pgtable-ppc64.h 17.8 KB
Newer Older
1 2 3 4 5 6 7 8
#ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
#define _ASM_POWERPC_PGTABLE_PPC64_H_
/*
 * This file contains the functions and defines necessary to modify and use
 * the ppc64 hashed page table.
 */

#ifdef CONFIG_PPC_64K_PAGES
9
#include <asm/pgtable-ppc64-64k.h>
10
#else
11
#include <asm/pgtable-ppc64-4k.h>
12
#endif
13
#include <asm/barrier.h>
14

15
#define FIRST_USER_ADDRESS	0UL
16 17 18 19 20 21

/*
 * Size of EA range mapped by our pagetables.
 */
#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
                	    PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
22
#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
23

24 25 26 27 28
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define PMD_CACHE_INDEX	(PMD_INDEX_SIZE + 1)
#else
#define PMD_CACHE_INDEX	PMD_INDEX_SIZE
#endif
29
/*
30
 * Define the address range of the kernel non-linear virtual area
31
 */
32 33 34 35 36 37

#ifdef CONFIG_PPC_BOOK3E
#define KERN_VIRT_START ASM_CONST(0x8000000000000000)
#else
#define KERN_VIRT_START ASM_CONST(0xD000000000000000)
#endif
38
#define KERN_VIRT_SIZE	ASM_CONST(0x0000100000000000)
39 40

/*
41 42
 * The vmalloc space starts at the beginning of that region, and
 * occupies half of it on hash CPUs and a quarter of it on Book3E
43
 * (we keep a quarter for the virtual memmap)
44 45 46 47 48 49 50 51 52 53 54 55 56
 */
#define VMALLOC_START	KERN_VIRT_START
#ifdef CONFIG_PPC_BOOK3E
#define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 2)
#else
#define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 1)
#endif
#define VMALLOC_END	(VMALLOC_START + VMALLOC_SIZE)

/*
 * The second half of the kernel virtual space is used for IO mappings,
 * it's itself carved into the PIO region (ISA and PHB IO space) and
 * the ioremap space
57
 *
58
 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
59 60
 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
61
 */
62
#define KERN_IO_START	(KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
63
#define FULL_IO_SIZE	0x80000000ul
64 65
#define  ISA_IO_BASE	(KERN_IO_START)
#define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
66
#define  PHB_IO_BASE	(ISA_IO_END)
67
#define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
68
#define IOREMAP_BASE	(PHB_IO_END)
69 70
#define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)

71 72 73 74 75 76 77 78 79 80

/*
 * Region IDs
 */
#define REGION_SHIFT		60UL
#define REGION_MASK		(0xfUL << REGION_SHIFT)
#define REGION_ID(ea)		(((unsigned long)(ea)) >> REGION_SHIFT)

#define VMALLOC_REGION_ID	(REGION_ID(VMALLOC_START))
#define KERNEL_REGION_ID	(REGION_ID(PAGE_OFFSET))
81
#define VMEMMAP_REGION_ID	(0xfUL)	/* Server only */
82 83
#define USER_REGION_ID		(0UL)

A
Andy Whitcroft 已提交
84
/*
85 86
 * Defines the address of the vmemap area, in its own region on
 * hash table CPUs and after the vmalloc space on Book3E
A
Andy Whitcroft 已提交
87
 */
88 89 90 91
#ifdef CONFIG_PPC_BOOK3E
#define VMEMMAP_BASE		VMALLOC_END
#define VMEMMAP_END		KERN_IO_START
#else
92
#define VMEMMAP_BASE		(VMEMMAP_REGION_ID << REGION_SHIFT)
93
#endif
94 95
#define vmemmap			((struct page *)VMEMMAP_BASE)

A
Andy Whitcroft 已提交
96

97
/*
98
 * Include the PTE bits definitions
99
 */
100
#ifdef CONFIG_PPC_BOOK3S
101
#include <asm/pte-hash64.h>
102 103 104
#else
#include <asm/pte-book3e.h>
#endif
105
#include <asm/pte-common.h>
106

107
#ifdef CONFIG_PPC_MM_SLICES
108 109
#define HAVE_ARCH_UNMAPPED_AREA
#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
110
#endif /* CONFIG_PPC_MM_SLICES */
111 112 113

#ifndef __ASSEMBLY__

114 115 116 117 118 119 120
/*
 * This is the default implementation of various PTE accessors, it's
 * used in all cases except Book3S with 64K pages where we have a
 * concept of sub-pages
 */
#ifndef __real_pte

121
#ifdef CONFIG_STRICT_MM_TYPECHECKS
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#define __real_pte(e,p)		((real_pte_t){(e)})
#define __rpte_to_pte(r)	((r).pte)
#else
#define __real_pte(e,p)		(e)
#define __rpte_to_pte(r)	(__pte(r))
#endif
#define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> 12)

#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
	do {							         \
		index = 0;					         \
		shift = mmu_psize_defs[psize].shift;		         \

#define pte_iterate_hashed_end() } while(0)

#ifdef CONFIG_PPC_HAS_HASH_64K
#define pte_pagesize_index(mm, addr, pte)	get_slice_psize(mm, addr)
#else
#define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
#endif

#endif /* __real_pte */


146 147 148 149 150 151 152 153 154
/* pte_clear moved to later in this file */

#define PMD_BAD_BITS		(PTE_TABLE_SIZE-1)
#define PUD_BAD_BITS		(PMD_TABLE_SIZE-1)

#define pmd_set(pmdp, pmdval) 	(pmd_val(*(pmdp)) = (pmdval))
#define pmd_none(pmd)		(!pmd_val(pmd))
#define	pmd_bad(pmd)		(!is_kernel_addr(pmd_val(pmd)) \
				 || (pmd_val(pmd) & PMD_BAD_BITS))
155
#define	pmd_present(pmd)	(!pmd_none(pmd))
156 157
#define	pmd_clear(pmdp)		(pmd_val(*(pmdp)) = 0)
#define pmd_page_vaddr(pmd)	(pmd_val(pmd) & ~PMD_MASKED_BITS)
158
extern struct page *pmd_page(pmd_t pmd);
159 160 161 162 163 164 165 166 167

#define pud_set(pudp, pudval)	(pud_val(*(pudp)) = (pudval))
#define pud_none(pud)		(!pud_val(pud))
#define	pud_bad(pud)		(!is_kernel_addr(pud_val(pud)) \
				 || (pud_val(pud) & PUD_BAD_BITS))
#define pud_present(pud)	(pud_val(pud) != 0)
#define pud_clear(pudp)		(pud_val(*(pudp)) = 0)
#define pud_page_vaddr(pud)	(pud_val(pud) & ~PUD_MASKED_BITS)

168 169 170 171 172 173 174 175 176 177 178 179
extern struct page *pud_page(pud_t pud);

static inline pte_t pud_pte(pud_t pud)
{
	return __pte(pud_val(pud));
}

static inline pud_t pte_pud(pte_t pte)
{
	return __pud(pte_val(pte));
}
#define pud_write(pud)		pte_write(pud_pte(pud))
180
#define pgd_set(pgdp, pudp)	({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
181
#define pgd_write(pgd)		pte_write(pgd_pte(pgd))
182 183 184 185 186

/*
 * Find an entry in a page-table-directory.  We combine the address region
 * (the high order N bits) and the pgd portion of the address.
 */
187
#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

#define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))

#define pmd_offset(pudp,addr) \
  (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))

#define pte_offset_kernel(dir,addr) \
  (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))

#define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
#define pte_unmap(pte)			do { } while(0)

/* to find an entry in a kernel page-table-directory */
/* This now only contains the vmalloc pages */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
203 204
extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
			    pte_t *ptep, unsigned long pte, int huge);
205 206 207 208 209

/* Atomic PTE updates */
static inline unsigned long pte_update(struct mm_struct *mm,
				       unsigned long addr,
				       pte_t *ptep, unsigned long clr,
210
				       unsigned long set,
211 212
				       int huge)
{
213
#ifdef PTE_ATOMIC_UPDATES
214 215 216 217 218 219 220
	unsigned long old, tmp;

	__asm__ __volatile__(
	"1:	ldarx	%0,0,%3		# pte_update\n\
	andi.	%1,%0,%6\n\
	bne-	1b \n\
	andc	%1,%0,%4 \n\
221
	or	%1,%1,%7\n\
222 223 224
	stdcx.	%1,0,%3 \n\
	bne-	1b"
	: "=&r" (old), "=&r" (tmp), "=m" (*ptep)
225
	: "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set)
226
	: "cc" );
227 228
#else
	unsigned long old = pte_val(*ptep);
229
	*ptep = __pte((old & ~clr) | set);
230
#endif
231 232 233 234
	/* huge pages use the old page table lock */
	if (!huge)
		assert_pte_locked(mm, addr);

235
#ifdef CONFIG_PPC_STD_MMU_64
236 237
	if (old & _PAGE_HASHPTE)
		hpte_need_flush(mm, addr, ptep, old, huge);
238 239
#endif

240 241 242 243 244 245 246 247
	return old;
}

static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
					      unsigned long addr, pte_t *ptep)
{
	unsigned long old;

248
	if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
249
		return 0;
250
	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	return (old & _PAGE_ACCESSED) != 0;
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young(__vma, __addr, __ptep)		   \
({									   \
	int __r;							   \
	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
	__r;								   \
})

#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
				      pte_t *ptep)
{

266 267 268
	if ((pte_val(*ptep) & _PAGE_RW) == 0)
		return;

269
	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
270 271
}

272 273 274
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
					   unsigned long addr, pte_t *ptep)
{
275 276
	if ((pte_val(*ptep) & _PAGE_RW) == 0)
		return;
277

278
	pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
279
}
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

/*
 * We currently remove entries from the hashtable regardless of whether
 * the entry was young or dirty. The generic routines only flush if the
 * entry was young or dirty which is not good enough.
 *
 * We should be more intelligent about this but for the moment we override
 * these functions and force a tlb flush unconditionally
 */
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
#define ptep_clear_flush_young(__vma, __address, __ptep)		\
({									\
	int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
						  __ptep);		\
	__young;							\
})

#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
				       unsigned long addr, pte_t *ptep)
{
301
	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
302 303 304 305 306 307
	return __pte(old);
}

static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
			     pte_t * ptep)
{
308
	pte_update(mm, addr, ptep, ~0UL, 0, 0);
309 310 311 312 313 314
}


/* Set the dirty and/or accessed bits atomically in a linux PTE, this
 * function doesn't need to flush the hash entry
 */
315
static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
316 317
{
	unsigned long bits = pte_val(entry) &
318
		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
319 320

#ifdef PTE_ATOMIC_UPDATES
321 322 323 324 325 326 327 328 329 330 331 332
	unsigned long old, tmp;

	__asm__ __volatile__(
	"1:	ldarx	%0,0,%4\n\
		andi.	%1,%0,%6\n\
		bne-	1b \n\
		or	%0,%3,%0\n\
		stdcx.	%0,0,%4\n\
		bne-	1b"
	:"=&r" (old), "=&r" (tmp), "=m" (*ptep)
	:"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
	:"cc");
333 334 335 336
#else
	unsigned long old = pte_val(*ptep);
	*ptep = __pte(old | bits);
#endif
337 338 339 340 341 342
}

#define __HAVE_ARCH_PTE_SAME
#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)

#define pte_ERROR(e) \
343
	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
344
#define pmd_ERROR(e) \
345
	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
346
#define pgd_ERROR(e) \
347
	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
348 349

/* Encode and de-code a swap entry */
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
#define MAX_SWAPFILES_CHECK() do { \
	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
	/*							\
	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
	 * We filter HPTEFLAGS on set_pte.			\
	 */							\
	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
	} while (0)
/*
 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
 */
#define SWP_TYPE_BITS 5
#define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
				& ((1UL << SWP_TYPE_BITS) - 1))
#define __swp_offset(x)		((x).val >> PTE_RPN_SHIFT)
#define __swp_entry(type, offset)	((swp_entry_t) { \
					((type) << _PAGE_BIT_SWAP_TYPE) \
					| ((offset) << PTE_RPN_SHIFT) })

#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val((pte)) })
#define __swp_entry_to_pte(x)		__pte((x).val)
371

372
void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
373 374 375
void pgtable_cache_init(void);
#endif /* __ASSEMBLY__ */

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
/*
 * THP pages can't be special. So use the _PAGE_SPECIAL
 */
#define _PAGE_SPLITTING _PAGE_SPECIAL

/*
 * We need to differentiate between explicit huge page and THP huge
 * page, since THP huge page also need to track real subpage details
 */
#define _PAGE_THP_HUGE  _PAGE_4K_PFN

/*
 * set of bits not changed in pmd_modify.
 */
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS |		\
			 _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
			 _PAGE_THP_HUGE)

#ifndef __ASSEMBLY__
/*
 * The linux hugepage PMD now include the pmd entries followed by the address
 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
 * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
 *
 * The last three bits are intentionally left to zero. This memory location
 * are also used as normal page PTE pointers. So if we have any pointers
 * left around while we collapse a hugepage, we need to make sure
405
 * _PAGE_PRESENT bit of that is zero when we look at them
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
 */
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
{
	return (hpte_slot_array[index] >> 3) & 0x1;
}

static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
					   int index)
{
	return hpte_slot_array[index] >> 4;
}

static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
					unsigned int index, unsigned int hidx)
{
	hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
}

