numa.c 21.5 KB
Newer Older
1
/* Common code for 32 and 64-bit NUMA */
2 3 4 5
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/init.h>
6
#include <linux/bootmem.h>
7 8 9 10 11 12 13 14 15 16 17
#include <linux/memblock.h>
#include <linux/mmzone.h>
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/sched.h>
#include <linux/topology.h>

#include <asm/e820.h>
#include <asm/proto.h>
#include <asm/dma.h>
18
#include <asm/acpi.h>
19 20 21
#include <asm/amd_nb.h>

#include "numa_internal.h"
22 23

int __initdata numa_off;
24
nodemask_t numa_nodes_parsed __initdata;
25

26 27 28 29 30 31 32 33 34 35 36 37
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);

static struct numa_meminfo numa_meminfo
#ifndef CONFIG_MEMORY_HOTPLUG
__initdata
#endif
;

static int numa_distance_cnt;
static u8 *numa_distance;

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
static __init int numa_setup(char *opt)
{
	if (!opt)
		return -EINVAL;
	if (!strncmp(opt, "off", 3))
		numa_off = 1;
#ifdef CONFIG_NUMA_EMU
	if (!strncmp(opt, "fake=", 5))
		numa_emu_cmdline(opt + 5);
#endif
#ifdef CONFIG_ACPI_NUMA
	if (!strncmp(opt, "noacpi", 6))
		acpi_numa = -1;
#endif
	return 0;
}
early_param("numa", numa_setup);
55 56

/*
57
 * apicid, cpu, node mappings
58
 */
59
s16 __apicid_to_node[MAX_LOCAL_APIC] = {
60 61 62
	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
};

63
int numa_cpu_node(int cpu)
64 65 66 67 68 69 70 71
{
	int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);

	if (apicid != BAD_APICID)
		return __apicid_to_node[apicid];
	return NUMA_NO_NODE;
}

72
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
73 74
EXPORT_SYMBOL(node_to_cpumask_map);

75 76 77 78 79 80
/*
 * Map cpu index to node index
 */
DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);

81
void numa_set_node(int cpu, int node)
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
{
	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);

	/* early setting, no percpu area yet */
	if (cpu_to_node_map) {
		cpu_to_node_map[cpu] = node;
		return;
	}

#ifdef CONFIG_DEBUG_PER_CPU_MAPS
	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
		dump_stack();
		return;
	}
#endif
	per_cpu(x86_cpu_to_node_map, cpu) = node;

100
	set_cpu_numa_node(cpu, node);
101 102
}

103
void numa_clear_node(int cpu)
104 105 106 107
{
	numa_set_node(cpu, NUMA_NO_NODE);
}

108 109 110 111
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
112
 * Note: cpumask_of_node() is not valid until after this is done.
113 114 115 116
 * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
 */
void __init setup_node_to_cpumask_map(void)
{
117
	unsigned int node;
118 119

	/* setup nr_node_ids if not done yet */
120 121
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
122 123

	/* allocate the map */
124 125
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
126

127 128
	/* cpumask_of_node() will now work */
	pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
129 130
}

131 132 133 134 135 136 137 138 139
static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
				     struct numa_meminfo *mi)
{
	/* ignore zero length blks */
	if (start == end)
		return 0;

	/* whine about and ignore invalid blks */
	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
140 141
		pr_warning("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
			   nid, start, end - 1);
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
		return 0;
	}

	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
		pr_err("NUMA: too many memblk ranges\n");
		return -EINVAL;
	}

	mi->blk[mi->nr_blks].start = start;
	mi->blk[mi->nr_blks].end = end;
	mi->blk[mi->nr_blks].nid = nid;
	mi->nr_blks++;
	return 0;
}

/**
 * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
 * @idx: Index of memblk to remove
 * @mi: numa_meminfo to remove memblk from
 *
 * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
 * decrementing @mi->nr_blks.
 */
void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
{
	mi->nr_blks--;
	memmove(&mi->blk[idx], &mi->blk[idx + 1],
		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
}

