flow_netlink.c 54.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2007-2014 Nicira, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA
 */

19 20
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "flow.h"
#include "datapath.h"
#include <linux/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/sctp.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/rculist.h>
45
#include <net/geneve.h>
46 47 48
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ndisc.h>
49
#include <net/mpls.h>
50 51 52

#include "flow_netlink.h"

53 54
static void update_range(struct sw_flow_match *match,
			 size_t offset, size_t size, bool is_mask)
55
{
56
	struct sw_flow_key_range *range;
57 58 59 60 61
	size_t start = rounddown(offset, sizeof(long));
	size_t end = roundup(offset + size, sizeof(long));

	if (!is_mask)
		range = &match->range;
62
	else
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
		range = &match->mask->range;

	if (range->start == range->end) {
		range->start = start;
		range->end = end;
		return;
	}

	if (range->start > start)
		range->start = start;

	if (range->end < end)
		range->end = end;
}

#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
	do { \
80 81 82 83 84
		update_range(match, offsetof(struct sw_flow_key, field),    \
			     sizeof((match)->key->field), is_mask);	    \
		if (is_mask)						    \
			(match)->mask->key.field = value;		    \
		else							    \
85 86 87
			(match)->key->field = value;		            \
	} while (0)

88 89
#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
	do {								    \
90
		update_range(match, offset, len, is_mask);		    \
91 92
		if (is_mask)						    \
			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
93
			       len);					   \
94 95
		else							    \
			memcpy((u8 *)(match)->key + offset, value_p, len);  \
96 97
	} while (0)

98 99 100 101
#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
				  value_p, len, is_mask)

102 103 104 105 106 107 108 109
#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
	do {								    \
		update_range(match, offsetof(struct sw_flow_key, field),    \
			     sizeof((match)->key->field), is_mask);	    \
		if (is_mask)						    \
			memset((u8 *)&(match)->mask->key.field, value,      \
			       sizeof((match)->mask->key.field));	    \
		else							    \
110 111 112
			memset((u8 *)&(match)->key->field, value,           \
			       sizeof((match)->key->field));                \
	} while (0)
113 114

static bool match_validate(const struct sw_flow_match *match,
115
			   u64 key_attrs, u64 mask_attrs, bool log)
116 117 118 119 120 121 122 123 124
{
	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */

	/* The following mask attributes allowed only if they
	 * pass the validation tests. */
	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
			| (1 << OVS_KEY_ATTR_IPV6)
			| (1 << OVS_KEY_ATTR_TCP)
125
			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
126 127 128 129 130
			| (1 << OVS_KEY_ATTR_UDP)
			| (1 << OVS_KEY_ATTR_SCTP)
			| (1 << OVS_KEY_ATTR_ICMP)
			| (1 << OVS_KEY_ATTR_ICMPV6)
			| (1 << OVS_KEY_ATTR_ARP)
131 132
			| (1 << OVS_KEY_ATTR_ND)
			| (1 << OVS_KEY_ATTR_MPLS));
133 134 135 136 137 138 139 140 141 142 143 144 145 146

	/* Always allowed mask fields. */
	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
		       | (1 << OVS_KEY_ATTR_IN_PORT)
		       | (1 << OVS_KEY_ATTR_ETHERTYPE));

	/* Check key attributes. */
	if (match->key->eth.type == htons(ETH_P_ARP)
			|| match->key->eth.type == htons(ETH_P_RARP)) {
		key_expected |= 1 << OVS_KEY_ATTR_ARP;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
	}

147 148 149 150 151 152
	if (eth_p_mpls(match->key->eth.type)) {
		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
	}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
	if (match->key->eth.type == htons(ETH_P_IP)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
173 174
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
175
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
176 177
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
			}

			if (match->key->ip.proto == IPPROTO_ICMP) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
			}
		}
	}

	if (match->key->eth.type == htons(ETH_P_IPV6)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
208 209
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
210
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
211 212
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
213 214 215 216 217 218 219
			}

			if (match->key->ip.proto == IPPROTO_ICMPV6) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;

220
				if (match->key->tp.src ==
221
						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
222
				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
223
					key_expected |= 1 << OVS_KEY_ATTR_ND;
224
					if (match->mask && (match->mask->key.tp.src == htons(0xffff)))
225 226 227 228 229 230 231 232
						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
				}
			}
		}
	}

	if ((key_attrs & key_expected) != key_expected) {
		/* Key attributes check failed. */
233 234 235
		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
			  (unsigned long long)key_attrs,
			  (unsigned long long)key_expected);
236 237 238 239 240
		return false;
	}

	if ((mask_attrs & mask_allowed) != mask_attrs) {
		/* Mask attributes check failed. */
241 242 243
		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
			  (unsigned long long)mask_attrs,
			  (unsigned long long)mask_allowed);
244 245 246 247 248 249
		return false;
	}

	return true;
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
size_t ovs_tun_key_attr_size(void)
{
	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
	 * updating this function.
	 */
	return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
		+ nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
		+ nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
}

268 269 270 271 272 273 274 275 276
size_t ovs_key_attr_size(void)
{
	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
	 * updating this function.
	 */
	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 22);

	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
277
		  + ovs_tun_key_attr_size()
278 279 280 281 282 283 284 285 286 287 288 289 290 291
		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
}

292 293 294 295 296 297 298 299 300 301 302 303
/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
	[OVS_KEY_ATTR_ENCAP] = -1,
	[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
	[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
	[OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
	[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
	[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
	[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
	[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
	[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
	[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
304
	[OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
305 306 307 308 309 310
	[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
	[OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
	[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
	[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
	[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
	[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
311 312
	[OVS_KEY_ATTR_RECIRC_ID] = sizeof(u32),
	[OVS_KEY_ATTR_DP_HASH] = sizeof(u32),
313
	[OVS_KEY_ATTR_TUNNEL] = -1,
314
	[OVS_KEY_ATTR_MPLS] = sizeof(struct ovs_key_mpls),
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
};

static bool is_all_zero(const u8 *fp, size_t size)
{
	int i;

	if (!fp)
		return false;

	for (i = 0; i < size; i++)
		if (fp[i])
			return false;

	return true;
}

static int __parse_flow_nlattrs(const struct nlattr *attr,
				const struct nlattr *a[],
333
				u64 *attrsp, bool log, bool nz)
334 335 336 337 338 339 340 341 342 343 344
{
	const struct nlattr *nla;
	u64 attrs;
	int rem;

