spi-nor.c 32.2 KB
Newer Older
1
/*
2 3 4 5 6
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>

#include <linux/mtd/cfi.h>
#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ) /* M25P16 specs 40s max chip erase */

#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct spi_nor *nor)
{
	int ret;
	u8 val;

41
	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
42 43 44 45 46 47 48 49
	if (ret < 0) {
		pr_err("error %d reading SR\n", (int) ret);
		return ret;
	}

	return val;
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*
 * Read the flag status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_fsr(struct spi_nor *nor)
{
	int ret;
	u8 val;

	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
	if (ret < 0) {
		pr_err("error %d reading FSR\n", ret);
		return ret;
	}

	return val;
}

69 70 71 72 73 74 75 76 77 78
/*
 * Read configuration register, returning its value in the
 * location. Return the configuration register value.
 * Returns negative if error occured.
 */
static int read_cr(struct spi_nor *nor)
{
	int ret;
	u8 val;

79
	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	if (ret < 0) {
		dev_err(nor->dev, "error %d reading CR\n", ret);
		return ret;
	}

	return val;
}

/*
 * Dummy Cycle calculation for different type of read.
 * It can be used to support more commands with
 * different dummy cycle requirements.
 */
static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
{
	switch (nor->flash_read) {
	case SPI_NOR_FAST:
	case SPI_NOR_DUAL:
	case SPI_NOR_QUAD:
		return 1;
	case SPI_NOR_NORMAL:
		return 0;
	}
	return 0;
}

/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static inline int write_sr(struct spi_nor *nor, u8 val)
{
	nor->cmd_buf[0] = val;
113
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
114 115 116 117 118 119 120 121
}

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct spi_nor *nor)
{
122
	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
123 124 125 126 127 128 129
}

/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct spi_nor *nor)
{
130
	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
}

static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}

/* Enable/disable 4-byte addressing mode. */
static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable)
{
	int status;
	bool need_wren = false;
	u8 cmd;

	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_ST: /* Micron, actually */
		/* Some Micron need WREN command; all will accept it */
		need_wren = true;
	case CFI_MFR_MACRONIX:
	case 0xEF /* winbond */:
		if (need_wren)
			write_enable(nor);

154
		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
155 156 157 158 159 160 161 162
		status = nor->write_reg(nor, cmd, NULL, 0, 0);
		if (need_wren)
			write_disable(nor);

		return status;
	default:
		/* Spansion style */
		nor->cmd_buf[0] = enable << 7;
163
		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	}
}

static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	unsigned long deadline;
	int sr;

	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
		cond_resched();

		sr = read_sr(nor);
		if (sr < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;
	} while (!time_after_eq(jiffies, deadline));

	return -ETIMEDOUT;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static int spi_nor_wait_till_fsr_ready(struct spi_nor *nor)
{
	unsigned long deadline;
	int sr;
	int fsr;

	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
		cond_resched();

		sr = read_sr(nor);
		if (sr < 0) {
			break;
		} else if (!(sr & SR_WIP)) {
			fsr = read_fsr(nor);
			if (fsr < 0)
				break;
			if (fsr & FSR_READY)
				return 0;
		}
	} while (!time_after_eq(jiffies, deadline));

	return -ETIMEDOUT;
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct spi_nor *nor)
{
	return nor->wait_till_ready(nor);
}

/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_chip(struct spi_nor *nor)
{
	int ret;

	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));

	/* Wait until finished previous write command. */
	ret = wait_till_ready(nor);
	if (ret)
		return ret;

	/* Send write enable, then erase commands. */
	write_enable(nor);

241
	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
}

static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	int ret = 0;

	mutex_lock(&nor->lock);

	if (nor->prepare) {
		ret = nor->prepare(nor, ops);
		if (ret) {
			dev_err(nor->dev, "failed in the preparation.\n");
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	if (nor->unprepare)
		nor->unprepare(nor, ops);
	mutex_unlock(&nor->lock);
}

/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
	if (ret)
		return ret;

	/* whole-chip erase? */
	if (len == mtd->size) {
		if (erase_chip(nor)) {
			ret = -EIO;
			goto erase_err;
		}

	/* REVISIT in some cases we could speed up erasing large regions
301
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
	} else {
		while (len) {
			if (nor->erase(nor, addr)) {
				ret = -EIO;
				goto erase_err;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
		}
	}

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return ret;

erase_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
	instr->state = MTD_ERASE_FAILED;
	return ret;
}

static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int ret = 0;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
	if (ret)
		return ret;

	/* Wait until finished previous command */
	ret = wait_till_ready(nor);
	if (ret)
		goto err;

	status_old = read_sr(nor);

	if (offset < mtd->size - (mtd->size / 2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < mtd->size - (mtd->size / 4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < mtd->size - (mtd->size / 8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < mtd->size - (mtd->size / 16))
		status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
	else if (offset < mtd->size - (mtd->size / 32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < mtd->size - (mtd->size / 64))
		status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
				(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
		write_enable(nor);
		ret = write_sr(nor, status_new);
		if (ret)
			goto err;
	}

err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
	return ret;
}

static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int ret = 0;

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
	if (ret)
		return ret;

	/* Wait until finished previous command */
	ret = wait_till_ready(nor);
	if (ret)
		goto err;

	status_old = read_sr(nor);

	if (offset+len > mtd->size - (mtd->size / 64))
		status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
	else if (offset+len > mtd->size - (mtd->size / 32))
		status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
	else if (offset+len > mtd->size - (mtd->size / 16))
		status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
	else if (offset+len > mtd->size - (mtd->size / 8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > mtd->size - (mtd->size / 4))
		status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
	else if (offset+len > mtd->size - (mtd->size / 2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
				(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
		write_enable(nor);
		ret = write_sr(nor, status_new);
		if (ret)
			goto err;
	}

err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
	return ret;
}

struct flash_info {
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
	u16             ext_id;

433
	/* The size listed here is what works with SPINOR_OP_SE, which isn't
434 435 436 437 438 439 440 441 442
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

	u16		flags;
443
#define	SECT_4K			0x01	/* SPINOR_OP_BE_4K works uniformly */
444 445 446
#define	SPI_NOR_NO_ERASE	0x02	/* No erase command needed */
#define	SST_WRITE		0x04	/* use SST byte programming */
#define	SPI_NOR_NO_FR		0x08	/* Can't do fastread */
447
#define	SECT_4K_PMC		0x10	/* SPINOR_OP_BE_4K_PMC works uniformly */
448 449
#define	SPI_NOR_DUAL_READ	0x20    /* Flash supports Dual Read */
#define	SPI_NOR_QUAD_READ	0x40    /* Flash supports Quad Read */
450
#define	USE_FSR			0x80	/* use flag status register */
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
};

#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
		.flags = (_flags),					\
	})

#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
		.flags = (_flags),					\
	})

/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
const struct spi_device_id spi_nor_ids[] = {
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
498
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },

	/* ESMT */
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },

	/* Everspin */
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },

	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

	/* Macronix */
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

	/* Micron */
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, 0) },
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, 0) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, 0) },
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
538 539
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, USE_FSR) },
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, USE_FSR) },
540 541 542 543 544 545 546 547 548

	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
549
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
	{ "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
614
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ },
};
641
EXPORT_SYMBOL_GPL(spi_nor_ids);
642 643 644 645 646 647 648 649 650

static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
{
	int			tmp;
	u8			id[5];
	u32			jedec;
	u16                     ext_jedec;
	struct flash_info	*info;

651
	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
	if (tmp < 0) {
		dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
		return ERR_PTR(tmp);
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

	ext_jedec = id[3] << 8 | id[4];

	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
		info = (void *)spi_nor_ids[tmp].driver_data;
		if (info->jedec_id == jedec) {
			if (info->ext_id == 0 || info->ext_id == ext_jedec)
				return &spi_nor_ids[tmp];
		}
	}
	dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec);
	return ERR_PTR(-ENODEV);
}

static const struct spi_device_id *jedec_probe(struct spi_nor *nor)
{
	return nor->read_id(nor);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
	if (ret)
		return ret;

	ret = nor->read(nor, from, len, retlen, buf);

	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
	return ret;
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	size_t actual;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	/* Wait until finished previous write command. */
	ret = wait_till_ready(nor);
	if (ret)
		goto time_out;

	write_enable(nor);

	nor->sst_write_second = false;

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
723
		nor->program_opcode = SPINOR_OP_BP;
724 725 726 727 728 729 730 731 732 733 734

		/* write one byte. */
		nor->write(nor, to, 1, retlen, buf);
		ret = wait_till_ready(nor);
		if (ret)
			goto time_out;
	}
	to += actual;

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
735
		nor->program_opcode = SPINOR_OP_AAI_WP;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

		/* write two bytes. */
		nor->write(nor, to, 2, retlen, buf + actual);
		ret = wait_till_ready(nor);
		if (ret)
			goto time_out;
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

	write_disable(nor);
	ret = wait_till_ready(nor);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(nor);

756
		nor->program_opcode = SPINOR_OP_BP;
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		nor->write(nor, to, 1, retlen, buf + actual);

		ret = wait_till_ready(nor);
		if (ret)
			goto time_out;
		write_disable(nor);
	}
time_out:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 page_offset, page_size, i;
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
	if (ret)
		return ret;

	/* Wait until finished previous write command. */
	ret = wait_till_ready(nor);
	if (ret)
		goto write_err;

	write_enable(nor);

	page_offset = to & (nor->page_size - 1);

	/* do all the bytes fit onto one page? */
	if (page_offset + len <= nor->page_size) {
		nor->write(nor, to, len, retlen, buf);
	} else {
		/* the size of data remaining on the first page */
		page_size = nor->page_size - page_offset;
		nor->write(nor, to, page_size, retlen, buf);

		/* write everything in nor->page_size chunks */
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
			if (page_size > nor->page_size)
				page_size = nor->page_size;

			wait_till_ready(nor);
			write_enable(nor);

			nor->write(nor, to + i, page_size, retlen, buf + i);
		}
	}

write_err:
	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
	return 0;
}

static int macronix_quad_enable(struct spi_nor *nor)
{
	int ret, val;

	val = read_sr(nor);
	write_enable(nor);

	nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
830
	nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

	if (wait_till_ready(nor))
		return 1;

	ret = read_sr(nor);
	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
		dev_err(nor->dev, "Macronix Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * Write status Register and configuration register with 2 bytes
 * The first byte will be written to the status register, while the
 * second byte will be written to the configuration register.
 * Return negative if error occured.
 */
static int write_sr_cr(struct spi_nor *nor, u16 val)
{
	nor->cmd_buf[0] = val & 0xff;
	nor->cmd_buf[1] = (val >> 8);

855
	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
}

static int spansion_quad_enable(struct spi_nor *nor)
{
	int ret;
	int quad_en = CR_QUAD_EN_SPAN << 8;

	write_enable(nor);

	ret = write_sr_cr(nor, quad_en);
	if (ret < 0) {
		dev_err(nor->dev,
			"error while writing configuration register\n");
		return -EINVAL;
	}

	/* read back and check it */
	ret = read_cr(nor);
	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
		dev_err(nor->dev, "Spansion Quad bit not set\n");
		return -EINVAL;
	}

	return 0;
}

static int set_quad_mode(struct spi_nor *nor, u32 jedec_id)
{
	int status;

	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
		status = macronix_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Macronix quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	default:
		status = spansion_quad_enable(nor);
		if (status) {
			dev_err(nor->dev, "Spansion quad-read not enabled\n");
			return -EINVAL;
		}
		return status;
	}
}

static int spi_nor_check(struct spi_nor *nor)
{
	if (!nor->dev || !nor->read || !nor->write ||
		!nor->read_reg || !nor->write_reg || !nor->erase) {
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

	if (!nor->read_id)
		nor->read_id = spi_nor_read_id;
	if (!nor->wait_till_ready)
		nor->wait_till_ready = spi_nor_wait_till_ready;

	return 0;
}

int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
			enum read_mode mode)
{
	struct flash_info		*info;
	struct flash_platform_data	*data;
	struct device *dev = nor->dev;
	struct mtd_info *mtd = nor->mtd;
	struct device_node *np = dev->of_node;
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

	/* Platform data helps sort out which chip type we have, as
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
	 */
	data = dev_get_platdata(dev);
	if (data && data->type) {
		const struct spi_device_id *plat_id;

		for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
			plat_id = &spi_nor_ids[i];
			if (strcmp(data->type, plat_id->name))
				continue;
			break;
		}

		if (i < ARRAY_SIZE(spi_nor_ids) - 1)
			id = plat_id;
		else
			dev_warn(dev, "unrecognized id %s\n", data->type);
	}

	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(nor);
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}

	mutex_init(&nor->lock);

	/*
	 * Atmel, SST and Intel/Numonyx serial nor tend to power
	 * up with the software protection bits set
	 */

	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
		write_enable(nor);
		write_sr(nor, 0);
	}

	if (data && data->name)
		mtd->name = data->name;
	else
		mtd->name = dev_name(dev);

	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
	mtd->size = info->sector_size * info->n_sectors;
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;

	/* nor protection support for STmicro chips */
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

1018 1019 1020 1021
	if ((info->flags & USE_FSR) &&
	    nor->wait_till_ready == spi_nor_wait_till_ready)
		nor->wait_till_ready = spi_nor_wait_till_fsr_ready;

1022 1023
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
1024
		nor->erase_opcode = SPINOR_OP_BE_4K;
1025 1026
		mtd->erasesize = 4096;
	} else if (info->flags & SECT_4K_PMC) {
1027
		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1028 1029
		mtd->erasesize = 4096;
	} else {
1030
		nor->erase_opcode = SPINOR_OP_SE;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
		mtd->erasesize = info->sector_size;
	}

	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
	nor->page_size = info->page_size;
	mtd->writebufsize = nor->page_size;

	if (np) {
		/* If we were instantiated by DT, use it */
		if (of_property_read_bool(np, "m25p,fast-read"))
			nor->flash_read = SPI_NOR_FAST;
		else
			nor->flash_read = SPI_NOR_NORMAL;
	} else {
		/* If we weren't instantiated by DT, default to fast-read */
		nor->flash_read = SPI_NOR_FAST;
	}

	/* Some devices cannot do fast-read, no matter what DT tells us */
	if (info->flags & SPI_NOR_NO_FR)
		nor->flash_read = SPI_NOR_NORMAL;

	/* Quad/Dual-read mode takes precedence over fast/normal */
	if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
		ret = set_quad_mode(nor, info->jedec_id);
		if (ret) {
			dev_err(dev, "quad mode not supported\n");
			return ret;
		}
		nor->flash_read = SPI_NOR_QUAD;
	} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
		nor->flash_read = SPI_NOR_DUAL;
	}

	/* Default commands */
	switch (nor->flash_read) {
	case SPI_NOR_QUAD:
1071
		nor->read_opcode = SPINOR_OP_READ_1_1_4;
1072 1073
		break;
	case SPI_NOR_DUAL:
1074
		nor->read_opcode = SPINOR_OP_READ_1_1_2;
1075 1076
		break;
	case SPI_NOR_FAST:
1077
		nor->read_opcode = SPINOR_OP_READ_FAST;
1078 1079
		break;
	case SPI_NOR_NORMAL:
1080
		nor->read_opcode = SPINOR_OP_READ;
1081 1082 1083 1084 1085 1086
		break;
	default:
		dev_err(dev, "No Read opcode defined\n");
		return -EINVAL;
	}

1087
	nor->program_opcode = SPINOR_OP_PP;
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

	if (info->addr_width)
		nor->addr_width = info->addr_width;
	else if (mtd->size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
		if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
			/* Dedicated 4-byte command set */
			switch (nor->flash_read) {
			case SPI_NOR_QUAD:
1098
				nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1099 1100
				break;
			case SPI_NOR_DUAL:
1101
				nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1102 1103
				break;
			case SPI_NOR_FAST:
1104
				nor->read_opcode = SPINOR_OP_READ4_FAST;
1105 1106
				break;
			case SPI_NOR_NORMAL:
1107
				nor->read_opcode = SPINOR_OP_READ4;
1108 1109
				break;
			}
1110
			nor->program_opcode = SPINOR_OP_PP_4B;
1111
			/* No small sector erase for 4-byte command set */
1112
			nor->erase_opcode = SPINOR_OP_SE_4B;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
			mtd->erasesize = info->sector_size;
		} else
			set_4byte(nor, info->jedec_id, 1);
	} else {
		nor->addr_width = 3;
	}

	nor->read_dummy = spi_nor_read_dummy_cycles(nor);

	dev_info(dev, "%s (%lld Kbytes)\n", id->name,
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
1143
EXPORT_SYMBOL_GPL(spi_nor_scan);
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
const struct spi_device_id *spi_nor_match_id(char *name)
{
	const struct spi_device_id *id = spi_nor_ids;

	while (id->name[0]) {
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}
1156
EXPORT_SYMBOL_GPL(spi_nor_match_id);
1157

1158 1159 1160 1161
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");