/**
 * numa_add_memblk - Add one numa_memblk to numa_meminfo
 * @nid: NUMA node ID of the new memblk
 * @start: Start address of the new memblk
 * @end: End address of the new memblk
 *
 * Add a new memblk to the default numa_meminfo.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init numa_add_memblk(int nid, u64 start, u64 end)
{
	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
}

188 189
/* Allocate NODE_DATA for a node on the local memory */
static void __init alloc_node_data(int nid)
190 191
{
	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
192
	u64 nd_pa;
193
	void *nd;
194 195 196
	int tnid;

	/*
197 198
	 * Allocate node data.  Try node-local memory and then any node.
	 * Never allocate in DMA zone.
199
	 */
200
	nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
201
	if (!nd_pa) {
202 203 204 205 206 207 208
		nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES,
					      MEMBLOCK_ALLOC_ACCESSIBLE);
		if (!nd_pa) {
			pr_err("Cannot find %zu bytes in node %d\n",
			       nd_size, nid);
			return;
		}
209
	}
210
	nd = __va(nd_pa);
211 212

	/* report and initialize */
213
	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
214
	       nd_pa, nd_pa + nd_size - 1);
215
	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
216
	if (tnid != nid)
217 218
		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);

219
	node_data[nid] = nd;
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));

	node_set_online(nid);
}

/**
 * numa_cleanup_meminfo - Cleanup a numa_meminfo
 * @mi: numa_meminfo to clean up
 *
 * Sanitize @mi by merging and removing unncessary memblks.  Also check for
 * conflicts and clear unused memblks.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
{
	const u64 low = 0;
238
	const u64 high = PFN_PHYS(max_pfn);
239 240
	int i, j, k;

241
	/* first, trim all entries */
242 243 244 245 246 247 248 249
	for (i = 0; i < mi->nr_blks; i++) {
		struct numa_memblk *bi = &mi->blk[i];

		/* make sure all blocks are inside the limits */
		bi->start = max(bi->start, low);
		bi->end = min(bi->end, high);

		/* and there's no empty block */
250
		if (bi->start >= bi->end)
251
			numa_remove_memblk_from(i--, mi);
252 253 254 255 256
	}

	/* merge neighboring / overlapping entries */
	for (i = 0; i < mi->nr_blks; i++) {
		struct numa_memblk *bi = &mi->blk[i];
257 258 259

		for (j = i + 1; j < mi->nr_blks; j++) {
			struct numa_memblk *bj = &mi->blk[j];
260
			u64 start, end;
261 262 263 264 265 266 267 268

			/*
			 * See whether there are overlapping blocks.  Whine
			 * about but allow overlaps of the same nid.  They
			 * will be merged below.
			 */
			if (bi->end > bj->start && bi->start < bj->end) {
				if (bi->nid != bj->nid) {
269 270 271
					pr_err("NUMA: node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
					       bi->nid, bi->start, bi->end - 1,
					       bj->nid, bj->start, bj->end - 1);
272 273
					return -EINVAL;
				}
274 275 276
				pr_warning("NUMA: Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
					   bi->nid, bi->start, bi->end - 1,
					   bj->start, bj->end - 1);
277 278 279 280 281 282 283 284 285
			}

			/*
			 * Join together blocks on the same node, holes
			 * between which don't overlap with memory on other
			 * nodes.
			 */
			if (bi->nid != bj->nid)
				continue;
286 287
			start = min(bi->start, bj->start);
			end = max(bi->end, bj->end);
288 289 290 291 292 293 294 295 296 297
			for (k = 0; k < mi->nr_blks; k++) {
				struct numa_memblk *bk = &mi->blk[k];

				if (bi->nid == bk->nid)
					continue;
				if (start < bk->end && end > bk->start)
					break;
			}
			if (k < mi->nr_blks)
				continue;
298 299 300
			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
			       bi->nid, bi->start, bi->end - 1, bj->start,
			       bj->end - 1, start, end - 1);
301 302 303 304 305 306
			bi->start = start;
			bi->end = end;
			numa_remove_memblk_from(j--, mi);
		}
	}

307
	/* clear unused ones */
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
		mi->blk[i].start = mi->blk[i].end = 0;
		mi->blk[i].nid = NUMA_NO_NODE;
	}

	return 0;
}

/*
 * Set nodes, which have memory in @mi, in *@nodemask.
 */
static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
					      const struct numa_meminfo *mi)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
		if (mi->blk[i].start != mi->blk[i].end &&
		    mi->blk[i].nid != NUMA_NO_NODE)
			node_set(mi->blk[i].nid, *nodemask);
}

/**
 * numa_reset_distance - Reset NUMA distance table
 *
 * The current table is freed.  The next numa_set_distance() call will
 * create a new one.
 */
void __init numa_reset_distance(void)
{
	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);

	/* numa_distance could be 1LU marking allocation failure, test cnt */
	if (numa_distance_cnt)
342
		memblock_free(__pa(numa_distance), size);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	numa_distance_cnt = 0;
	numa_distance = NULL;	/* enable table creation */
}

static int __init numa_alloc_distance(void)
{
	nodemask_t nodes_parsed;
	size_t size;
	int i, j, cnt = 0;
	u64 phys;

	/* size the new table and allocate it */
	nodes_parsed = numa_nodes_parsed;
	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);

	for_each_node_mask(i, nodes_parsed)
		cnt = i;
	cnt++;
	size = cnt * cnt * sizeof(numa_distance[0]);

363
	phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
364
				      size, PAGE_SIZE);
T
Tejun Heo 已提交
365
	if (!phys) {
366 367 368 369 370
		pr_warning("NUMA: Warning: can't allocate distance table!\n");
		/* don't retry until explicitly reset */
		numa_distance = (void *)1LU;
		return -ENOMEM;
	}
371
	memblock_reserve(phys, size);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	numa_distance = __va(phys);
	numa_distance_cnt = cnt;

	/* fill with the default distances */
	for (i = 0; i < cnt; i++)
		for (j = 0; j < cnt; j++)
			numa_distance[i * cnt + j] = i == j ?
				LOCAL_DISTANCE : REMOTE_DISTANCE;
	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);

	return 0;
}

/**
 * numa_set_distance - Set NUMA distance from one NUMA to another
 * @from: the 'from' node to set distance
 * @to: the 'to'  node to set distance
 * @distance: NUMA distance
 *
 * Set the distance from node @from to @to to @distance.  If distance table
 * doesn't exist, one which is large enough to accommodate all the currently
 * known nodes will be created.
 *
 * If such table cannot be allocated, a warning is printed and further
 * calls are ignored until the distance table is reset with
 * numa_reset_distance().
 *
400 401 402
 * If @from or @to is higher than the highest known node or lower than zero
 * at the time of table creation or @distance doesn't make sense, the call
 * is ignored.
403 404 405 406 407 408 409
 * This is to allow simplification of specific NUMA config implementations.
 */
void __init numa_set_distance(int from, int to, int distance)
{
	if (!numa_distance && numa_alloc_distance() < 0)
		return;

410 411 412
	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
			from < 0 || to < 0) {
		pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
			    from, to, distance);
		return;
	}

	if ((u8)distance != distance ||
	    (from == to && distance != LOCAL_DISTANCE)) {
		pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
			     from, to, distance);
		return;
	}

	numa_distance[from * numa_distance_cnt + to] = distance;
}

int __node_distance(int from, int to)
{
	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
	return numa_distance[from * numa_distance_cnt + to];
}
EXPORT_SYMBOL(__node_distance);

/*
 * Sanity check to catch more bad NUMA configurations (they are amazingly
 * common).  Make sure the nodes cover all memory.
 */
static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
{
441
	u64 numaram, e820ram;
442 443 444 445
	int i;

	numaram = 0;
	for (i = 0; i < mi->nr_blks; i++) {
446 447
		u64 s = mi->blk[i].start >> PAGE_SHIFT;
		u64 e = mi->blk[i].end >> PAGE_SHIFT;
448 449
		numaram += e - s;
		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
450
		if ((s64)numaram < 0)
451 452 453
			numaram = 0;
	}

454 455
	e820ram = max_pfn - absent_pages_in_range(0, max_pfn);

456
	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
457 458
	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
459 460 461 462 463 464 465
		       (numaram << PAGE_SHIFT) >> 20,
		       (e820ram << PAGE_SHIFT) >> 20);
		return false;
	}
	return true;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static void __init numa_clear_kernel_node_hotplug(void)
{
	int i, nid;
	nodemask_t numa_kernel_nodes = NODE_MASK_NONE;
	unsigned long start, end;
	struct memblock_region *r;

	/*
	 * At this time, all memory regions reserved by memblock are
	 * used by the kernel. Set the nid in memblock.reserved will
	 * mark out all the nodes the kernel resides in.
	 */
	for (i = 0; i < numa_meminfo.nr_blks; i++) {
		struct numa_memblk *mb = &numa_meminfo.blk[i];

		memblock_set_node(mb->start, mb->end - mb->start,
				  &memblock.reserved, mb->nid);
	}

	/* Mark all kernel nodes. */
	for_each_memblock(reserved, r)
		node_set(r->nid, numa_kernel_nodes);

	/* Clear MEMBLOCK_HOTPLUG flag for memory in kernel nodes. */
	for (i = 0; i < numa_meminfo.nr_blks; i++) {
		nid = numa_meminfo.blk[i].nid;
		if (!node_isset(nid, numa_kernel_nodes))
			continue;

		start = numa_meminfo.blk[i].start;
		end = numa_meminfo.blk[i].end;

		memblock_clear_hotplug(start, end - start);
	}
}

502 503
static int __init numa_register_memblks(struct numa_meminfo *mi)
{
504
	unsigned long uninitialized_var(pfn_align);
505 506 507 508 509 510 511 512
	int i, nid;

	/* Account for nodes with cpus and no memory */
	node_possible_map = numa_nodes_parsed;
	numa_nodemask_from_meminfo(&node_possible_map, mi);
	if (WARN_ON(nodes_empty(node_possible_map)))
		return -EINVAL;

T
Tejun Heo 已提交
513 514
	for (i = 0; i < mi->nr_blks; i++) {
		struct numa_memblk *mb = &mi->blk[i];
515 516
		memblock_set_node(mb->start, mb->end - mb->start,
				  &memblock.memory, mb->nid);
T
Tejun Heo 已提交
517
	}
518

519 520 521 522 523 524 525 526 527
	/*
	 * At very early time, the kernel have to use some memory such as
	 * loading the kernel image. We cannot prevent this anyway. So any
	 * node the kernel resides in should be un-hotpluggable.
	 *
	 * And when we come here, alloc node data won't fail.
	 */
	numa_clear_kernel_node_hotplug();

528 529 530 531 532 533 534 535 536 537 538 539 540
	/*
	 * If sections array is gonna be used for pfn -> nid mapping, check
	 * whether its granularity is fine enough.
	 */
#ifdef NODE_NOT_IN_PAGE_FLAGS
	pfn_align = node_map_pfn_alignment();
	if (pfn_align && pfn_align < PAGES_PER_SECTION) {
		printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
		       PFN_PHYS(pfn_align) >> 20,
		       PFN_PHYS(PAGES_PER_SECTION) >> 20);
		return -EINVAL;
	}
#endif
541 542 543 544 545
	if (!numa_meminfo_cover_memory(mi))
		return -EINVAL;

	/* Finally register nodes. */
	for_each_node_mask(nid, node_possible_map) {
546
		u64 start = PFN_PHYS(max_pfn);
547 548 549 550 551 552 553 554 555
		u64 end = 0;

		for (i = 0; i < mi->nr_blks; i++) {
			if (nid != mi->blk[i].nid)
				continue;
			start = min(mi->blk[i].start, start);
			end = max(mi->blk[i].end, end);
		}

556 557 558 559 560 561 562 563 564 565 566
		if (start >= end)
			continue;

		/*
		 * Don't confuse VM with a node that doesn't have the
		 * minimum amount of memory:
		 */
		if (end && (end - start) < NODE_MIN_SIZE)
			continue;

		alloc_node_data(nid);
567 568
	}

T
Tejun Heo 已提交
569 570
	/* Dump memblock with node info and return. */
	memblock_dump_all();
571 572 573
	return 0;
}

574 575 576 577 578 579 580
/*
 * There are unfortunately some poorly designed mainboards around that
 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
 * mapping. To avoid this fill in the mapping for all possible CPUs,
 * as the number of CPUs is not known yet. We round robin the existing
 * nodes.
 */
581
static void __init numa_init_array(void)
582 583 584 585 586 587 588 589 590 591 592 593 594 595
{
	int rr, i;

	rr = first_node(node_online_map);
	for (i = 0; i < nr_cpu_ids; i++) {
		if (early_cpu_to_node(i) != NUMA_NO_NODE)
			continue;
		numa_set_node(i, rr);
		rr = next_node(rr, node_online_map);
		if (rr == MAX_NUMNODES)
			rr = first_node(node_online_map);
	}
}

596 597 598 599 600 601 602 603
static int __init numa_init(int (*init_func)(void))
{
	int i;
	int ret;

	for (i = 0; i < MAX_LOCAL_APIC; i++)
		set_apicid_to_node(i, NUMA_NO_NODE);

604
	nodes_clear(numa_nodes_parsed);
605 606
	nodes_clear(node_possible_map);
	nodes_clear(node_online_map);
607
	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
608 609
	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
				  MAX_NUMNODES));
610 611
	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
				  MAX_NUMNODES));
612 613
	/* In case that parsing SRAT failed. */
	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
614 615 616 617 618
	numa_reset_distance();

	ret = init_func();
	if (ret < 0)
		return ret;
619 620 621 622 623 624 625 626 627 628 629

	/*
	 * We reset memblock back to the top-down direction
	 * here because if we configured ACPI_NUMA, we have
	 * parsed SRAT in init_func(). It is ok to have the
	 * reset here even if we did't configure ACPI_NUMA
	 * or acpi numa init fails and fallbacks to dummy
	 * numa init.
	 */
	memblock_set_bottom_up(false);

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	ret = numa_cleanup_meminfo(&numa_meminfo);
	if (ret < 0)
		return ret;

	numa_emulation(&numa_meminfo, numa_distance_cnt);

	ret = numa_register_memblks(&numa_meminfo);
	if (ret < 0)
		return ret;

	for (i = 0; i < nr_cpu_ids; i++) {
		int nid = early_cpu_to_node(i);

		if (nid == NUMA_NO_NODE)
			continue;
		if (!node_online(nid))
			numa_clear_node(i);
	}
	numa_init_array();
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	return 0;
}

/**
 * dummy_numa_init - Fallback dummy NUMA init
 *
 * Used if there's no underlying NUMA architecture, NUMA initialization
 * fails, or NUMA is disabled on the command line.
 *
 * Must online at least one node and add memory blocks that cover all
 * allowed memory.  This function must not fail.
 */
static int __init dummy_numa_init(void)
{
	printk(KERN_INFO "%s\n",
	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
666 667
	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
	       0LLU, PFN_PHYS(max_pfn) - 1);
668 669

	node_set(0, numa_nodes_parsed);
670
	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

	return 0;
}

/**
 * x86_numa_init - Initialize NUMA
 *
 * Try each configured NUMA initialization method until one succeeds.  The
 * last fallback is dummy single node config encomapssing whole memory and
 * never fails.
 */
void __init x86_numa_init(void)
{
	if (!numa_off) {
#ifdef CONFIG_ACPI_NUMA
		if (!numa_init(x86_acpi_numa_init))
			return;
#endif
#ifdef CONFIG_AMD_NUMA
		if (!numa_init(amd_numa_init))
			return;
#endif
	}

	numa_init(dummy_numa_init);
}

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static __init int find_near_online_node(int node)
{
	int n, val;
	int min_val = INT_MAX;
	int best_node = -1;

	for_each_online_node(n) {
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	return best_node;
}

/*
 * Setup early cpu_to_node.
 *
 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
 * and apicid_to_node[] tables have valid entries for a CPU.
 * This means we skip cpu_to_node[] initialisation for NUMA
 * emulation and faking node case (when running a kernel compiled
 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
 * is already initialized in a round robin manner at numa_init_array,
 * prior to this call, and this initialization is good enough
 * for the fake NUMA cases.
 *
 * Called before the per_cpu areas are setup.
 */
void __init init_cpu_to_node(void)
{
	int cpu;
	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);