	attrs = *attrsp;
	nla_for_each_nested(nla, attr, rem) {
		u16 type = nla_type(nla);
		int expected_len;

		if (type > OVS_KEY_ATTR_MAX) {
345
			OVS_NLERR(log, "Key type %d is out of range max %d",
346 347 348 349 350
				  type, OVS_KEY_ATTR_MAX);
			return -EINVAL;
		}

		if (attrs & (1 << type)) {
351
			OVS_NLERR(log, "Duplicate key (type %d).", type);
352 353 354 355 356
			return -EINVAL;
		}

		expected_len = ovs_key_lens[type];
		if (nla_len(nla) != expected_len && expected_len != -1) {
357 358
			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
				  type, nla_len(nla), expected_len);
359 360 361 362 363 364 365 366 367
			return -EINVAL;
		}

		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
			attrs |= 1 << type;
			a[type] = nla;
		}
	}
	if (rem) {
368
		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
369 370 371 372 373 374 375 376
		return -EINVAL;
	}

	*attrsp = attrs;
	return 0;
}

static int parse_flow_mask_nlattrs(const struct nlattr *attr,
377 378
				   const struct nlattr *a[], u64 *attrsp,
				   bool log)
379
{
380
	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
381 382 383
}

static int parse_flow_nlattrs(const struct nlattr *attr,
384 385
			      const struct nlattr *a[], u64 *attrsp,
			      bool log)
386
{
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
}

static int genev_tun_opt_from_nlattr(const struct nlattr *a,
				     struct sw_flow_match *match, bool is_mask,
				     bool log)
{
	unsigned long opt_key_offset;

	if (nla_len(a) > sizeof(match->key->tun_opts)) {
		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
			  nla_len(a), sizeof(match->key->tun_opts));
		return -EINVAL;
	}

	if (nla_len(a) % 4 != 0) {
		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
			  nla_len(a));
		return -EINVAL;
	}

	/* We need to record the length of the options passed
	 * down, otherwise packets with the same format but
	 * additional options will be silently matched.
	 */
	if (!is_mask) {
		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
				false);
	} else {
		/* This is somewhat unusual because it looks at
		 * both the key and mask while parsing the
		 * attributes (and by extension assumes the key
		 * is parsed first). Normally, we would verify
		 * that each is the correct length and that the
		 * attributes line up in the validate function.
		 * However, that is difficult because this is
		 * variable length and we won't have the
		 * information later.
		 */
		if (match->key->tun_opts_len != nla_len(a)) {
			OVS_NLERR(log, "Geneve option len %d != mask len %d",
				  match->key->tun_opts_len, nla_len(a));
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
	}

	opt_key_offset = (unsigned long)GENEVE_OPTS((struct sw_flow_key *)0,
						    nla_len(a));
	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
				  nla_len(a), is_mask);
	return 0;
440 441 442
}

static int ipv4_tun_from_nlattr(const struct nlattr *attr,
443 444
				struct sw_flow_match *match, bool is_mask,
				bool log)
445 446 447 448 449 450 451 452
{
	struct nlattr *a;
	int rem;
	bool ttl = false;
	__be16 tun_flags = 0;

	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
453 454
		int err;

455 456 457 458 459 460 461 462
		static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
			[OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
			[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
			[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
			[OVS_TUNNEL_KEY_ATTR_TOS] = 1,
			[OVS_TUNNEL_KEY_ATTR_TTL] = 1,
			[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
			[OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
463 464
			[OVS_TUNNEL_KEY_ATTR_TP_SRC] = sizeof(u16),
			[OVS_TUNNEL_KEY_ATTR_TP_DST] = sizeof(u16),
465
			[OVS_TUNNEL_KEY_ATTR_OAM] = 0,
466
			[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = -1,
467 468 469
		};

		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
470 471
			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
				  type, OVS_TUNNEL_KEY_ATTR_MAX);
472 473 474
			return -EINVAL;
		}

475 476
		if (ovs_tunnel_key_lens[type] != nla_len(a) &&
		    ovs_tunnel_key_lens[type] != -1) {
477
			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
				  type, nla_len(a), ovs_tunnel_key_lens[type]);
			return -EINVAL;
		}

		switch (type) {
		case OVS_TUNNEL_KEY_ATTR_ID:
			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
					nla_get_be64(a), is_mask);
			tun_flags |= TUNNEL_KEY;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
					nla_get_be32(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
					nla_get_be32(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TOS:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
					nla_get_u8(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TTL:
			SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
					nla_get_u8(a), is_mask);
			ttl = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
			tun_flags |= TUNNEL_DONT_FRAGMENT;
			break;
		case OVS_TUNNEL_KEY_ATTR_CSUM:
			tun_flags |= TUNNEL_CSUM;
			break;
511 512 513 514 515 516 517 518
		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
					nla_get_be16(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TP_DST:
			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
					nla_get_be16(a), is_mask);
			break;
519 520 521
		case OVS_TUNNEL_KEY_ATTR_OAM:
			tun_flags |= TUNNEL_OAM;
			break;
522
		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
523 524 525
			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
			if (err)
				return err;
526

527
			tun_flags |= TUNNEL_OPTIONS_PRESENT;
528
			break;
529
		default:
530
			OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
531
				  type);
532 533 534 535 536 537 538
			return -EINVAL;
		}
	}