424 425
struct page *realmode_pfn_to_page(unsigned long pfn);

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
static inline char *get_hpte_slot_array(pmd_t *pmdp)
{
	/*
	 * The hpte hindex is stored in the pgtable whose address is in the
	 * second half of the PMD
	 *
	 * Order this load with the test for pmd_trans_huge in the caller
	 */
	smp_rmb();
	return *(char **)(pmdp + PTRS_PER_PMD);


}

extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
441
				   pmd_t *pmdp, unsigned long old_pmd);
442 443 444 445 446 447 448 449
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
		       pmd_t *pmdp, pmd_t pmd);
extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
				 pmd_t *pmd);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 *
 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
 * page. The hugetlbfs page table walking and mangling paths are totally
 * separated form the core VM paths and they're differentiated by
 *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
 *
 * pmd_trans_huge() is defined as false at build time if
 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
 * time in such case.
 *
 * For ppc64 we need to differntiate from explicit hugepages from THP, because
 * for THP we also track the subpage details at the pmd level. We don't do
 * that for explicit huge pages.
 *
 */
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static inline int pmd_trans_huge(pmd_t pmd)
{
	/*
	 * leaf pte for huge page, bottom two bits != 00
	 */
	return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
}

static inline int pmd_trans_splitting(pmd_t pmd)
{
	if (pmd_trans_huge(pmd))
		return pmd_val(pmd) & _PAGE_SPLITTING;
	return 0;
}

481
extern int has_transparent_hugepage(void);
482 483
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

484 485 486 487 488 489 490 491
static inline int pmd_large(pmd_t pmd)
{
	/*
	 * leaf pte for huge page, bottom two bits != 00
	 */
	return ((pmd_val(pmd) & 0x3) != 0x0);
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static inline pte_t pmd_pte(pmd_t pmd)
{
	return __pte(pmd_val(pmd));
}

static inline pmd_t pte_pmd(pte_t pte)
{
	return __pmd(pte_val(pte));
}

static inline pte_t *pmdp_ptep(pmd_t *pmd)
{
	return (pte_t *)pmd;
}

#define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
508
#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))

#define __HAVE_ARCH_PMD_WRITE
#define pmd_write(pmd)		pte_write(pmd_pte(pmd))

static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
	/* Do nothing, mk_pmd() does this part.  */
	return pmd;
}

static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
	pmd_val(pmd) &= ~_PAGE_PRESENT;
	return pmd;
}

static inline pmd_t pmd_mksplitting(pmd_t pmd)
{
	pmd_val(pmd) |= _PAGE_SPLITTING;
	return pmd;
}

#define __HAVE_ARCH_PMD_SAME
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
	return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
}

#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
				 unsigned long address, pmd_t *pmdp,
				 pmd_t entry, int dirty);

extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
					 unsigned long addr,
550 551 552
					 pmd_t *pmdp,
					 unsigned long clr,
					 unsigned long set);
553 554 555 556 557 558 559 560

static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
					      unsigned long addr, pmd_t *pmdp)
{
	unsigned long old;

	if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
		return 0;
561
	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	return ((old & _PAGE_ACCESSED) != 0);
}

#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
				     unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
				  unsigned long address, pmd_t *pmdp);

#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
extern pmd_t pmdp_get_and_clear(struct mm_struct *mm,
				unsigned long addr, pmd_t *pmdp);

#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
				      pmd_t *pmdp)
{

	if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
		return;

584
	pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
585 586 587 588 589 590
}

#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
				 unsigned long address, pmd_t *pmdp);

591 592 593 594
extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
				 unsigned long address, pmd_t *pmdp);
#define pmdp_collapse_flush pmdp_collapse_flush

595 596 597 598 599 600 601 602 603
#define __HAVE_ARCH_PGTABLE_DEPOSIT
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
				       pgtable_t pgtable);
#define __HAVE_ARCH_PGTABLE_WITHDRAW
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);

#define __HAVE_ARCH_PMDP_INVALIDATE
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
			    pmd_t *pmdp);
604 605

#define pmd_move_must_withdraw pmd_move_must_withdraw
606 607 608
struct spinlock;
static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
					 struct spinlock *old_pmd_ptl)
609 610 611 612 613 614 615 616
{
	/*
	 * Archs like ppc64 use pgtable to store per pmd
	 * specific information. So when we switch the pmd,
	 * we should also withdraw and deposit the pgtable
	 */
	return true;
}
617
#endif /* __ASSEMBLY__ */
618
#endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */