init.c 34.2 KB
Newer Older
1 2 3 4 5 6
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
 *
 */

7
#include <linux/debugfs.h>
8 9 10 11 12 13 14 15 16 17 18 19 20
#include <linux/device.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/mhi.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/wait.h>
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
const char * const mhi_ee_str[MHI_EE_MAX] = {
	[MHI_EE_PBL] = "PBL",
	[MHI_EE_SBL] = "SBL",
	[MHI_EE_AMSS] = "AMSS",
	[MHI_EE_RDDM] = "RDDM",
	[MHI_EE_WFW] = "WFW",
	[MHI_EE_PTHRU] = "PASS THRU",
	[MHI_EE_EDL] = "EDL",
	[MHI_EE_DISABLE_TRANSITION] = "DISABLE",
	[MHI_EE_NOT_SUPPORTED] = "NOT SUPPORTED",
};

const char * const dev_state_tran_str[DEV_ST_TRANSITION_MAX] = {
	[DEV_ST_TRANSITION_PBL] = "PBL",
	[DEV_ST_TRANSITION_READY] = "READY",
	[DEV_ST_TRANSITION_SBL] = "SBL",
	[DEV_ST_TRANSITION_MISSION_MODE] = "MISSION_MODE",
38
	[DEV_ST_TRANSITION_SYS_ERR] = "SYS_ERR",
39
	[DEV_ST_TRANSITION_DISABLE] = "DISABLE",
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
};

const char * const mhi_state_str[MHI_STATE_MAX] = {
	[MHI_STATE_RESET] = "RESET",
	[MHI_STATE_READY] = "READY",
	[MHI_STATE_M0] = "M0",
	[MHI_STATE_M1] = "M1",
	[MHI_STATE_M2] = "M2",
	[MHI_STATE_M3] = "M3",
	[MHI_STATE_M3_FAST] = "M3_FAST",
	[MHI_STATE_BHI] = "BHI",
	[MHI_STATE_SYS_ERR] = "SYS_ERR",
};

static const char * const mhi_pm_state_str[] = {
	[MHI_PM_STATE_DISABLE] = "DISABLE",
	[MHI_PM_STATE_POR] = "POR",
	[MHI_PM_STATE_M0] = "M0",
	[MHI_PM_STATE_M2] = "M2",
	[MHI_PM_STATE_M3_ENTER] = "M?->M3",
	[MHI_PM_STATE_M3] = "M3",
	[MHI_PM_STATE_M3_EXIT] = "M3->M0",
	[MHI_PM_STATE_FW_DL_ERR] = "FW DL Error",
	[MHI_PM_STATE_SYS_ERR_DETECT] = "SYS_ERR Detect",
	[MHI_PM_STATE_SYS_ERR_PROCESS] = "SYS_ERR Process",
	[MHI_PM_STATE_SHUTDOWN_PROCESS] = "SHUTDOWN Process",
	[MHI_PM_STATE_LD_ERR_FATAL_DETECT] = "LD or Error Fatal Detect",
};

const char *to_mhi_pm_state_str(enum mhi_pm_state state)
{
	int index = find_last_bit((unsigned long *)&state, 32);

	if (index >= ARRAY_SIZE(mhi_pm_state_str))
		return "Invalid State";

	return mhi_pm_state_str[index];
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
static ssize_t serial_number_show(struct device *dev,
				  struct device_attribute *attr,
				  char *buf)
{
	struct mhi_device *mhi_dev = to_mhi_device(dev);
	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;

	return snprintf(buf, PAGE_SIZE, "Serial Number: %u\n",
			mhi_cntrl->serial_number);
}
static DEVICE_ATTR_RO(serial_number);

static ssize_t oem_pk_hash_show(struct device *dev,
				struct device_attribute *attr,
				char *buf)
{
	struct mhi_device *mhi_dev = to_mhi_device(dev);
	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
	int i, cnt = 0;

	for (i = 0; i < ARRAY_SIZE(mhi_cntrl->oem_pk_hash); i++)
		cnt += snprintf(buf + cnt, PAGE_SIZE - cnt,
				"OEMPKHASH[%d]: 0x%x\n", i,
				mhi_cntrl->oem_pk_hash[i]);

	return cnt;
}
static DEVICE_ATTR_RO(oem_pk_hash);

static struct attribute *mhi_dev_attrs[] = {
	&dev_attr_serial_number.attr,
	&dev_attr_oem_pk_hash.attr,
	NULL,
};
ATTRIBUTE_GROUPS(mhi_dev);

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/* MHI protocol requires the transfer ring to be aligned with ring length */
static int mhi_alloc_aligned_ring(struct mhi_controller *mhi_cntrl,
				  struct mhi_ring *ring,
				  u64 len)
{
	ring->alloc_size = len + (len - 1);
	ring->pre_aligned = mhi_alloc_coherent(mhi_cntrl, ring->alloc_size,
					       &ring->dma_handle, GFP_KERNEL);
	if (!ring->pre_aligned)
		return -ENOMEM;

	ring->iommu_base = (ring->dma_handle + (len - 1)) & ~(len - 1);
	ring->base = ring->pre_aligned + (ring->iommu_base - ring->dma_handle);

	return 0;
}

void mhi_deinit_free_irq(struct mhi_controller *mhi_cntrl)
{
	int i;
	struct mhi_event *mhi_event = mhi_cntrl->mhi_event;

	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
		if (mhi_event->offload_ev)
			continue;

		free_irq(mhi_cntrl->irq[mhi_event->irq], mhi_event);
	}

	free_irq(mhi_cntrl->irq[0], mhi_cntrl);
}

int mhi_init_irq_setup(struct mhi_controller *mhi_cntrl)
{
	struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
	struct device *dev = &mhi_cntrl->mhi_dev->dev;
	int i, ret;

	/* Setup BHI_INTVEC IRQ */
	ret = request_threaded_irq(mhi_cntrl->irq[0], mhi_intvec_handler,
				   mhi_intvec_threaded_handler,
				   IRQF_SHARED | IRQF_NO_SUSPEND,
				   "bhi", mhi_cntrl);
	if (ret)
		return ret;

	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
		if (mhi_event->offload_ev)
			continue;

165 166 167 168 169 170 171
		if (mhi_event->irq >= mhi_cntrl->nr_irqs) {
			dev_err(dev, "irq %d not available for event ring\n",
				mhi_event->irq);
			ret = -EINVAL;
			goto error_request;
		}

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
		ret = request_irq(mhi_cntrl->irq[mhi_event->irq],
				  mhi_irq_handler,
				  IRQF_SHARED | IRQF_NO_SUSPEND,
				  "mhi", mhi_event);
		if (ret) {
			dev_err(dev, "Error requesting irq:%d for ev:%d\n",
				mhi_cntrl->irq[mhi_event->irq], i);
			goto error_request;
		}
	}

	return 0;

error_request:
	for (--i, --mhi_event; i >= 0; i--, mhi_event--) {
		if (mhi_event->offload_ev)
			continue;

		free_irq(mhi_cntrl->irq[mhi_event->irq], mhi_event);
	}
	free_irq(mhi_cntrl->irq[0], mhi_cntrl);

	return ret;
}

void mhi_deinit_dev_ctxt(struct mhi_controller *mhi_cntrl)
{
	int i;
	struct mhi_ctxt *mhi_ctxt = mhi_cntrl->mhi_ctxt;
	struct mhi_cmd *mhi_cmd;
	struct mhi_event *mhi_event;
	struct mhi_ring *ring;

	mhi_cmd = mhi_cntrl->mhi_cmd;
	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++) {
		ring = &mhi_cmd->ring;
		mhi_free_coherent(mhi_cntrl, ring->alloc_size,
				  ring->pre_aligned, ring->dma_handle);
		ring->base = NULL;
		ring->iommu_base = 0;
	}

	mhi_free_coherent(mhi_cntrl,
			  sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS,
			  mhi_ctxt->cmd_ctxt, mhi_ctxt->cmd_ctxt_addr);

	mhi_event = mhi_cntrl->mhi_event;
	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
		if (mhi_event->offload_ev)
			continue;

		ring = &mhi_event->ring;
		mhi_free_coherent(mhi_cntrl, ring->alloc_size,
				  ring->pre_aligned, ring->dma_handle);
		ring->base = NULL;
		ring->iommu_base = 0;
	}

	mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->er_ctxt) *
			  mhi_cntrl->total_ev_rings, mhi_ctxt->er_ctxt,
			  mhi_ctxt->er_ctxt_addr);

	mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->chan_ctxt) *
			  mhi_cntrl->max_chan, mhi_ctxt->chan_ctxt,
			  mhi_ctxt->chan_ctxt_addr);

	kfree(mhi_ctxt);
	mhi_cntrl->mhi_ctxt = NULL;
}

int mhi_init_dev_ctxt(struct mhi_controller *mhi_cntrl)
{
	struct mhi_ctxt *mhi_ctxt;
	struct mhi_chan_ctxt *chan_ctxt;
	struct mhi_event_ctxt *er_ctxt;
	struct mhi_cmd_ctxt *cmd_ctxt;
	struct mhi_chan *mhi_chan;
	struct mhi_event *mhi_event;
	struct mhi_cmd *mhi_cmd;
	u32 tmp;
	int ret = -ENOMEM, i;

	atomic_set(&mhi_cntrl->dev_wake, 0);
	atomic_set(&mhi_cntrl->pending_pkts, 0);

	mhi_ctxt = kzalloc(sizeof(*mhi_ctxt), GFP_KERNEL);
	if (!mhi_ctxt)
		return -ENOMEM;

	/* Setup channel ctxt */
	mhi_ctxt->chan_ctxt = mhi_alloc_coherent(mhi_cntrl,
						 sizeof(*mhi_ctxt->chan_ctxt) *
						 mhi_cntrl->max_chan,
						 &mhi_ctxt->chan_ctxt_addr,
						 GFP_KERNEL);
	if (!mhi_ctxt->chan_ctxt)
		goto error_alloc_chan_ctxt;

	mhi_chan = mhi_cntrl->mhi_chan;
	chan_ctxt = mhi_ctxt->chan_ctxt;
	for (i = 0; i < mhi_cntrl->max_chan; i++, chan_ctxt++, mhi_chan++) {
		/* Skip if it is an offload channel */
		if (mhi_chan->offload_ch)
			continue;

		tmp = chan_ctxt->chcfg;
		tmp &= ~CHAN_CTX_CHSTATE_MASK;
		tmp |= (MHI_CH_STATE_DISABLED << CHAN_CTX_CHSTATE_SHIFT);
		tmp &= ~CHAN_CTX_BRSTMODE_MASK;
		tmp |= (mhi_chan->db_cfg.brstmode << CHAN_CTX_BRSTMODE_SHIFT);
		tmp &= ~CHAN_CTX_POLLCFG_MASK;
		tmp |= (mhi_chan->db_cfg.pollcfg << CHAN_CTX_POLLCFG_SHIFT);
		chan_ctxt->chcfg = tmp;

		chan_ctxt->chtype = mhi_chan->type;
		chan_ctxt->erindex = mhi_chan->er_index;

		mhi_chan->ch_state = MHI_CH_STATE_DISABLED;
		mhi_chan->tre_ring.db_addr = (void __iomem *)&chan_ctxt->wp;
	}

	/* Setup event context */
	mhi_ctxt->er_ctxt = mhi_alloc_coherent(mhi_cntrl,
					       sizeof(*mhi_ctxt->er_ctxt) *
					       mhi_cntrl->total_ev_rings,
					       &mhi_ctxt->er_ctxt_addr,
					       GFP_KERNEL);
	if (!mhi_ctxt->er_ctxt)
		goto error_alloc_er_ctxt;

	er_ctxt = mhi_ctxt->er_ctxt;
	mhi_event = mhi_cntrl->mhi_event;
	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
		     mhi_event++) {
		struct mhi_ring *ring = &mhi_event->ring;

		/* Skip if it is an offload event */
		if (mhi_event->offload_ev)
			continue;

		tmp = er_ctxt->intmod;
		tmp &= ~EV_CTX_INTMODC_MASK;
		tmp &= ~EV_CTX_INTMODT_MASK;
		tmp |= (mhi_event->intmod << EV_CTX_INTMODT_SHIFT);
		er_ctxt->intmod = tmp;

		er_ctxt->ertype = MHI_ER_TYPE_VALID;
		er_ctxt->msivec = mhi_event->irq;
		mhi_event->db_cfg.db_mode = true;

		ring->el_size = sizeof(struct mhi_tre);
		ring->len = ring->el_size * ring->elements;
		ret = mhi_alloc_aligned_ring(mhi_cntrl, ring, ring->len);
		if (ret)
			goto error_alloc_er;

		/*
		 * If the read pointer equals to the write pointer, then the
		 * ring is empty
		 */
		ring->rp = ring->wp = ring->base;
		er_ctxt->rbase = ring->iommu_base;
		er_ctxt->rp = er_ctxt->wp = er_ctxt->rbase;
		er_ctxt->rlen = ring->len;
		ring->ctxt_wp = &er_ctxt->wp;
	}

	/* Setup cmd context */
340
	ret = -ENOMEM;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	mhi_ctxt->cmd_ctxt = mhi_alloc_coherent(mhi_cntrl,
						sizeof(*mhi_ctxt->cmd_ctxt) *
						NR_OF_CMD_RINGS,
						&mhi_ctxt->cmd_ctxt_addr,
						GFP_KERNEL);
	if (!mhi_ctxt->cmd_ctxt)
		goto error_alloc_er;

	mhi_cmd = mhi_cntrl->mhi_cmd;
	cmd_ctxt = mhi_ctxt->cmd_ctxt;
	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
		struct mhi_ring *ring = &mhi_cmd->ring;

		ring->el_size = sizeof(struct mhi_tre);
		ring->elements = CMD_EL_PER_RING;
		ring->len = ring->el_size * ring->elements;
		ret = mhi_alloc_aligned_ring(mhi_cntrl, ring, ring->len);
		if (ret)
			goto error_alloc_cmd;

		ring->rp = ring->wp = ring->base;
		cmd_ctxt->rbase = ring->iommu_base;
		cmd_ctxt->rp = cmd_ctxt->wp = cmd_ctxt->rbase;
		cmd_ctxt->rlen = ring->len;
		ring->ctxt_wp = &cmd_ctxt->wp;
	}

	mhi_cntrl->mhi_ctxt = mhi_ctxt;

	return 0;

error_alloc_cmd:
	for (--i, --mhi_cmd; i >= 0; i--, mhi_cmd--) {
		struct mhi_ring *ring = &mhi_cmd->ring;

		mhi_free_coherent(mhi_cntrl, ring->alloc_size,
				  ring->pre_aligned, ring->dma_handle);
	}
	mhi_free_coherent(mhi_cntrl,
			  sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS,
			  mhi_ctxt->cmd_ctxt, mhi_ctxt->cmd_ctxt_addr);
	i = mhi_cntrl->total_ev_rings;
	mhi_event = mhi_cntrl->mhi_event + i;

error_alloc_er:
	for (--i, --mhi_event; i >= 0; i--, mhi_event--) {
		struct mhi_ring *ring = &mhi_event->ring;

		if (mhi_event->offload_ev)
			continue;

		mhi_free_coherent(mhi_cntrl, ring->alloc_size,
				  ring->pre_aligned, ring->dma_handle);
	}
	mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->er_ctxt) *
			  mhi_cntrl->total_ev_rings, mhi_ctxt->er_ctxt,
			  mhi_ctxt->er_ctxt_addr);

error_alloc_er_ctxt:
	mhi_free_coherent(mhi_cntrl, sizeof(*mhi_ctxt->chan_ctxt) *
			  mhi_cntrl->max_chan, mhi_ctxt->chan_ctxt,
			  mhi_ctxt->chan_ctxt_addr);

error_alloc_chan_ctxt:
	kfree(mhi_ctxt);

	return ret;
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
int mhi_init_mmio(struct mhi_controller *mhi_cntrl)
{
	u32 val;
	int i, ret;
	struct mhi_chan *mhi_chan;
	struct mhi_event *mhi_event;
	void __iomem *base = mhi_cntrl->regs;
	struct device *dev = &mhi_cntrl->mhi_dev->dev;
	struct {
		u32 offset;
		u32 mask;
		u32 shift;
		u32 val;
	} reg_info[] = {
		{
			CCABAP_HIGHER, U32_MAX, 0,
			upper_32_bits(mhi_cntrl->mhi_ctxt->chan_ctxt_addr),
		},
		{
			CCABAP_LOWER, U32_MAX, 0,
			lower_32_bits(mhi_cntrl->mhi_ctxt->chan_ctxt_addr),
		},
		{
			ECABAP_HIGHER, U32_MAX, 0,
			upper_32_bits(mhi_cntrl->mhi_ctxt->er_ctxt_addr),
		},
		{
			ECABAP_LOWER, U32_MAX, 0,
			lower_32_bits(mhi_cntrl->mhi_ctxt->er_ctxt_addr),
		},
		{
			CRCBAP_HIGHER, U32_MAX, 0,
			upper_32_bits(mhi_cntrl->mhi_ctxt->cmd_ctxt_addr),
		},
		{
			CRCBAP_LOWER, U32_MAX, 0,
			lower_32_bits(mhi_cntrl->mhi_ctxt->cmd_ctxt_addr),
		},
		{
			MHICFG, MHICFG_NER_MASK, MHICFG_NER_SHIFT,
			mhi_cntrl->total_ev_rings,
		},
		{
			MHICFG, MHICFG_NHWER_MASK, MHICFG_NHWER_SHIFT,
			mhi_cntrl->hw_ev_rings,
		},
		{
			MHICTRLBASE_HIGHER, U32_MAX, 0,
			upper_32_bits(mhi_cntrl->iova_start),
		},
		{
			MHICTRLBASE_LOWER, U32_MAX, 0,
			lower_32_bits(mhi_cntrl->iova_start),
		},
		{
			MHIDATABASE_HIGHER, U32_MAX, 0,
			upper_32_bits(mhi_cntrl->iova_start),
		},
		{
			MHIDATABASE_LOWER, U32_MAX, 0,
			lower_32_bits(mhi_cntrl->iova_start),
		},
		{
			MHICTRLLIMIT_HIGHER, U32_MAX, 0,
			upper_32_bits(mhi_cntrl->iova_stop),
		},
		{
			MHICTRLLIMIT_LOWER, U32_MAX, 0,
			lower_32_bits(mhi_cntrl->iova_stop),
		},
		{
			MHIDATALIMIT_HIGHER, U32_MAX, 0,
			upper_32_bits(mhi_cntrl->iova_stop),
		},
		{
			MHIDATALIMIT_LOWER, U32_MAX, 0,
			lower_32_bits(mhi_cntrl->iova_stop),
		},
		{ 0, 0, 0 }
	};

	dev_dbg(dev, "Initializing MHI registers\n");

	/* Read channel db offset */
	ret = mhi_read_reg_field(mhi_cntrl, base, CHDBOFF, CHDBOFF_CHDBOFF_MASK,
				 CHDBOFF_CHDBOFF_SHIFT, &val);
	if (ret) {
		dev_err(dev, "Unable to read CHDBOFF register\n");
		return -EIO;
	}

	/* Setup wake db */
	mhi_cntrl->wake_db = base + val + (8 * MHI_DEV_WAKE_DB);
	mhi_write_reg(mhi_cntrl, mhi_cntrl->wake_db, 4, 0);
	mhi_write_reg(mhi_cntrl, mhi_cntrl->wake_db, 0, 0);
	mhi_cntrl->wake_set = false;

	/* Setup channel db address for each channel in tre_ring */
	mhi_chan = mhi_cntrl->mhi_chan;
	for (i = 0; i < mhi_cntrl->max_chan; i++, val += 8, mhi_chan++)
		mhi_chan->tre_ring.db_addr = base + val;

	/* Read event ring db offset */
	ret = mhi_read_reg_field(mhi_cntrl, base, ERDBOFF, ERDBOFF_ERDBOFF_MASK,
				 ERDBOFF_ERDBOFF_SHIFT, &val);
	if (ret) {
		dev_err(dev, "Unable to read ERDBOFF register\n");
		return -EIO;
	}

	/* Setup event db address for each ev_ring */
	mhi_event = mhi_cntrl->mhi_event;
	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, val += 8, mhi_event++) {
		if (mhi_event->offload_ev)
			continue;

		mhi_event->ring.db_addr = base + val;
	}

	/* Setup DB register for primary CMD rings */
	mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING].ring.db_addr = base + CRDB_LOWER;

	/* Write to MMIO registers */
	for (i = 0; reg_info[i].offset; i++)
		mhi_write_reg_field(mhi_cntrl, base, reg_info[i].offset,
				    reg_info[i].mask, reg_info[i].shift,
				    reg_info[i].val);

	return 0;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
void mhi_deinit_chan_ctxt(struct mhi_controller *mhi_cntrl,
			  struct mhi_chan *mhi_chan)
{
	struct mhi_ring *buf_ring;
	struct mhi_ring *tre_ring;
	struct mhi_chan_ctxt *chan_ctxt;

	buf_ring = &mhi_chan->buf_ring;
	tre_ring = &mhi_chan->tre_ring;
	chan_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[mhi_chan->chan];

	mhi_free_coherent(mhi_cntrl, tre_ring->alloc_size,
			  tre_ring->pre_aligned, tre_ring->dma_handle);
	vfree(buf_ring->base);

	buf_ring->base = tre_ring->base = NULL;
	chan_ctxt->rbase = 0;
}

int mhi_init_chan_ctxt(struct mhi_controller *mhi_cntrl,
		       struct mhi_chan *mhi_chan)
{
	struct mhi_ring *buf_ring;
	struct mhi_ring *tre_ring;
	struct mhi_chan_ctxt *chan_ctxt;
	u32 tmp;
	int ret;

	buf_ring = &mhi_chan->buf_ring;
	tre_ring = &mhi_chan->tre_ring;
	tre_ring->el_size = sizeof(struct mhi_tre);
	tre_ring->len = tre_ring->el_size * tre_ring->elements;
	chan_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[mhi_chan->chan];
	ret = mhi_alloc_aligned_ring(mhi_cntrl, tre_ring, tre_ring->len);
	if (ret)
		return -ENOMEM;

	buf_ring->el_size = sizeof(struct mhi_buf_info);
	buf_ring->len = buf_ring->el_size * buf_ring->elements;
	buf_ring->base = vzalloc(buf_ring->len);

	if (!buf_ring->base) {
		mhi_free_coherent(mhi_cntrl, tre_ring->alloc_size,
				  tre_ring->pre_aligned, tre_ring->dma_handle);
		return -ENOMEM;
	}

	tmp = chan_ctxt->chcfg;
	tmp &= ~CHAN_CTX_CHSTATE_MASK;
	tmp |= (MHI_CH_STATE_ENABLED << CHAN_CTX_CHSTATE_SHIFT);
	chan_ctxt->chcfg = tmp;

	chan_ctxt->rbase = tre_ring->iommu_base;
	chan_ctxt->rp = chan_ctxt->wp = chan_ctxt->rbase;
	chan_ctxt->rlen = tre_ring->len;
	tre_ring->ctxt_wp = &chan_ctxt->wp;

	tre_ring->rp = tre_ring->wp = tre_ring->base;
	buf_ring->rp = buf_ring->wp = buf_ring->base;
	mhi_chan->db_cfg.db_mode = 1;

	/* Update to all cores */
	smp_wmb();

	return 0;
}

608
static int parse_ev_cfg(struct mhi_controller *mhi_cntrl,
609
			const struct mhi_controller_config *config)
610 611
{
	struct mhi_event *mhi_event;
612
	const struct mhi_event_config *event_cfg;
613
	struct device *dev = mhi_cntrl->cntrl_dev;
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	int i, num;

	num = config->num_events;
	mhi_cntrl->total_ev_rings = num;
	mhi_cntrl->mhi_event = kcalloc(num, sizeof(*mhi_cntrl->mhi_event),
				       GFP_KERNEL);
	if (!mhi_cntrl->mhi_event)
		return -ENOMEM;

	/* Populate event ring */
	mhi_event = mhi_cntrl->mhi_event;
	for (i = 0; i < num; i++) {
		event_cfg = &config->event_cfg[i];

		mhi_event->er_index = i;
		mhi_event->ring.elements = event_cfg->num_elements;
		mhi_event->intmod = event_cfg->irq_moderation_ms;
		mhi_event->irq = event_cfg->irq;

		if (event_cfg->channel != U32_MAX) {
			/* This event ring has a dedicated channel */
			mhi_event->chan = event_cfg->channel;
			if (mhi_event->chan >= mhi_cntrl->max_chan) {
				dev_err(dev,
					"Event Ring channel not available\n");
				goto error_ev_cfg;
			}

			mhi_event->mhi_chan =
				&mhi_cntrl->mhi_chan[mhi_event->chan];
		}

		/* Priority is fixed to 1 for now */
		mhi_event->priority = 1;

		mhi_event->db_cfg.brstmode = event_cfg->mode;
		if (MHI_INVALID_BRSTMODE(mhi_event->db_cfg.brstmode))
			goto error_ev_cfg;

653 654 655 656 657
		if (mhi_event->db_cfg.brstmode == MHI_DB_BRST_ENABLE)
			mhi_event->db_cfg.process_db = mhi_db_brstmode;
		else
			mhi_event->db_cfg.process_db = mhi_db_brstmode_disable;

658 659
		mhi_event->data_type = event_cfg->data_type;

660 661 662 663 664 665 666 667 668 669 670 671
		switch (mhi_event->data_type) {
		case MHI_ER_DATA:
			mhi_event->process_event = mhi_process_data_event_ring;
			break;
		case MHI_ER_CTRL:
			mhi_event->process_event = mhi_process_ctrl_ev_ring;
			break;
		default:
			dev_err(dev, "Event Ring type not supported\n");
			goto error_ev_cfg;
		}

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
		mhi_event->hw_ring = event_cfg->hardware_event;
		if (mhi_event->hw_ring)
			mhi_cntrl->hw_ev_rings++;
		else
			mhi_cntrl->sw_ev_rings++;

		mhi_event->cl_manage = event_cfg->client_managed;
		mhi_event->offload_ev = event_cfg->offload_channel;
		mhi_event++;
	}

	return 0;

error_ev_cfg:

	kfree(mhi_cntrl->mhi_event);
	return -EINVAL;
}

static int parse_ch_cfg(struct mhi_controller *mhi_cntrl,
692
			const struct mhi_controller_config *config)
693
{
694
	const struct mhi_channel_config *ch_cfg;
695
	struct device *dev = mhi_cntrl->cntrl_dev;
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	int i;
	u32 chan;

	mhi_cntrl->max_chan = config->max_channels;

	/*
	 * The allocation of MHI channels can exceed 32KB in some scenarios,
	 * so to avoid any memory possible allocation failures, vzalloc is
	 * used here
	 */
	mhi_cntrl->mhi_chan = vzalloc(mhi_cntrl->max_chan *
				      sizeof(*mhi_cntrl->mhi_chan));
	if (!mhi_cntrl->mhi_chan)
		return -ENOMEM;

	INIT_LIST_HEAD(&mhi_cntrl->lpm_chans);

	/* Populate channel configurations */
	for (i = 0; i < config->num_channels; i++) {
		struct mhi_chan *mhi_chan;

		ch_cfg = &config->ch_cfg[i];

		chan = ch_cfg->num;
		if (chan >= mhi_cntrl->max_chan) {
			dev_err(dev, "Channel %d not available\n", chan);
			goto error_chan_cfg;
		}

		mhi_chan = &mhi_cntrl->mhi_chan[chan];
		mhi_chan->name = ch_cfg->name;
		mhi_chan->chan = chan;

		mhi_chan->tre_ring.elements = ch_cfg->num_elements;
		if (!mhi_chan->tre_ring.elements)
			goto error_chan_cfg;

		/*
		 * For some channels, local ring length should be bigger than
		 * the transfer ring length due to internal logical channels
		 * in device. So host can queue much more buffers than transfer
		 * ring length. Example, RSC channels should have a larger local
		 * channel length than transfer ring length.
		 */
		mhi_chan->buf_ring.elements = ch_cfg->local_elements;
		if (!mhi_chan->buf_ring.elements)
			mhi_chan->buf_ring.elements = mhi_chan->tre_ring.elements;
		mhi_chan->er_index = ch_cfg->event_ring;
		mhi_chan->dir = ch_cfg->dir;

		/*
		 * For most channels, chtype is identical to channel directions.
		 * So, if it is not defined then assign channel direction to
		 * chtype
		 */
		mhi_chan->type = ch_cfg->type;
		if (!mhi_chan->type)
			mhi_chan->type = (enum mhi_ch_type)mhi_chan->dir;

		mhi_chan->ee_mask = ch_cfg->ee_mask;
		mhi_chan->db_cfg.pollcfg = ch_cfg->pollcfg;
		mhi_chan->lpm_notify = ch_cfg->lpm_notify;
		mhi_chan->offload_ch = ch_cfg->offload_channel;
		mhi_chan->db_cfg.reset_req = ch_cfg->doorbell_mode_switch;
		mhi_chan->pre_alloc = ch_cfg->auto_queue;
		mhi_chan->auto_start = ch_cfg->auto_start;

		/*
		 * If MHI host allocates buffers, then the channel direction
		 * should be DMA_FROM_DEVICE
		 */
		if (mhi_chan->pre_alloc && mhi_chan->dir != DMA_FROM_DEVICE) {
			dev_err(dev, "Invalid channel configuration\n");
			goto error_chan_cfg;
		}

		/*
		 * Bi-directional and direction less channel must be an
		 * offload channel
		 */
		if ((mhi_chan->dir == DMA_BIDIRECTIONAL ||
		     mhi_chan->dir == DMA_NONE) && !mhi_chan->offload_ch) {
			dev_err(dev, "Invalid channel configuration\n");
			goto error_chan_cfg;
		}

		if (!mhi_chan->offload_ch) {
			mhi_chan->db_cfg.brstmode = ch_cfg->doorbell;
			if (MHI_INVALID_BRSTMODE(mhi_chan->db_cfg.brstmode)) {
				dev_err(dev, "Invalid Door bell mode\n");
				goto error_chan_cfg;
			}
		}

790 791 792 793 794
		if (mhi_chan->db_cfg.brstmode == MHI_DB_BRST_ENABLE)
			mhi_chan->db_cfg.process_db = mhi_db_brstmode;
		else
			mhi_chan->db_cfg.process_db = mhi_db_brstmode_disable;

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
		mhi_chan->configured = true;

		if (mhi_chan->lpm_notify)
			list_add_tail(&mhi_chan->node, &mhi_cntrl->lpm_chans);
	}

	return 0;

error_chan_cfg:
	vfree(mhi_cntrl->mhi_chan);

	return -EINVAL;
}

static int parse_config(struct mhi_controller *mhi_cntrl,
810
			const struct mhi_controller_config *config)
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
{
	int ret;

	/* Parse MHI channel configuration */
	ret = parse_ch_cfg(mhi_cntrl, config);
	if (ret)
		return ret;

	/* Parse MHI event configuration */
	ret = parse_ev_cfg(mhi_cntrl, config);
	if (ret)
		goto error_ev_cfg;

	mhi_cntrl->timeout_ms = config->timeout_ms;
	if (!mhi_cntrl->timeout_ms)
		mhi_cntrl->timeout_ms = MHI_TIMEOUT_MS;

	mhi_cntrl->bounce_buf = config->use_bounce_buf;
	mhi_cntrl->buffer_len = config->buf_len;
	if (!mhi_cntrl->buffer_len)
		mhi_cntrl->buffer_len = MHI_MAX_MTU;

833 834 835 836 837
	/* By default, host is allowed to ring DB in both M0 and M2 states */
	mhi_cntrl->db_access = MHI_PM_M0 | MHI_PM_M2;
	if (config->m2_no_db)
		mhi_cntrl->db_access &= ~MHI_PM_M2;

838 839 840 841 842 843 844 845 846
	return 0;

error_ev_cfg:
	vfree(mhi_cntrl->mhi_chan);

	return ret;
}

int mhi_register_controller(struct mhi_controller *mhi_cntrl,
847
			    const struct mhi_controller_config *config)
848 849 850 851 852
{
	struct mhi_event *mhi_event;
	struct mhi_chan *mhi_chan;
	struct mhi_cmd *mhi_cmd;
	struct mhi_device *mhi_dev;
853 854
	u32 soc_info;
	int ret, i;
855 856 857 858

	if (!mhi_cntrl)
		return -EINVAL;

859
	if (!mhi_cntrl->runtime_get || !mhi_cntrl->runtime_put ||
860 861
	    !mhi_cntrl->status_cb || !mhi_cntrl->read_reg ||
	    !mhi_cntrl->write_reg)
862 863 864 865 866 867 868 869 870 871 872 873 874 875
		return -EINVAL;

	ret = parse_config(mhi_cntrl, config);
	if (ret)
		return -EINVAL;

	mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS,
				     sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
	if (!mhi_cntrl->mhi_cmd) {
		ret = -ENOMEM;
		goto error_alloc_cmd;
	}

	INIT_LIST_HEAD(&mhi_cntrl->transition_list);
876 877
	mutex_init(&mhi_cntrl->pm_mutex);
	rwlock_init(&mhi_cntrl->pm_lock);
878 879
	spin_lock_init(&mhi_cntrl->transition_lock);
	spin_lock_init(&mhi_cntrl->wlock);
880
	INIT_WORK(&mhi_cntrl->st_worker, mhi_pm_st_worker);
881 882 883 884 885 886 887 888 889 890 891 892 893 894
	init_waitqueue_head(&mhi_cntrl->state_event);

	mhi_cmd = mhi_cntrl->mhi_cmd;
	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++)
		spin_lock_init(&mhi_cmd->lock);

	mhi_event = mhi_cntrl->mhi_event;
	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
		/* Skip for offload events */
		if (mhi_event->offload_ev)
			continue;

		mhi_event->mhi_cntrl = mhi_cntrl;
		spin_lock_init(&mhi_event->lock);
895 896 897 898 899 900
		if (mhi_event->data_type == MHI_ER_CTRL)
			tasklet_init(&mhi_event->task, mhi_ctrl_ev_task,
				     (ulong)mhi_event);
		else
			tasklet_init(&mhi_event->task, mhi_ev_task,
				     (ulong)mhi_event);
901 902 903 904 905 906 907
	}

	mhi_chan = mhi_cntrl->mhi_chan;
	for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
		mutex_init(&mhi_chan->mutex);
		init_completion(&mhi_chan->completion);
		rwlock_init(&mhi_chan->lock);
908 909 910 911

		/* used in setting bei field of TRE */
		mhi_event = &mhi_cntrl->mhi_event[mhi_chan->er_index];
		mhi_chan->intmod = mhi_event->intmod;
912 913
	}

914 915 916 917 918 919 920 921
	if (mhi_cntrl->bounce_buf) {
		mhi_cntrl->map_single = mhi_map_single_use_bb;
		mhi_cntrl->unmap_single = mhi_unmap_single_use_bb;
	} else {
		mhi_cntrl->map_single = mhi_map_single_no_bb;
		mhi_cntrl->unmap_single = mhi_unmap_single_no_bb;
	}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	/* Read the MHI device info */
	ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs,
			   SOC_HW_VERSION_OFFS, &soc_info);
	if (ret)
		goto error_alloc_dev;

	mhi_cntrl->family_number = (soc_info & SOC_HW_VERSION_FAM_NUM_BMSK) >>
					SOC_HW_VERSION_FAM_NUM_SHFT;
	mhi_cntrl->device_number = (soc_info & SOC_HW_VERSION_DEV_NUM_BMSK) >>
					SOC_HW_VERSION_DEV_NUM_SHFT;
	mhi_cntrl->major_version = (soc_info & SOC_HW_VERSION_MAJOR_VER_BMSK) >>
					SOC_HW_VERSION_MAJOR_VER_SHFT;
	mhi_cntrl->minor_version = (soc_info & SOC_HW_VERSION_MINOR_VER_BMSK) >>
					SOC_HW_VERSION_MINOR_VER_SHFT;

937 938 939 940 941 942 943 944 945 946 947
	/* Register controller with MHI bus */
	mhi_dev = mhi_alloc_device(mhi_cntrl);
	if (IS_ERR(mhi_dev)) {
		dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate MHI device\n");
		ret = PTR_ERR(mhi_dev);
		goto error_alloc_dev;
	}

	mhi_dev->dev_type = MHI_DEVICE_CONTROLLER;
	mhi_dev->mhi_cntrl = mhi_cntrl;
	dev_set_name(&mhi_dev->dev, "%s", dev_name(mhi_cntrl->cntrl_dev));
948
	mhi_dev->name = dev_name(mhi_cntrl->cntrl_dev);
949 950 951 952 953 954 955 956 957 958

	/* Init wakeup source */
	device_init_wakeup(&mhi_dev->dev, true);

	ret = device_add(&mhi_dev->dev);
	if (ret)
		goto error_add_dev;

	mhi_cntrl->mhi_dev = mhi_dev;

959 960
	mhi_create_debugfs(mhi_cntrl);

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	return 0;

error_add_dev:
	put_device(&mhi_dev->dev);

error_alloc_dev:
	kfree(mhi_cntrl->mhi_cmd);

error_alloc_cmd:
	vfree(mhi_cntrl->mhi_chan);
	kfree(mhi_cntrl->mhi_event);

	return ret;
}
EXPORT_SYMBOL_GPL(mhi_register_controller);

void mhi_unregister_controller(struct mhi_controller *mhi_cntrl)
{
	struct mhi_device *mhi_dev = mhi_cntrl->mhi_dev;
	struct mhi_chan *mhi_chan = mhi_cntrl->mhi_chan;
	unsigned int i;

983 984
	mhi_destroy_debugfs(mhi_cntrl);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	kfree(mhi_cntrl->mhi_cmd);
	kfree(mhi_cntrl->mhi_event);

	/* Drop the references to MHI devices created for channels */
	for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
		if (!mhi_chan->mhi_dev)
			continue;

		put_device(&mhi_chan->mhi_dev->dev);
	}
	vfree(mhi_cntrl->mhi_chan);

	device_del(&mhi_dev->dev);
	put_device(&mhi_dev->dev);
}
EXPORT_SYMBOL_GPL(mhi_unregister_controller);

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
struct mhi_controller *mhi_alloc_controller(void)
{
	struct mhi_controller *mhi_cntrl;

	mhi_cntrl = kzalloc(sizeof(*mhi_cntrl), GFP_KERNEL);

	return mhi_cntrl;
}
EXPORT_SYMBOL_GPL(mhi_alloc_controller);

void mhi_free_controller(struct mhi_controller *mhi_cntrl)
{
	kfree(mhi_cntrl);
}
EXPORT_SYMBOL_GPL(mhi_free_controller);

1018 1019
int mhi_prepare_for_power_up(struct mhi_controller *mhi_cntrl)
{
1020 1021
	struct device *dev = &mhi_cntrl->mhi_dev->dev;
	u32 bhie_off;
1022 1023 1024 1025 1026 1027 1028 1029
	int ret;

	mutex_lock(&mhi_cntrl->pm_mutex);

	ret = mhi_init_dev_ctxt(mhi_cntrl);
	if (ret)
		goto error_dev_ctxt;

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	/*
	 * Allocate RDDM table if specified, this table is for debugging purpose
	 */
	if (mhi_cntrl->rddm_size) {
		mhi_alloc_bhie_table(mhi_cntrl, &mhi_cntrl->rddm_image,
				     mhi_cntrl->rddm_size);

		/*
		 * This controller supports RDDM, so we need to manually clear
		 * BHIE RX registers since POR values are undefined.
		 */
		ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIEOFF,
				   &bhie_off);
		if (ret) {
			dev_err(dev, "Error getting BHIE offset\n");
			goto bhie_error;
		}

1048 1049
		mhi_cntrl->bhie = mhi_cntrl->regs + bhie_off;
		memset_io(mhi_cntrl->bhie + BHIE_RXVECADDR_LOW_OFFS,
1050 1051 1052 1053 1054 1055 1056
			  0, BHIE_RXVECSTATUS_OFFS - BHIE_RXVECADDR_LOW_OFFS +
			  4);

		if (mhi_cntrl->rddm_image)
			mhi_rddm_prepare(mhi_cntrl, mhi_cntrl->rddm_image);
	}

1057 1058 1059 1060 1061 1062
	mhi_cntrl->pre_init = true;

	mutex_unlock(&mhi_cntrl->pm_mutex);

	return 0;

1063 1064 1065 1066 1067 1068
bhie_error:
	if (mhi_cntrl->rddm_image) {
		mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->rddm_image);
		mhi_cntrl->rddm_image = NULL;
	}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
error_dev_ctxt:
	mutex_unlock(&mhi_cntrl->pm_mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(mhi_prepare_for_power_up);

void mhi_unprepare_after_power_down(struct mhi_controller *mhi_cntrl)
{
	if (mhi_cntrl->fbc_image) {
		mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->fbc_image);
		mhi_cntrl->fbc_image = NULL;
	}

1083 1084 1085 1086 1087
	if (mhi_cntrl->rddm_image) {
		mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->rddm_image);
		mhi_cntrl->rddm_image = NULL;
	}

1088 1089 1090 1091 1092
	mhi_deinit_dev_ctxt(mhi_cntrl);
	mhi_cntrl->pre_init = false;
}
EXPORT_SYMBOL_GPL(mhi_unprepare_after_power_down);

1093 1094 1095 1096
static void mhi_release_device(struct device *dev)
{
	struct mhi_device *mhi_dev = to_mhi_device(dev);

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
	 * devices for the channels will only get created if the mhi_dev
	 * associated with it is NULL. This scenario will happen during the
	 * controller suspend and resume.
	 */
	if (mhi_dev->ul_chan)
		mhi_dev->ul_chan->mhi_dev = NULL;

	if (mhi_dev->dl_chan)
		mhi_dev->dl_chan->mhi_dev = NULL;

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	kfree(mhi_dev);
}

struct mhi_device *mhi_alloc_device(struct mhi_controller *mhi_cntrl)
{
	struct mhi_device *mhi_dev;
	struct device *dev;

	mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
	if (!mhi_dev)
		return ERR_PTR(-ENOMEM);

	dev = &mhi_dev->dev;
	device_initialize(dev);
	dev->bus = &mhi_bus_type;
	dev->release = mhi_release_device;
	dev->parent = mhi_cntrl->cntrl_dev;
	mhi_dev->mhi_cntrl = mhi_cntrl;
	mhi_dev->dev_wake = 0;

	return mhi_dev;
}

1132 1133 1134 1135 1136 1137 1138 1139 1140
static int mhi_driver_probe(struct device *dev)
{
	struct mhi_device *mhi_dev = to_mhi_device(dev);
	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
	struct device_driver *drv = dev->driver;
	struct mhi_driver *mhi_drv = to_mhi_driver(drv);
	struct mhi_event *mhi_event;
	struct mhi_chan *ul_chan = mhi_dev->ul_chan;
	struct mhi_chan *dl_chan = mhi_dev->dl_chan;
1141 1142 1143 1144 1145 1146 1147 1148
	int ret;

	/* Bring device out of LPM */
	ret = mhi_device_get_sync(mhi_dev);
	if (ret)
		return ret;

	ret = -EINVAL;
1149 1150 1151 1152 1153 1154 1155

	if (ul_chan) {
		/*
		 * If channel supports LPM notifications then status_cb should
		 * be provided
		 */
		if (ul_chan->lpm_notify && !mhi_drv->status_cb)
1156
			goto exit_probe;
1157 1158 1159

		/* For non-offload channels then xfer_cb should be provided */
		if (!ul_chan->offload_ch && !mhi_drv->ul_xfer_cb)
1160
			goto exit_probe;
1161 1162

		ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1163 1164 1165 1166 1167
		if (ul_chan->auto_start) {
			ret = mhi_prepare_channel(mhi_cntrl, ul_chan);
			if (ret)
				goto exit_probe;
		}
1168 1169
	}

1170
	ret = -EINVAL;
1171 1172 1173 1174 1175 1176
	if (dl_chan) {
		/*
		 * If channel supports LPM notifications then status_cb should
		 * be provided
		 */
		if (dl_chan->lpm_notify && !mhi_drv->status_cb)
1177
			goto exit_probe;
1178 1179 1180

		/* For non-offload channels then xfer_cb should be provided */
		if (!dl_chan->offload_ch && !mhi_drv->dl_xfer_cb)
1181
			goto exit_probe;
1182 1183 1184 1185 1186 1187 1188 1189 1190

		mhi_event = &mhi_cntrl->mhi_event[dl_chan->er_index];

		/*
		 * If the channel event ring is managed by client, then
		 * status_cb must be provided so that the framework can
		 * notify pending data
		 */
		if (mhi_event->cl_manage && !mhi_drv->status_cb)
1191
			goto exit_probe;
1192 1193 1194 1195 1196

		dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
	}

	/* Call the user provided probe function */
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	ret = mhi_drv->probe(mhi_dev, mhi_dev->id);
	if (ret)
		goto exit_probe;

	if (dl_chan && dl_chan->auto_start)
		mhi_prepare_channel(mhi_cntrl, dl_chan);

	mhi_device_put(mhi_dev);

	return ret;

exit_probe:
	mhi_unprepare_from_transfer(mhi_dev);

	mhi_device_put(mhi_dev);

	return ret;
1214 1215 1216 1217 1218 1219
}

static int mhi_driver_remove(struct device *dev)
{
	struct mhi_device *mhi_dev = to_mhi_device(dev);
	struct mhi_driver *mhi_drv = to_mhi_driver(dev->driver);
1220
	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	struct mhi_chan *mhi_chan;
	enum mhi_ch_state ch_state[] = {
		MHI_CH_STATE_DISABLED,
		MHI_CH_STATE_DISABLED
	};
	int dir;

	/* Skip if it is a controller device */
	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
		return 0;

	/* Reset both channels */
	for (dir = 0; dir < 2; dir++) {
		mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;

		if (!mhi_chan)
			continue;

		/* Wake all threads waiting for completion */
		write_lock_irq(&mhi_chan->lock);
		mhi_chan->ccs = MHI_EV_CC_INVALID;
		complete_all(&mhi_chan->completion);
		write_unlock_irq(&mhi_chan->lock);

		/* Set the channel state to disabled */
		mutex_lock(&mhi_chan->mutex);
		write_lock_irq(&mhi_chan->lock);
		ch_state[dir] = mhi_chan->ch_state;
		mhi_chan->ch_state = MHI_CH_STATE_SUSPENDED;
		write_unlock_irq(&mhi_chan->lock);

1252 1253 1254 1255
		/* Reset the non-offload channel */
		if (!mhi_chan->offload_ch)
			mhi_reset_chan(mhi_cntrl, mhi_chan);

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		mutex_unlock(&mhi_chan->mutex);
	}

	mhi_drv->remove(mhi_dev);

	/* De-init channel if it was enabled */
	for (dir = 0; dir < 2; dir++) {
		mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;

		if (!mhi_chan)
			continue;

		mutex_lock(&mhi_chan->mutex);

1270 1271 1272 1273
		if (ch_state[dir] == MHI_CH_STATE_ENABLED &&
		    !mhi_chan->offload_ch)
			mhi_deinit_chan_ctxt(mhi_cntrl, mhi_chan);

1274 1275 1276 1277 1278
		mhi_chan->ch_state = MHI_CH_STATE_DISABLED;

		mutex_unlock(&mhi_chan->mutex);
	}

1279 1280 1281
	while (mhi_dev->dev_wake)
		mhi_device_put(mhi_dev);

1282 1283 1284
	return 0;
}

1285
int __mhi_driver_register(struct mhi_driver *mhi_drv, struct module *owner)
1286 1287 1288 1289 1290 1291 1292
{
	struct device_driver *driver = &mhi_drv->driver;

	if (!mhi_drv->probe || !mhi_drv->remove)
		return -EINVAL;

	driver->bus = &mhi_bus_type;
1293
	driver->owner = owner;
1294 1295 1296 1297 1298
	driver->probe = mhi_driver_probe;
	driver->remove = mhi_driver_remove;

	return driver_register(driver);
}
1299
EXPORT_SYMBOL_GPL(__mhi_driver_register);
1300 1301 1302 1303 1304 1305 1306

void mhi_driver_unregister(struct mhi_driver *mhi_drv)
{
	driver_unregister(&mhi_drv->driver);
}
EXPORT_SYMBOL_GPL(mhi_driver_unregister);

1307 1308 1309 1310 1311
static int mhi_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	struct mhi_device *mhi_dev = to_mhi_device(dev);

	return add_uevent_var(env, "MODALIAS=" MHI_DEVICE_MODALIAS_FMT,
1312
					mhi_dev->name);
1313 1314
}

1315 1316
static int mhi_match(struct device *dev, struct device_driver *drv)
{
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	struct mhi_device *mhi_dev = to_mhi_device(dev);
	struct mhi_driver *mhi_drv = to_mhi_driver(drv);
	const struct mhi_device_id *id;

	/*
	 * If the device is a controller type then there is no client driver
	 * associated with it
	 */
	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
		return 0;

	for (id = mhi_drv->id_table; id->chan[0]; id++)
1329
		if (!strcmp(mhi_dev->name, id->chan)) {
1330 1331 1332 1333
			mhi_dev->id = id;
			return 1;
		}

1334 1335 1336 1337 1338 1339 1340
	return 0;
};

struct bus_type mhi_bus_type = {
	.name = "mhi",
	.dev_name = "mhi",
	.match = mhi_match,
1341
	.uevent = mhi_uevent,
1342
	.dev_groups = mhi_dev_groups,
1343 1344 1345 1346
};

static int __init mhi_init(void)
{
1347
	mhi_debugfs_init();
1348 1349 1350 1351 1352
	return bus_register(&mhi_bus_type);
}

static void __exit mhi_exit(void)
{
1353
	mhi_debugfs_exit();
1354 1355 1356 1357 1358 1359 1360 1361
	bus_unregister(&mhi_bus_type);
}

postcore_initcall(mhi_init);
module_exit(mhi_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MHI Host Interface");