	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);

	if (rem > 0) {
539 540
		OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
			  rem);
541 542 543 544 545
		return -EINVAL;
	}

	if (!is_mask) {
		if (!match->key->tun_key.ipv4_dst) {
546
			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
547 548 549 550
			return -EINVAL;
		}

		if (!ttl) {
551
			OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
552 553 554 555 556 557 558
			return -EINVAL;
		}
	}

	return 0;
}

559 560 561 562
static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
				const struct ovs_key_ipv4_tunnel *output,
				const struct geneve_opt *tun_opts,
				int swkey_tun_opts_len)
563 564 565 566 567
{
	if (output->tun_flags & TUNNEL_KEY &&
	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
		return -EMSGSIZE;
	if (output->ipv4_src &&
568
	    nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
569 570
		return -EMSGSIZE;
	if (output->ipv4_dst &&
571
	    nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
572 573
		return -EMSGSIZE;
	if (output->ipv4_tos &&
574
	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
575 576 577 578
		return -EMSGSIZE;
	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
579
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
580 581
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_CSUM) &&
582 583
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
		return -EMSGSIZE;
584 585 586 587 588 589
	if (output->tp_src &&
	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
		return -EMSGSIZE;
	if (output->tp_dst &&
	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
		return -EMSGSIZE;
590 591
	if ((output->tun_flags & TUNNEL_OAM) &&
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
592
		return -EMSGSIZE;
593 594 595 596
	if (tun_opts &&
	    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
		    swkey_tun_opts_len, tun_opts))
		return -EMSGSIZE;
597 598 599 600

	return 0;
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
static int ipv4_tun_to_nlattr(struct sk_buff *skb,
			      const struct ovs_key_ipv4_tunnel *output,
			      const struct geneve_opt *tun_opts,
			      int swkey_tun_opts_len)
{
	struct nlattr *nla;
	int err;

	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
	if (!nla)
		return -EMSGSIZE;

	err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
	if (err)
		return err;

	nla_nest_end(skb, nla);
	return 0;
}

621 622 623 624 625 626 627 628
int ovs_nla_put_egress_tunnel_key(struct sk_buff *skb,
				  const struct ovs_tunnel_info *egress_tun_info)
{
	return __ipv4_tun_to_nlattr(skb, &egress_tun_info->tunnel,
				    egress_tun_info->options,
				    egress_tun_info->options_len);
}

629
static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
630 631
				 const struct nlattr **a, bool is_mask,
				 bool log)
632
{
633 634 635 636 637 638 639 640 641 642 643 644 645 646
	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);

		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);

		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
	}

647 648 649 650 651 652 653 654 655
	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
		SW_FLOW_KEY_PUT(match, phy.priority,
			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);

656
		if (is_mask) {
657
			in_port = 0xffffffff; /* Always exact match in_port. */
658
		} else if (in_port >= DP_MAX_PORTS) {
659
			OVS_NLERR(log, "Port %d exceeds max allowable %d",
660
				  in_port, DP_MAX_PORTS);
661
			return -EINVAL;
662
		}
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
	} else if (!is_mask) {
		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);

		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
	}
	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
		if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
678
					 is_mask, log))
679 680 681 682 683 684
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
	}
	return 0;
}

685
static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
686 687
				const struct nlattr **a, bool is_mask,
				bool log)
688 689 690
{
	int err;

691
	err = metadata_from_nlattrs(match, &attrs, a, is_mask, log);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	if (err)
		return err;

	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
		const struct ovs_key_ethernet *eth_key;

		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
		SW_FLOW_KEY_MEMCPY(match, eth.src,
				eth_key->eth_src, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, eth.dst,
				eth_key->eth_dst, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
	}

	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
		__be16 tci;

		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
		if (!(tci & htons(VLAN_TAG_PRESENT))) {
			if (is_mask)
712
				OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
713
			else
714
				OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
715 716 717 718 719 720

			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
721
	}
722 723 724 725 726 727 728 729 730

	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
		__be16 eth_type;

		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
		if (is_mask) {
			/* Always exact match EtherType. */
			eth_type = htons(0xffff);
		} else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
731 732
			OVS_NLERR(log, "EtherType %x is less than min %x",
				  ntohs(eth_type), ETH_P_802_3_MIN);
733 734 735 736 737 738 739 740 741 742 743 744 745 746
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
	} else if (!is_mask) {
		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
		const struct ovs_key_ipv4 *ipv4_key;

		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
747 748
			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
			return -EINVAL;
		}
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv4_key->ipv4_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv4_key->ipv4_tos, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv4_key->ipv4_ttl, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv4_key->ipv4_frag, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				ipv4_key->ipv4_src, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
				ipv4_key->ipv4_dst, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
		const struct ovs_key_ipv6 *ipv6_key;

		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
771 772
			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
			return -EINVAL;
		}
		SW_FLOW_KEY_PUT(match, ipv6.label,
				ipv6_key->ipv6_label, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv6_key->ipv6_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv6_key->ipv6_tclass, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv6_key->ipv6_hlimit, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv6_key->ipv6_frag, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
				ipv6_key->ipv6_src,
				sizeof(match->key->ipv6.addr.src),
				is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
				ipv6_key->ipv6_dst,
				sizeof(match->key->ipv6.addr.dst),
				is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
		const struct ovs_key_arp *arp_key;

		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
802
			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
				  arp_key->arp_op);
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				arp_key->arp_sip, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
			arp_key->arp_tip, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ntohs(arp_key->arp_op), is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
				arp_key->arp_sha, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
				arp_key->arp_tha, ETH_ALEN, is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
	}

821 822 823 824 825 826 827 828 829 830
	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
		const struct ovs_key_mpls *mpls_key;

		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
		SW_FLOW_KEY_PUT(match, mpls.top_lse,
				mpls_key->mpls_lse, is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
	 }

831 832 833 834
	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
		const struct ovs_key_tcp *tcp_key;

		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
835 836
		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
837 838 839
		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
	}

840
	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
841 842 843
		SW_FLOW_KEY_PUT(match, tp.flags,
				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
				is_mask);
844 845 846
		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
	}

847 848 849 850
	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
		const struct ovs_key_udp *udp_key;

		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
851 852
		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
853 854 855 856 857 858 859
		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
		const struct ovs_key_sctp *sctp_key;

		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
860 861
		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
862 863 864 865 866 867 868
		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
		const struct ovs_key_icmp *icmp_key;

		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
869
		SW_FLOW_KEY_PUT(match, tp.src,
870
				htons(icmp_key->icmp_type), is_mask);
871
		SW_FLOW_KEY_PUT(match, tp.dst,
872 873 874 875 876 877 878 879
				htons(icmp_key->icmp_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
		const struct ovs_key_icmpv6 *icmpv6_key;

		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
880
		SW_FLOW_KEY_PUT(match, tp.src,
881
				htons(icmpv6_key->icmpv6_type), is_mask);
882
		SW_FLOW_KEY_PUT(match, tp.dst,
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
				htons(icmpv6_key->icmpv6_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
		const struct ovs_key_nd *nd_key;

		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
			nd_key->nd_target,
			sizeof(match->key->ipv6.nd.target),
			is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
			nd_key->nd_sll, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
				nd_key->nd_tll, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ND);
	}

902
	if (attrs != 0) {
903
		OVS_NLERR(log, "Unknown key attributes %llx",
904
			  (unsigned long long)attrs);
905
		return -EINVAL;
906
	}
907 908 909 910

	return 0;
}

911
static void nlattr_set(struct nlattr *attr, u8 val, bool is_attr_mask_key)
912
{
913 914
	struct nlattr *nla;
	int rem;
915

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	/* The nlattr stream should already have been validated */
	nla_for_each_nested(nla, attr, rem) {
		/* We assume that ovs_key_lens[type] == -1 means that type is a
		 * nested attribute
		 */
		if (is_attr_mask_key && ovs_key_lens[nla_type(nla)] == -1)
			nlattr_set(nla, val, false);
		else
			memset(nla_data(nla), val, nla_len(nla));
	}
}

static void mask_set_nlattr(struct nlattr *attr, u8 val)
{
	nlattr_set(attr, val, true);
931 932 933 934 935 936 937 938 939 940 941 942 943
}

/**
 * ovs_nla_get_match - parses Netlink attributes into a flow key and
 * mask. In case the 'mask' is NULL, the flow is treated as exact match
 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
 * does not include any don't care bit.
 * @match: receives the extracted flow match information.
 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence. The fields should of the packet that triggered the creation
 * of this flow.
 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
 * attribute specifies the mask field of the wildcarded flow.
944 945 946
 * @log: Boolean to allow kernel error logging.  Normally true, but when
 * probing for feature compatibility this should be passed in as false to
 * suppress unnecessary error logging.
947 948
 */
int ovs_nla_get_match(struct sw_flow_match *match,
949
		      const struct nlattr *nla_key,
950 951
		      const struct nlattr *nla_mask,
		      bool log)
952 953 954
{
	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
	const struct nlattr *encap;
955
	struct nlattr *newmask = NULL;
956 957 958 959 960
	u64 key_attrs = 0;
	u64 mask_attrs = 0;
	bool encap_valid = false;
	int err;

961
	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
962 963 964 965 966 967 968 969 970 971
	if (err)
		return err;

	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
		__be16 tci;

		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
972
			OVS_NLERR(log, "Invalid Vlan frame.");
973 974 975 976 977 978 979 980 981 982
			return -EINVAL;
		}

		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
		encap = a[OVS_KEY_ATTR_ENCAP];
		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
		encap_valid = true;

		if (tci & htons(VLAN_TAG_PRESENT)) {
983
			err = parse_flow_nlattrs(encap, a, &key_attrs, log);
984 985 986 987 988
			if (err)
				return err;
		} else if (!tci) {
			/* Corner case for truncated 802.1Q header. */
			if (nla_len(encap)) {
989
				OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
990 991 992
				return -EINVAL;
			}
		} else {
993
			OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
994 995 996 997
			return  -EINVAL;
		}
	}

998
	err = ovs_key_from_nlattrs(match, key_attrs, a, false, log);
999 1000 1001
	if (err)
		return err;

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	if (match->mask) {
		if (!nla_mask) {
			/* Create an exact match mask. We need to set to 0xff
			 * all the 'match->mask' fields that have been touched
			 * in 'match->key'. We cannot simply memset
			 * 'match->mask', because padding bytes and fields not
			 * specified in 'match->key' should be left to 0.
			 * Instead, we use a stream of netlink attributes,
			 * copied from 'key' and set to 0xff.
			 * ovs_key_from_nlattrs() will take care of filling
			 * 'match->mask' appropriately.
			 */
			newmask = kmemdup(nla_key,
					  nla_total_size(nla_len(nla_key)),
					  GFP_KERNEL);
			if (!newmask)
				return -ENOMEM;
1019

1020
			mask_set_nlattr(newmask, 0xff);
1021

1022 1023 1024 1025 1026 1027
			/* The userspace does not send tunnel attributes that
			 * are 0, but we should not wildcard them nonetheless.
			 */
			if (match->key->tun_key.ipv4_dst)
				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
							 0xff, true);
1028

1029 1030
			nla_mask = newmask;
		}
1031

1032
		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1033
		if (err)
1034
			goto free_newmask;
1035

1036 1037 1038
		/* Always match on tci. */
		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);

1039
		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1040 1041 1042 1043
			__be16 eth_type = 0;
			__be16 tci = 0;

			if (!encap_valid) {
1044
				OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1045 1046
				err = -EINVAL;
				goto free_newmask;
1047 1048 1049 1050 1051 1052 1053 1054 1055
			}

			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
			if (a[OVS_KEY_ATTR_ETHERTYPE])
				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);

			if (eth_type == htons(0xffff)) {
				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
				encap = a[OVS_KEY_ATTR_ENCAP];
1056 1057
				err = parse_flow_mask_nlattrs(encap, a,
							      &mask_attrs, log);
1058 1059
				if (err)
					goto free_newmask;
1060
			} else {
1061 1062
				OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
					  ntohs(eth_type));
1063 1064
				err = -EINVAL;
				goto free_newmask;
1065 1066 1067 1068 1069 1070
			}

			if (a[OVS_KEY_ATTR_VLAN])
				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

			if (!(tci & htons(VLAN_TAG_PRESENT))) {
1071 1072
				OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
					  ntohs(tci));
1073 1074
				err = -EINVAL;
				goto free_newmask;
1075 1076 1077
			}
		}

1078
		err = ovs_key_from_nlattrs(match, mask_attrs, a, true, log);
1079
		if (err)
1080
			goto free_newmask;
1081 1082
	}

1083
	if (!match_validate(match, key_attrs, mask_attrs, log))
1084
		err = -EINVAL;
1085

1086 1087 1088
free_newmask:
	kfree(newmask);
	return err;
1089 1090 1091 1092
}

/**
 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1093
 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1094 1095
 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence.
1096 1097 1098
 * @log: Boolean to allow kernel error logging.  Normally true, but when
 * probing for feature compatibility this should be passed in as false to
 * suppress unnecessary error logging.
1099 1100 1101 1102 1103 1104 1105
 *
 * This parses a series of Netlink attributes that form a flow key, which must
 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
 * get the metadata, that is, the parts of the flow key that cannot be
 * extracted from the packet itself.
 */

1106
int ovs_nla_get_flow_metadata(const struct nlattr *attr,
1107 1108
			      struct sw_flow_key *key,
			      bool log)
1109 1110
{
	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1111
	struct sw_flow_match match;
1112 1113 1114
	u64 attrs = 0;
	int err;

1115
	err = parse_flow_nlattrs(attr, a, &attrs, log);
1116 1117 1118 1119
	if (err)
		return -EINVAL;

	memset(&match, 0, sizeof(match));
1120
	match.key = key;
1121

1122
	key->phy.in_port = DP_MAX_PORTS;
1123

1124
	return metadata_from_nlattrs(&match, &attrs, a, false, log);
1125 1126 1127 1128 1129 1130 1131 1132 1133
}

int ovs_nla_put_flow(const struct sw_flow_key *swkey,
		     const struct sw_flow_key *output, struct sk_buff *skb)
{
	struct ovs_key_ethernet *eth_key;
	struct nlattr *nla, *encap;
	bool is_mask = (swkey != output);

1134 1135 1136 1137 1138 1139
	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
		goto nla_put_failure;

	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
		goto nla_put_failure;

1140 1141 1142
	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
		goto nla_put_failure;

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	if ((swkey->tun_key.ipv4_dst || is_mask)) {
		const struct geneve_opt *opts = NULL;

		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
			opts = GENEVE_OPTS(output, swkey->tun_opts_len);

		if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
				       swkey->tun_opts_len))
			goto nla_put_failure;
	}
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	if (swkey->phy.in_port == DP_MAX_PORTS) {
		if (is_mask && (output->phy.in_port == 0xffff))
			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
				goto nla_put_failure;
	} else {
		u16 upper_u16;
		upper_u16 = !is_mask ? 0 : 0xffff;

		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
				(upper_u16 << 16) | output->phy.in_port))
			goto nla_put_failure;
	}

	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
		goto nla_put_failure;

	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
	if (!nla)
		goto nla_put_failure;

	eth_key = nla_data(nla);
J
Joe Perches 已提交
1175 1176
	ether_addr_copy(eth_key->eth_src, output->eth.src);
	ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
		__be16 eth_type;
		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
			goto nla_put_failure;
		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
		if (!swkey->eth.tci)
			goto unencap;
	} else
		encap = NULL;

	if (swkey->eth.type == htons(ETH_P_802_2)) {
		/*
		 * Ethertype 802.2 is represented in the netlink with omitted
		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
		 * 0xffff in the mask attribute.  Ethertype can also
		 * be wildcarded.
		 */
		if (is_mask && output->eth.type)
			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
						output->eth.type))
				goto nla_put_failure;
		goto unencap;
	}

	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
		goto nla_put_failure;

	if (swkey->eth.type == htons(ETH_P_IP)) {
		struct ovs_key_ipv4 *ipv4_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
		if (!nla)
			goto nla_put_failure;
		ipv4_key = nla_data(nla);
		ipv4_key->ipv4_src = output->ipv4.addr.src;
		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
		ipv4_key->ipv4_proto = output->ip.proto;
		ipv4_key->ipv4_tos = output->ip.tos;
		ipv4_key->ipv4_ttl = output->ip.ttl;
		ipv4_key->ipv4_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
		struct ovs_key_ipv6 *ipv6_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
		if (!nla)
			goto nla_put_failure;
		ipv6_key = nla_data(nla);
		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
				sizeof(ipv6_key->ipv6_src));
		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
				sizeof(ipv6_key->ipv6_dst));
		ipv6_key->ipv6_label = output->ipv6.label;
		ipv6_key->ipv6_proto = output->ip.proto;
		ipv6_key->ipv6_tclass = output->ip.tos;
		ipv6_key->ipv6_hlimit = output->ip.ttl;
		ipv6_key->ipv6_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
		   swkey->eth.type == htons(ETH_P_RARP)) {
		struct ovs_key_arp *arp_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
		if (!nla)
			goto nla_put_failure;
		arp_key = nla_data(nla);
		memset(arp_key, 0, sizeof(struct ovs_key_arp));
		arp_key->arp_sip = output->ipv4.addr.src;
		arp_key->arp_tip = output->ipv4.addr.dst;
		arp_key->arp_op = htons(output->ip.proto);
J
Joe Perches 已提交
1248 1249
		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1250 1251 1252 1253 1254 1255 1256 1257
	} else if (eth_p_mpls(swkey->eth.type)) {
		struct ovs_key_mpls *mpls_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
		if (!nla)
			goto nla_put_failure;
		mpls_key = nla_data(nla);
		mpls_key->mpls_lse = output->mpls.top_lse;
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	}

	if ((swkey->eth.type == htons(ETH_P_IP) ||
	     swkey->eth.type == htons(ETH_P_IPV6)) &&
	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {

		if (swkey->ip.proto == IPPROTO_TCP) {
			struct ovs_key_tcp *tcp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
			if (!nla)
				goto nla_put_failure;
			tcp_key = nla_data(nla);
1271 1272 1273 1274 1275
			tcp_key->tcp_src = output->tp.src;
			tcp_key->tcp_dst = output->tp.dst;
			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
					 output->tp.flags))
				goto nla_put_failure;
1276 1277 1278 1279 1280 1281 1282
		} else if (swkey->ip.proto == IPPROTO_UDP) {
			struct ovs_key_udp *udp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
			if (!nla)
				goto nla_put_failure;
			udp_key = nla_data(nla);
1283 1284
			udp_key->udp_src = output->tp.src;
			udp_key->udp_dst = output->tp.dst;
1285 1286 1287 1288 1289 1290 1291
		} else if (swkey->ip.proto == IPPROTO_SCTP) {
			struct ovs_key_sctp *sctp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
			if (!nla)
				goto nla_put_failure;
			sctp_key = nla_data(nla);
1292 1293
			sctp_key->sctp_src = output->tp.src;
			sctp_key->sctp_dst = output->tp.dst;
1294 1295 1296 1297 1298 1299 1300 1301
		} else if (swkey->eth.type == htons(ETH_P_IP) &&
			   swkey->ip.proto == IPPROTO_ICMP) {
			struct ovs_key_icmp *icmp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
			if (!nla)
				goto nla_put_failure;
			icmp_key = nla_data(nla);
1302 1303
			icmp_key->icmp_type = ntohs(output->tp.src);
			icmp_key->icmp_code = ntohs(output->tp.dst);
1304 1305 1306 1307 1308 1309 1310 1311 1312
		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
			   swkey->ip.proto == IPPROTO_ICMPV6) {
			struct ovs_key_icmpv6 *icmpv6_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
						sizeof(*icmpv6_key));
			if (!nla)
				goto nla_put_failure;
			icmpv6_key = nla_data(nla);
1313 1314
			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
				struct ovs_key_nd *nd_key;

				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
				if (!nla)
					goto nla_put_failure;
				nd_key = nla_data(nla);
				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
							sizeof(nd_key->nd_target));
J
Joe Perches 已提交
1326 1327
				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
			}
		}
	}

unencap:
	if (encap)
		nla_nest_end(skb, encap);

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

#define MAX_ACTIONS_BUFSIZE	(32 * 1024)

1344
static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1345 1346 1347
{
	struct sw_flow_actions *sfa;

1348
	if (size > MAX_ACTIONS_BUFSIZE) {
1349
		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1350
		return ERR_PTR(-EINVAL);
1351
	}
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
	if (!sfa)
		return ERR_PTR(-ENOMEM);

	sfa->actions_len = 0;
	return sfa;
}

/* Schedules 'sf_acts' to be freed after the next RCU grace period.
 * The caller must hold rcu_read_lock for this to be sensible. */
void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
{
1365
	kfree_rcu(sf_acts, rcu);
1366 1367 1368
}

static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1369
				       int attr_len, bool log)
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
{

	struct sw_flow_actions *acts;
	int new_acts_size;
	int req_size = NLA_ALIGN(attr_len);
	int next_offset = offsetof(struct sw_flow_actions, actions) +
					(*sfa)->actions_len;

	if (req_size <= (ksize(*sfa) - next_offset))
		goto out;

	new_acts_size = ksize(*sfa) * 2;

	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
			return ERR_PTR(-EMSGSIZE);
		new_acts_size = MAX_ACTIONS_BUFSIZE;
	}

1389
	acts = nla_alloc_flow_actions(new_acts_size, log);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	if (IS_ERR(acts))
		return (void *)acts;

	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
	acts->actions_len = (*sfa)->actions_len;
	kfree(*sfa);
	*sfa = acts;

out:
	(*sfa)->actions_len += req_size;
	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
}

1403
static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1404
				   int attrtype, void *data, int len, bool log)
1405 1406 1407
{
	struct nlattr *a;

1408
	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1409
	if (IS_ERR(a))
1410
		return a;
1411 1412 1413 1414 1415 1416 1417 1418

	a->nla_type = attrtype;
	a->nla_len = nla_attr_size(len);

	if (data)
		memcpy(nla_data(a), data, len);
	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));

1419 1420 1421 1422
	return a;
}

static int add_action(struct sw_flow_actions **sfa, int attrtype,
1423
		      void *data, int len, bool log)
1424 1425 1426
{
	struct nlattr *a;

1427
	a = __add_action(sfa, attrtype, data, len, log);
1428

1429
	return PTR_ERR_OR_ZERO(a);
1430 1431 1432
}

static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1433
					  int attrtype, bool log)
1434 1435 1436 1437
{
	int used = (*sfa)->actions_len;
	int err;

1438
	err = add_action(sfa, attrtype, NULL, 0, log);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	if (err)
		return err;

	return used;
}

static inline void add_nested_action_end(struct sw_flow_actions *sfa,
					 int st_offset)
{
	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
							       st_offset);

	a->nla_len = sfa->actions_len - st_offset;
}

1454
static int __ovs_nla_copy_actions(const struct nlattr *attr,
1455 1456
				  const struct sw_flow_key *key,
				  int depth, struct sw_flow_actions **sfa,
1457
				  __be16 eth_type, __be16 vlan_tci, bool log);
1458

1459 1460
static int validate_and_copy_sample(const struct nlattr *attr,
				    const struct sw_flow_key *key, int depth,
1461
				    struct sw_flow_actions **sfa,
1462
				    __be16 eth_type, __be16 vlan_tci, bool log)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
{
	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
	const struct nlattr *probability, *actions;
	const struct nlattr *a;
	int rem, start, err, st_acts;

	memset(attrs, 0, sizeof(attrs));
	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
			return -EINVAL;
		attrs[type] = a;
	}
	if (rem)
		return -EINVAL;

	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
	if (!probability || nla_len(probability) != sizeof(u32))
		return -EINVAL;

	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
		return -EINVAL;

	/* validation done, copy sample action. */
1488
	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1489 1490 1491
	if (start < 0)
		return start;
	err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1492
			 nla_data(probability), sizeof(u32), log);
1493 1494
	if (err)
		return err;
1495
	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1496 1497 1498
	if (st_acts < 0)
		return st_acts;

1499
	err = __ovs_nla_copy_actions(actions, key, depth + 1, sfa,
1500
				     eth_type, vlan_tci, log);
1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (err)
		return err;

	add_nested_action_end(*sfa, st_acts);
	add_nested_action_end(*sfa, start);

	return 0;
}

1510 1511
static int validate_tp_port(const struct sw_flow_key *flow_key,
			    __be16 eth_type)
1512
{
1513
	if ((eth_type == htons(ETH_P_IP) || eth_type == htons(ETH_P_IPV6)) &&
1514 1515
	    (flow_key->tp.src || flow_key->tp.dst))
		return 0;
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

	return -EINVAL;
}

void ovs_match_init(struct sw_flow_match *match,
		    struct sw_flow_key *key,
		    struct sw_flow_mask *mask)
{
	memset(match, 0, sizeof(*match));
	match->key = key;
	match->mask = mask;

	memset(key, 0, sizeof(*key));

	if (mask) {
		memset(&mask->key, 0, sizeof(mask->key));
		mask->range.start = mask->range.end = 0;
	}
}

static int validate_and_copy_set_tun(const struct nlattr *attr,
1537
				     struct sw_flow_actions **sfa, bool log)
1538 1539 1540
{
	struct sw_flow_match match;
	struct sw_flow_key key;
1541 1542
	struct ovs_tunnel_info *tun_info;
	struct nlattr *a;
1543 1544 1545
	int err, start;

	ovs_match_init(&match, &key, NULL);
1546
	err = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
1547 1548 1549
	if (err)
		return err;

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	if (key.tun_opts_len) {
		struct geneve_opt *option = GENEVE_OPTS(&key,
							key.tun_opts_len);
		int opts_len = key.tun_opts_len;
		bool crit_opt = false;

		while (opts_len > 0) {
			int len;

			if (opts_len < sizeof(*option))
				return -EINVAL;

			len = sizeof(*option) + option->length * 4;
			if (len > opts_len)
				return -EINVAL;

			crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);

			option = (struct geneve_opt *)((u8 *)option + len);
			opts_len -= len;
		};

		key.tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
	};

1575
	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1576 1577 1578
	if (start < 0)
		return start;

1579
	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1580
			 sizeof(*tun_info) + key.tun_opts_len, log);
1581 1582 1583 1584 1585
	if (IS_ERR(a))
		return PTR_ERR(a);

	tun_info = nla_data(a);
	tun_info->tunnel = key.tun_key;
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	tun_info->options_len = key.tun_opts_len;

	if (tun_info->options_len) {
		/* We need to store the options in the action itself since
		 * everything else will go away after flow setup. We can append
		 * it to tun_info and then point there.
		 */
		memcpy((tun_info + 1), GENEVE_OPTS(&key, key.tun_opts_len),
		       key.tun_opts_len);
		tun_info->options = (struct geneve_opt *)(tun_info + 1);
	} else {
		tun_info->options = NULL;
	}
1599

1600 1601 1602 1603 1604 1605 1606 1607
	add_nested_action_end(*sfa, start);

	return err;
}

static int validate_set(const struct nlattr *a,
			const struct sw_flow_key *flow_key,
			struct sw_flow_actions **sfa,
1608
			bool *set_tun, __be16 eth_type, bool log)
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);

	/* There can be only one key in a action */
	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
		return -EINVAL;

	if (key_type > OVS_KEY_ATTR_MAX ||
	    (ovs_key_lens[key_type] != nla_len(ovs_key) &&
	     ovs_key_lens[key_type] != -1))
		return -EINVAL;

	switch (key_type) {
	const struct ovs_key_ipv4 *ipv4_key;
	const struct ovs_key_ipv6 *ipv6_key;
	int err;

	case OVS_KEY_ATTR_PRIORITY:
	case OVS_KEY_ATTR_SKB_MARK:
	case OVS_KEY_ATTR_ETHERNET:
		break;

	case OVS_KEY_ATTR_TUNNEL:
1633 1634 1635
		if (eth_p_mpls(eth_type))
			return -EINVAL;

1636
		*set_tun = true;
1637
		err = validate_and_copy_set_tun(a, sfa, log);
1638 1639 1640 1641 1642
		if (err)
			return err;
		break;

	case OVS_KEY_ATTR_IPV4:
1643
		if (eth_type != htons(ETH_P_IP))
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
			return -EINVAL;

		if (!flow_key->ip.proto)
			return -EINVAL;

		ipv4_key = nla_data(ovs_key);
		if (ipv4_key->ipv4_proto != flow_key->ip.proto)
			return -EINVAL;

		if (ipv4_key->ipv4_frag != flow_key->ip.frag)
			return -EINVAL;

		break;

	case OVS_KEY_ATTR_IPV6:
1659
		if (eth_type != htons(ETH_P_IPV6))
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
			return -EINVAL;

		if (!flow_key->ip.proto)
			return -EINVAL;

		ipv6_key = nla_data(ovs_key);
		if (ipv6_key->ipv6_proto != flow_key->ip.proto)
			return -EINVAL;

		if (ipv6_key->ipv6_frag != flow_key->ip.frag)
			return -EINVAL;

		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
			return -EINVAL;

		break;

	case OVS_KEY_ATTR_TCP:
		if (flow_key->ip.proto != IPPROTO_TCP)
			return -EINVAL;

1681
		return validate_tp_port(flow_key, eth_type);
1682 1683 1684 1685 1686

	case OVS_KEY_ATTR_UDP:
		if (flow_key->ip.proto != IPPROTO_UDP)
			return -EINVAL;

1687 1688 1689 1690 1691 1692
		return validate_tp_port(flow_key, eth_type);

	case OVS_KEY_ATTR_MPLS:
		if (!eth_p_mpls(eth_type))
			return -EINVAL;
		break;
1693 1694 1695 1696 1697

	case OVS_KEY_ATTR_SCTP:
		if (flow_key->ip.proto != IPPROTO_SCTP)
			return -EINVAL;

1698
		return validate_tp_port(flow_key, eth_type);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

	default:
		return -EINVAL;
	}

	return 0;
}

static int validate_userspace(const struct nlattr *attr)
{
	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
1712
		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	};
	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
	int error;

	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
				 attr, userspace_policy);
	if (error)
		return error;

	if (!a[OVS_USERSPACE_ATTR_PID] ||
	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
		return -EINVAL;

	return 0;
}

static int copy_action(const struct nlattr *from,
1730
		       struct sw_flow_actions **sfa, bool log)
1731 1732 1733 1734
{
	int totlen = NLA_ALIGN(from->nla_len);
	struct nlattr *to;

1735
	to = reserve_sfa_size(sfa, from->nla_len, log);
1736 1737 1738 1739 1740 1741 1742
	if (IS_ERR(to))
		return PTR_ERR(to);

	memcpy(to, from, totlen);
	return 0;
}

1743
static int __ovs_nla_copy_actions(const struct nlattr *attr,
1744 1745
				  const struct sw_flow_key *key,
				  int depth, struct sw_flow_actions **sfa,
1746
				  __be16 eth_type, __be16 vlan_tci, bool log)
1747 1748
{
	const struct nlattr *a;
1749
	bool out_tnl_port = false;
1750 1751 1752 1753 1754 1755 1756 1757 1758
	int rem, err;

	if (depth >= SAMPLE_ACTION_DEPTH)
		return -EOVERFLOW;

	nla_for_each_nested(a, attr, rem) {
		/* Expected argument lengths, (u32)-1 for variable length. */
		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
1759
			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
1760
			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
1761 1762
			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
1763 1764 1765
			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
			[OVS_ACTION_ATTR_POP_VLAN] = 0,
			[OVS_ACTION_ATTR_SET] = (u32)-1,
1766 1767
			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash)
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
		};
		const struct ovs_action_push_vlan *vlan;
		int type = nla_type(a);
		bool skip_copy;

		if (type > OVS_ACTION_ATTR_MAX ||
		    (action_lens[type] != nla_len(a) &&
		     action_lens[type] != (u32)-1))
			return -EINVAL;

		skip_copy = false;
		switch (type) {
		case OVS_ACTION_ATTR_UNSPEC:
			return -EINVAL;

		case OVS_ACTION_ATTR_USERSPACE:
			err = validate_userspace(a);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_OUTPUT:
			if (nla_get_u32(a) >= DP_MAX_PORTS)
				return -EINVAL;
1792 1793
			out_tnl_port = false;

1794 1795
			break;

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		case OVS_ACTION_ATTR_HASH: {
			const struct ovs_action_hash *act_hash = nla_data(a);

			switch (act_hash->hash_alg) {
			case OVS_HASH_ALG_L4:
				break;
			default:
				return  -EINVAL;
			}

			break;
		}
1808 1809

		case OVS_ACTION_ATTR_POP_VLAN:
1810
			vlan_tci = htons(0);
1811 1812 1813 1814 1815 1816 1817 1818
			break;

		case OVS_ACTION_ATTR_PUSH_VLAN:
			vlan = nla_data(a);
			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
				return -EINVAL;
			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
				return -EINVAL;
1819
			vlan_tci = vlan->vlan_tci;
1820 1821
			break;

1822 1823 1824
		case OVS_ACTION_ATTR_RECIRC:
			break;

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
		case OVS_ACTION_ATTR_PUSH_MPLS: {
			const struct ovs_action_push_mpls *mpls = nla_data(a);

			/* Networking stack do not allow simultaneous Tunnel
			 * and MPLS GSO.
			 */
			if (out_tnl_port)
				return -EINVAL;

			if (!eth_p_mpls(mpls->mpls_ethertype))
				return -EINVAL;
			/* Prohibit push MPLS other than to a white list
			 * for packets that have a known tag order.
			 */
			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
			    (eth_type != htons(ETH_P_IP) &&
			     eth_type != htons(ETH_P_IPV6) &&
			     eth_type != htons(ETH_P_ARP) &&
			     eth_type != htons(ETH_P_RARP) &&
			     !eth_p_mpls(eth_type)))
				return -EINVAL;
			eth_type = mpls->mpls_ethertype;
			break;
		}

		case OVS_ACTION_ATTR_POP_MPLS:
			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
			    !eth_p_mpls(eth_type))
				return -EINVAL;

			/* Disallow subsequent L2.5+ set and mpls_pop actions
			 * as there is no check here to ensure that the new
			 * eth_type is valid and thus set actions could
			 * write off the end of the packet or otherwise
			 * corrupt it.
			 *
			 * Support for these actions is planned using packet
			 * recirculation.
			 */
			eth_type = htons(0);
			break;

1867
		case OVS_ACTION_ATTR_SET:
1868
			err = validate_set(a, key, sfa,
1869
					   &out_tnl_port, eth_type, log);
1870 1871
			if (err)
				return err;
1872 1873

			skip_copy = out_tnl_port;
1874 1875 1876
			break;

		case OVS_ACTION_ATTR_SAMPLE:
1877
			err = validate_and_copy_sample(a, key, depth, sfa,
1878
						       eth_type, vlan_tci, log);
1879 1880 1881 1882 1883 1884
			if (err)
				return err;
			skip_copy = true;
			break;

		default:
1885
			OVS_NLERR(log, "Unknown Action type %d", type);
1886 1887 1888
			return -EINVAL;
		}
		if (!skip_copy) {
1889
			err = copy_action(a, sfa, log);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
			if (err)
				return err;
		}
	}

	if (rem > 0)
		return -EINVAL;

	return 0;
}

1901 1902
int ovs_nla_copy_actions(const struct nlattr *attr,
			 const struct sw_flow_key *key,
1903
			 struct sw_flow_actions **sfa, bool log)
1904
{
1905 1906
	int err;

1907
	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
1908 1909 1910 1911
	if (IS_ERR(*sfa))
		return PTR_ERR(*sfa);

	err = __ovs_nla_copy_actions(attr, key, 0, sfa, key->eth.type,
1912
				     key->eth.tci, log);
1913 1914 1915 1916
	if (err)
		kfree(*sfa);

	return err;
1917 1918
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
{
	const struct nlattr *a;
	struct nlattr *start;
	int err = 0, rem;

	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
	if (!start)
		return -EMSGSIZE;

	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		struct nlattr *st_sample;

		switch (type) {
		case OVS_SAMPLE_ATTR_PROBABILITY:
			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
				    sizeof(u32), nla_data(a)))
				return -EMSGSIZE;
			break;
		case OVS_SAMPLE_ATTR_ACTIONS:
			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
			if (!st_sample)
				return -EMSGSIZE;
			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
			if (err)
				return err;
			nla_nest_end(skb, st_sample);
			break;
		}
	}

	nla_nest_end(skb, start);
	return err;
}

static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);
	struct nlattr *start;
	int err;

	switch (key_type) {
1963 1964 1965
	case OVS_KEY_ATTR_TUNNEL_INFO: {
		struct ovs_tunnel_info *tun_info = nla_data(ovs_key);

1966 1967 1968 1969
		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
		if (!start)
			return -EMSGSIZE;

1970
		err = ipv4_tun_to_nlattr(skb, &tun_info->tunnel,
1971 1972 1973
					 tun_info->options_len ?
						tun_info->options : NULL,
					 tun_info->options_len);
1974 1975 1976 1977
		if (err)
			return err;
		nla_nest_end(skb, start);
		break;
1978
	}
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	default:
		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
			return -EMSGSIZE;
		break;
	}

	return 0;
}

int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
{
	const struct nlattr *a;
	int rem, err;

	nla_for_each_attr(a, attr, len, rem) {
		int type = nla_type(a);

		switch (type) {
		case OVS_ACTION_ATTR_SET:
			err = set_action_to_attr(a, skb);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SAMPLE:
			err = sample_action_to_attr(a, skb);
			if (err)
				return err;
			break;
		default:
			if (nla_put(skb, type, nla_len(a), nla_data(a)))
				return -EMSGSIZE;
			break;
		}
	}

	return 0;
}