have ACPI enabled, the system will prefer using ACPI to
power off.