	BUG_ON(cpu_to_apicid == NULL);

	for_each_possible_cpu(cpu) {
		int node = numa_cpu_node(cpu);

		if (node == NUMA_NO_NODE)
			continue;
		if (!node_online(node))
			node = find_near_online_node(node);
		numa_set_node(cpu, node);
	}
}

748 749 750
#ifndef CONFIG_DEBUG_PER_CPU_MAPS

# ifndef CONFIG_NUMA_EMU
751
void numa_add_cpu(int cpu)
752 753 754 755
{
	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
}

756
void numa_remove_cpu(int cpu)
757 758 759 760 761 762
{
	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
}
# endif	/* !CONFIG_NUMA_EMU */

#else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

int __cpu_to_node(int cpu)
{
	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
		printk(KERN_WARNING
			"cpu_to_node(%d): usage too early!\n", cpu);
		dump_stack();
		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
	}
	return per_cpu(x86_cpu_to_node_map, cpu);
}
EXPORT_SYMBOL(__cpu_to_node);

/*
 * Same function as cpu_to_node() but used if called before the
 * per_cpu areas are setup.
 */
int early_cpu_to_node(int cpu)
{
	if (early_per_cpu_ptr(x86_cpu_to_node_map))
		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];

	if (!cpu_possible(cpu)) {
		printk(KERN_WARNING
			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
		dump_stack();
		return NUMA_NO_NODE;
	}
	return per_cpu(x86_cpu_to_node_map, cpu);
}

794
void debug_cpumask_set_cpu(int cpu, int node, bool enable)
795 796 797
{
	struct cpumask *mask;

798 799
	if (node == NUMA_NO_NODE) {
		/* early_cpu_to_node() already emits a warning and trace */
800
		return;
801
	}
802 803 804 805
	mask = node_to_cpumask_map[node];
	if (!mask) {
		pr_err("node_to_cpumask_map[%i] NULL\n", node);
		dump_stack();
806
		return;
807 808
	}

809 810 811 812 813
	if (enable)
		cpumask_set_cpu(cpu, mask);
	else
		cpumask_clear_cpu(cpu, mask);

814
	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
815
		enable ? "numa_add_cpu" : "numa_remove_cpu",
816
		cpu, node, cpumask_pr_args(mask));
817
	return;
818 819 820
}

# ifndef CONFIG_NUMA_EMU
821
static void numa_set_cpumask(int cpu, bool enable)
822
{
823
	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
824 825
}

826
void numa_add_cpu(int cpu)
827
{
828
	numa_set_cpumask(cpu, true);
829 830
}

831
void numa_remove_cpu(int cpu)
832
{
833
	numa_set_cpumask(cpu, false);
834 835 836
}
# endif	/* !CONFIG_NUMA_EMU */

837 838 839
/*
 * Returns a pointer to the bitmask of CPUs on Node 'node'.
 */
840
const struct cpumask *cpumask_of_node(int node)
841 842 843 844 845 846 847 848
{
	if (node >= nr_node_ids) {
		printk(KERN_WARNING
			"cpumask_of_node(%d): node > nr_node_ids(%d)\n",
			node, nr_node_ids);
		dump_stack();
		return cpu_none_mask;
	}
849 850 851 852 853 854 855
	if (node_to_cpumask_map[node] == NULL) {
		printk(KERN_WARNING
			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
			node);
		dump_stack();
		return cpu_online_mask;
	}
856
	return node_to_cpumask_map[node];
857 858
}
EXPORT_SYMBOL(cpumask_of_node);
859

860
#endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
861

862
#ifdef CONFIG_MEMORY_HOTPLUG
863 864 865 866 867 868 869 870 871 872 873 874 875
int memory_add_physaddr_to_nid(u64 start)
{
	struct numa_meminfo *mi = &numa_meminfo;
	int nid = mi->blk[0].nid;
	int i;

	for (i = 0; i < mi->nr_blks; i++)
		if (mi->blk[i].start <= start && mi->blk[i].end > start)
			nid = mi->blk[i].nid;
	return nid;
}
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif