isotp.c 39.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
/* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
 *
 * This implementation does not provide ISO-TP specific return values to the
 * userspace.
 *
 * - RX path timeout of data reception leads to -ETIMEDOUT
 * - RX path SN mismatch leads to -EILSEQ
 * - RX path data reception with wrong padding leads to -EBADMSG
 * - TX path flowcontrol reception timeout leads to -ECOMM
 * - TX path flowcontrol reception overflow leads to -EMSGSIZE
 * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
 * - when a transfer (tx) is on the run the next write() blocks until it's done
 * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
 * - as we have static buffers the check whether the PDU fits into the buffer
 *   is done at FF reception time (no support for sending 'wait frames')
 * - take care of the tx-queue-len as traffic shaping is still on the TODO list
 *
 * Copyright (c) 2020 Volkswagen Group Electronic Research
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of Volkswagen nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * Alternatively, provided that this notice is retained in full, this
 * software may be distributed under the terms of the GNU General
 * Public License ("GPL") version 2, in which case the provisions of the
 * GPL apply INSTEAD OF those given above.
 *
 * The provided data structures and external interfaces from this code
 * are not restricted to be used by modules with a GPL compatible license.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
59
#include <linux/spinlock.h>
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#include <linux/hrtimer.h>
#include <linux/wait.h>
#include <linux/uio.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/socket.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <linux/can.h>
#include <linux/can/core.h>
#include <linux/can/skb.h>
#include <linux/can/isotp.h>
#include <linux/slab.h>
#include <net/sock.h>
#include <net/net_namespace.h>

MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
MODULE_ALIAS("can-proto-6");

81 82
#define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
#define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
			 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
			 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))

/* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
 * take full 32 bit values (4 Gbyte). We would need some good concept to handle
 * this between user space and kernel space. For now increase the static buffer
 * to something about 8 kbyte to be able to test this new functionality.
 */
#define MAX_MSG_LENGTH 8200

/* N_PCI type values in bits 7-4 of N_PCI bytes */
#define N_PCI_SF 0x00	/* single frame */
#define N_PCI_FF 0x10	/* first frame */
#define N_PCI_CF 0x20	/* consecutive frame */
#define N_PCI_FC 0x30	/* flow control */

#define N_PCI_SZ 1	/* size of the PCI byte #1 */
#define SF_PCI_SZ4 1	/* size of SingleFrame PCI including 4 bit SF_DL */
#define SF_PCI_SZ8 2	/* size of SingleFrame PCI including 8 bit SF_DL */
#define FF_PCI_SZ12 2	/* size of FirstFrame PCI including 12 bit FF_DL */
#define FF_PCI_SZ32 6	/* size of FirstFrame PCI including 32 bit FF_DL */
#define FC_CONTENT_SZ 3	/* flow control content size in byte (FS/BS/STmin) */

#define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)

/* Flow Status given in FC frame */
#define ISOTP_FC_CTS 0		/* clear to send */
#define ISOTP_FC_WT 1		/* wait */
#define ISOTP_FC_OVFLW 2	/* overflow */

enum {
	ISOTP_IDLE = 0,
	ISOTP_WAIT_FIRST_FC,
	ISOTP_WAIT_FC,
	ISOTP_WAIT_DATA,
	ISOTP_SENDING
};

struct tpcon {
123 124
	unsigned int idx;
	unsigned int len;
125
	u32 state;
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
	u8 bs;
	u8 sn;
	u8 ll_dl;
	u8 buf[MAX_MSG_LENGTH + 1];
};

struct isotp_sock {
	struct sock sk;
	int bound;
	int ifindex;
	canid_t txid;
	canid_t rxid;
	ktime_t tx_gap;
	ktime_t lastrxcf_tstamp;
	struct hrtimer rxtimer, txtimer;
	struct can_isotp_options opt;
	struct can_isotp_fc_options rxfc, txfc;
	struct can_isotp_ll_options ll;
144
	u32 frame_txtime;
145 146 147
	u32 force_tx_stmin;
	u32 force_rx_stmin;
	struct tpcon rx, tx;
148
	struct list_head notifier;
149
	wait_queue_head_t wait;
150
	spinlock_t rx_lock; /* protect single thread state machine */
151 152
};

153 154 155 156
static LIST_HEAD(isotp_notifier_list);
static DEFINE_SPINLOCK(isotp_notifier_lock);
static struct isotp_sock *isotp_busy_notifier;

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static inline struct isotp_sock *isotp_sk(const struct sock *sk)
{
	return (struct isotp_sock *)sk;
}

static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
{
	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
					     rxtimer);
	struct sock *sk = &so->sk;

	if (so->rx.state == ISOTP_WAIT_DATA) {
		/* we did not get new data frames in time */

		/* report 'connection timed out' */
		sk->sk_err = ETIMEDOUT;
		if (!sock_flag(sk, SOCK_DEAD))
			sk->sk_error_report(sk);

		/* reset rx state */
		so->rx.state = ISOTP_IDLE;
	}

	return HRTIMER_NORESTART;
}

static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
{
	struct net_device *dev;
	struct sk_buff *nskb;
	struct canfd_frame *ncf;
	struct isotp_sock *so = isotp_sk(sk);
	int can_send_ret;

	nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
	if (!nskb)
		return 1;

	dev = dev_get_by_index(sock_net(sk), so->ifindex);
	if (!dev) {
		kfree_skb(nskb);
		return 1;
	}

	can_skb_reserve(nskb);
	can_skb_prv(nskb)->ifindex = dev->ifindex;
	can_skb_prv(nskb)->skbcnt = 0;

	nskb->dev = dev;
	can_skb_set_owner(nskb, sk);
	ncf = (struct canfd_frame *)nskb->data;
208
	skb_put_zero(nskb, so->ll.mtu);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	/* create & send flow control reply */
	ncf->can_id = so->txid;

	if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
		memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
		ncf->len = CAN_MAX_DLEN;
	} else {
		ncf->len = ae + FC_CONTENT_SZ;
	}

	ncf->data[ae] = N_PCI_FC | flowstatus;
	ncf->data[ae + 1] = so->rxfc.bs;
	ncf->data[ae + 2] = so->rxfc.stmin;

	if (ae)
		ncf->data[0] = so->opt.ext_address;

227
	ncf->flags = so->ll.tx_flags;
228 229 230

	can_send_ret = can_send(nskb, 1);
	if (can_send_ret)
231 232
		pr_notice_once("can-isotp: %s: can_send_ret %d\n",
			       __func__, can_send_ret);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

	dev_put(dev);

	/* reset blocksize counter */
	so->rx.bs = 0;

	/* reset last CF frame rx timestamp for rx stmin enforcement */
	so->lastrxcf_tstamp = ktime_set(0, 0);

	/* start rx timeout watchdog */
	hrtimer_start(&so->rxtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
	return 0;
}

static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
{
	struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;

	BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));

	memset(addr, 0, sizeof(*addr));
	addr->can_family = AF_CAN;
	addr->can_ifindex = skb->dev->ifindex;

	if (sock_queue_rcv_skb(sk, skb) < 0)
		kfree_skb(skb);
}

static u8 padlen(u8 datalen)
{
263 264 265 266 267 268 269 270 271 272
	static const u8 plen[] = {
		8, 8, 8, 8, 8, 8, 8, 8, 8,	/* 0 - 8 */
		12, 12, 12, 12,			/* 9 - 12 */
		16, 16, 16, 16,			/* 13 - 16 */
		20, 20, 20, 20,			/* 17 - 20 */
		24, 24, 24, 24,			/* 21 - 24 */
		32, 32, 32, 32, 32, 32, 32, 32,	/* 25 - 32 */
		48, 48, 48, 48, 48, 48, 48, 48,	/* 33 - 40 */
		48, 48, 48, 48, 48, 48, 48, 48	/* 41 - 48 */
	};
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

	if (datalen > 48)
		return 64;

	return plen[datalen];
}

/* check for length optimization and return 1/true when the check fails */
static int check_optimized(struct canfd_frame *cf, int start_index)
{
	/* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
	 * padding would start at this point. E.g. if the padding would
	 * start at cf.data[7] cf->len has to be 7 to be optimal.
	 * Note: The data[] index starts with zero.
	 */
	if (cf->len <= CAN_MAX_DLEN)
		return (cf->len != start_index);

	/* This relation is also valid in the non-linear DLC range, where
	 * we need to take care of the minimal next possible CAN_DL.
	 * The correct check would be (padlen(cf->len) != padlen(start_index)).
	 * But as cf->len can only take discrete values from 12, .., 64 at this
	 * point the padlen(cf->len) is always equal to cf->len.
	 */
	return (cf->len != padlen(start_index));
}

/* check padding and return 1/true when the check fails */
static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
		     int start_index, u8 content)
{
	int i;

	/* no RX_PADDING value => check length of optimized frame length */
	if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
		if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
			return check_optimized(cf, start_index);

		/* no valid test against empty value => ignore frame */
		return 1;
	}

	/* check datalength of correctly padded CAN frame */
	if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
	    cf->len != padlen(cf->len))
		return 1;

	/* check padding content */
	if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
		for (i = start_index; i < cf->len; i++)
			if (cf->data[i] != content)
				return 1;
	}
	return 0;
}

static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
{
	struct sock *sk = &so->sk;

	if (so->tx.state != ISOTP_WAIT_FC &&
	    so->tx.state != ISOTP_WAIT_FIRST_FC)
		return 0;

	hrtimer_cancel(&so->txtimer);

	if ((cf->len < ae + FC_CONTENT_SZ) ||
	    ((so->opt.flags & ISOTP_CHECK_PADDING) &&
	     check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
		/* malformed PDU - report 'not a data message' */
		sk->sk_err = EBADMSG;
		if (!sock_flag(sk, SOCK_DEAD))
			sk->sk_error_report(sk);

		so->tx.state = ISOTP_IDLE;
		wake_up_interruptible(&so->wait);
		return 1;
	}

	/* get communication parameters only from the first FC frame */
	if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
		so->txfc.bs = cf->data[ae + 1];
		so->txfc.stmin = cf->data[ae + 2];

		/* fix wrong STmin values according spec */
		if (so->txfc.stmin > 0x7F &&
		    (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
			so->txfc.stmin = 0x7F;

		so->tx_gap = ktime_set(0, 0);
		/* add transmission time for CAN frame N_As */
364
		so->tx_gap = ktime_add_ns(so->tx_gap, so->frame_txtime);
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
		/* add waiting time for consecutive frames N_Cs */
		if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
			so->tx_gap = ktime_add_ns(so->tx_gap,
						  so->force_tx_stmin);
		else if (so->txfc.stmin < 0x80)
			so->tx_gap = ktime_add_ns(so->tx_gap,
						  so->txfc.stmin * 1000000);
		else
			so->tx_gap = ktime_add_ns(so->tx_gap,
						  (so->txfc.stmin - 0xF0)
						  * 100000);
		so->tx.state = ISOTP_WAIT_FC;
	}

	switch (cf->data[ae] & 0x0F) {
	case ISOTP_FC_CTS:
		so->tx.bs = 0;
		so->tx.state = ISOTP_SENDING;
		/* start cyclic timer for sending CF frame */
		hrtimer_start(&so->txtimer, so->tx_gap,
			      HRTIMER_MODE_REL_SOFT);
		break;

	case ISOTP_FC_WT:
		/* start timer to wait for next FC frame */
		hrtimer_start(&so->txtimer, ktime_set(1, 0),
			      HRTIMER_MODE_REL_SOFT);
		break;

	case ISOTP_FC_OVFLW:
		/* overflow on receiver side - report 'message too long' */
		sk->sk_err = EMSGSIZE;
		if (!sock_flag(sk, SOCK_DEAD))
			sk->sk_error_report(sk);
		fallthrough;

	default:
		/* stop this tx job */
		so->tx.state = ISOTP_IDLE;
		wake_up_interruptible(&so->wait);
	}
	return 0;
}

static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
			struct sk_buff *skb, int len)
{
	struct isotp_sock *so = isotp_sk(sk);
	struct sk_buff *nskb;

	hrtimer_cancel(&so->rxtimer);
	so->rx.state = ISOTP_IDLE;

	if (!len || len > cf->len - pcilen)
		return 1;

	if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
	    check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
		/* malformed PDU - report 'not a data message' */
		sk->sk_err = EBADMSG;
		if (!sock_flag(sk, SOCK_DEAD))
			sk->sk_error_report(sk);
		return 1;
	}

	nskb = alloc_skb(len, gfp_any());
	if (!nskb)
		return 1;

	memcpy(skb_put(nskb, len), &cf->data[pcilen], len);

	nskb->tstamp = skb->tstamp;
	nskb->dev = skb->dev;
	isotp_rcv_skb(nskb, sk);
	return 0;
}

static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
{
	struct isotp_sock *so = isotp_sk(sk);
	int i;
	int off;
	int ff_pci_sz;

	hrtimer_cancel(&so->rxtimer);
	so->rx.state = ISOTP_IDLE;

	/* get the used sender LL_DL from the (first) CAN frame data length */
	so->rx.ll_dl = padlen(cf->len);

	/* the first frame has to use the entire frame up to LL_DL length */
	if (cf->len != so->rx.ll_dl)
		return 1;

	/* get the FF_DL */
	so->rx.len = (cf->data[ae] & 0x0F) << 8;
	so->rx.len += cf->data[ae + 1];

	/* Check for FF_DL escape sequence supporting 32 bit PDU length */
	if (so->rx.len) {
		ff_pci_sz = FF_PCI_SZ12;
	} else {
		/* FF_DL = 0 => get real length from next 4 bytes */
		so->rx.len = cf->data[ae + 2] << 24;
		so->rx.len += cf->data[ae + 3] << 16;
		so->rx.len += cf->data[ae + 4] << 8;
		so->rx.len += cf->data[ae + 5];
		ff_pci_sz = FF_PCI_SZ32;
	}

	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
	off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;

	if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
		return 1;

	if (so->rx.len > MAX_MSG_LENGTH) {
		/* send FC frame with overflow status */
		isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
		return 1;
	}

	/* copy the first received data bytes */
	so->rx.idx = 0;
	for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
		so->rx.buf[so->rx.idx++] = cf->data[i];

	/* initial setup for this pdu reception */
	so->rx.sn = 1;
	so->rx.state = ISOTP_WAIT_DATA;

	/* no creation of flow control frames */
	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
		return 0;

	/* send our first FC frame */
	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
	return 0;
}

static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
			struct sk_buff *skb)
{
	struct isotp_sock *so = isotp_sk(sk);
	struct sk_buff *nskb;
	int i;

	if (so->rx.state != ISOTP_WAIT_DATA)
		return 0;

	/* drop if timestamp gap is less than force_rx_stmin nano secs */
	if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
		if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
		    so->force_rx_stmin)
			return 0;

		so->lastrxcf_tstamp = skb->tstamp;
	}

	hrtimer_cancel(&so->rxtimer);

	/* CFs are never longer than the FF */
	if (cf->len > so->rx.ll_dl)
		return 1;

	/* CFs have usually the LL_DL length */
	if (cf->len < so->rx.ll_dl) {
		/* this is only allowed for the last CF */
		if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
			return 1;
	}

	if ((cf->data[ae] & 0x0F) != so->rx.sn) {
		/* wrong sn detected - report 'illegal byte sequence' */
		sk->sk_err = EILSEQ;
		if (!sock_flag(sk, SOCK_DEAD))
			sk->sk_error_report(sk);

		/* reset rx state */
		so->rx.state = ISOTP_IDLE;
		return 1;
	}
	so->rx.sn++;
	so->rx.sn %= 16;

	for (i = ae + N_PCI_SZ; i < cf->len; i++) {
		so->rx.buf[so->rx.idx++] = cf->data[i];
		if (so->rx.idx >= so->rx.len)
			break;
	}

	if (so->rx.idx >= so->rx.len) {
		/* we are done */
		so->rx.state = ISOTP_IDLE;

		if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
		    check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
			/* malformed PDU - report 'not a data message' */
			sk->sk_err = EBADMSG;
			if (!sock_flag(sk, SOCK_DEAD))
				sk->sk_error_report(sk);
			return 1;
		}

		nskb = alloc_skb(so->rx.len, gfp_any());
		if (!nskb)
			return 1;

		memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
		       so->rx.len);

		nskb->tstamp = skb->tstamp;
		nskb->dev = skb->dev;
		isotp_rcv_skb(nskb, sk);
		return 0;
	}

	/* perform blocksize handling, if enabled */
	if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
		/* start rx timeout watchdog */
		hrtimer_start(&so->rxtimer, ktime_set(1, 0),
			      HRTIMER_MODE_REL_SOFT);
		return 0;
	}

590 591 592 593
	/* no creation of flow control frames */
	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
		return 0;

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	/* we reached the specified blocksize so->rxfc.bs */
	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
	return 0;
}

static void isotp_rcv(struct sk_buff *skb, void *data)
{
	struct sock *sk = (struct sock *)data;
	struct isotp_sock *so = isotp_sk(sk);
	struct canfd_frame *cf;
	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
	u8 n_pci_type, sf_dl;

	/* Strictly receive only frames with the configured MTU size
	 * => clear separation of CAN2.0 / CAN FD transport channels
	 */
	if (skb->len != so->ll.mtu)
		return;

	cf = (struct canfd_frame *)skb->data;

	/* if enabled: check reception of my configured extended address */
	if (ae && cf->data[0] != so->opt.rx_ext_address)
		return;

	n_pci_type = cf->data[ae] & 0xF0;

621 622 623 624 625 626
	/* Make sure the state changes and data structures stay consistent at
	 * CAN frame reception time. This locking is not needed in real world
	 * use cases but the inconsistency can be triggered with syzkaller.
	 */
	spin_lock(&so->rx_lock);

627 628 629 630
	if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
		/* check rx/tx path half duplex expectations */
		if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
		    (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
631
			goto out_unlock;
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	}

	switch (n_pci_type) {
	case N_PCI_FC:
		/* tx path: flow control frame containing the FC parameters */
		isotp_rcv_fc(so, cf, ae);
		break;

	case N_PCI_SF:
		/* rx path: single frame
		 *
		 * As we do not have a rx.ll_dl configuration, we can only test
		 * if the CAN frames payload length matches the LL_DL == 8
		 * requirements - no matter if it's CAN 2.0 or CAN FD
		 */

		/* get the SF_DL from the N_PCI byte */
		sf_dl = cf->data[ae] & 0x0F;

		if (cf->len <= CAN_MAX_DLEN) {
			isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
		} else {
			if (skb->len == CANFD_MTU) {
				/* We have a CAN FD frame and CAN_DL is greater than 8:
				 * Only frames with the SF_DL == 0 ESC value are valid.
				 *
				 * If so take care of the increased SF PCI size
				 * (SF_PCI_SZ8) to point to the message content behind
				 * the extended SF PCI info and get the real SF_DL
				 * length value from the formerly first data byte.
				 */
				if (sf_dl == 0)
					isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
						     cf->data[SF_PCI_SZ4 + ae]);
			}
		}
		break;

	case N_PCI_FF:
		/* rx path: first frame */
		isotp_rcv_ff(sk, cf, ae);
		break;

	case N_PCI_CF:
		/* rx path: consecutive frame */
		isotp_rcv_cf(sk, cf, ae, skb);
		break;
	}
680 681 682

out_unlock:
	spin_unlock(&so->rx_lock);
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
}

static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
				 int ae, int off)
{
	int pcilen = N_PCI_SZ + ae + off;
	int space = so->tx.ll_dl - pcilen;
	int num = min_t(int, so->tx.len - so->tx.idx, space);
	int i;

	cf->can_id = so->txid;
	cf->len = num + pcilen;

	if (num < space) {
		if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
			/* user requested padding */
			cf->len = padlen(cf->len);
			memset(cf->data, so->opt.txpad_content, cf->len);
		} else if (cf->len > CAN_MAX_DLEN) {
			/* mandatory padding for CAN FD frames */
			cf->len = padlen(cf->len);
			memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
			       cf->len);
		}
	}

	for (i = 0; i < num; i++)
		cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];

	if (ae)
		cf->data[0] = so->opt.ext_address;
}

static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
				int ae)
{
	int i;
	int ff_pci_sz;

	cf->can_id = so->txid;
	cf->len = so->tx.ll_dl;
	if (ae)
		cf->data[0] = so->opt.ext_address;

	/* create N_PCI bytes with 12/32 bit FF_DL data length */
	if (so->tx.len > 4095) {
		/* use 32 bit FF_DL notation */
		cf->data[ae] = N_PCI_FF;
		cf->data[ae + 1] = 0;
		cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
		cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
		cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
		cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
		ff_pci_sz = FF_PCI_SZ32;
	} else {
		/* use 12 bit FF_DL notation */
		cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
		cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
		ff_pci_sz = FF_PCI_SZ12;
	}

	/* add first data bytes depending on ae */
	for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
		cf->data[i] = so->tx.buf[so->tx.idx++];

	so->tx.sn = 1;
	so->tx.state = ISOTP_WAIT_FIRST_FC;
}

static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
{
	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
					     txtimer);
	struct sock *sk = &so->sk;
	struct sk_buff *skb;
	struct net_device *dev;
	struct canfd_frame *cf;
	enum hrtimer_restart restart = HRTIMER_NORESTART;
	int can_send_ret;
	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;

	switch (so->tx.state) {
	case ISOTP_WAIT_FC:
	case ISOTP_WAIT_FIRST_FC:

		/* we did not get any flow control frame in time */

		/* report 'communication error on send' */
		sk->sk_err = ECOMM;
		if (!sock_flag(sk, SOCK_DEAD))
			sk->sk_error_report(sk);

		/* reset tx state */
		so->tx.state = ISOTP_IDLE;
		wake_up_interruptible(&so->wait);
		break;

	case ISOTP_SENDING:

		/* push out the next segmented pdu */
		dev = dev_get_by_index(sock_net(sk), so->ifindex);
		if (!dev)
			break;

isotp_tx_burst:
		skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv),
789
				GFP_ATOMIC);
790 791 792 793 794 795 796 797 798 799
		if (!skb) {
			dev_put(dev);
			break;
		}

		can_skb_reserve(skb);
		can_skb_prv(skb)->ifindex = dev->ifindex;
		can_skb_prv(skb)->skbcnt = 0;

		cf = (struct canfd_frame *)skb->data;
800
		skb_put_zero(skb, so->ll.mtu);
801 802 803 804 805 806 807 808 809

		/* create consecutive frame */
		isotp_fill_dataframe(cf, so, ae, 0);

		/* place consecutive frame N_PCI in appropriate index */
		cf->data[ae] = N_PCI_CF | so->tx.sn++;
		so->tx.sn %= 16;
		so->tx.bs++;

810
		cf->flags = so->ll.tx_flags;
811 812 813 814 815 816

		skb->dev = dev;
		can_skb_set_owner(skb, sk);

		can_send_ret = can_send(skb, 1);
		if (can_send_ret)
817 818
			pr_notice_once("can-isotp: %s: can_send_ret %d\n",
				       __func__, can_send_ret);
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

		if (so->tx.idx >= so->tx.len) {
			/* we are done */
			so->tx.state = ISOTP_IDLE;
			dev_put(dev);
			wake_up_interruptible(&so->wait);
			break;
		}

		if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
			/* stop and wait for FC */
			so->tx.state = ISOTP_WAIT_FC;
			dev_put(dev);
			hrtimer_set_expires(&so->txtimer,
					    ktime_add(ktime_get(),
						      ktime_set(1, 0)));
			restart = HRTIMER_RESTART;
			break;
		}

		/* no gap between data frames needed => use burst mode */
		if (!so->tx_gap)
			goto isotp_tx_burst;

		/* start timer to send next data frame with correct delay */
		dev_put(dev);
		hrtimer_set_expires(&so->txtimer,
				    ktime_add(ktime_get(), so->tx_gap));
		restart = HRTIMER_RESTART;
		break;

	default:
		WARN_ON_ONCE(1);
	}

	return restart;
}

static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
{
	struct sock *sk = sock->sk;
	struct isotp_sock *so = isotp_sk(sk);
861
	u32 old_state = so->tx.state;
862 863 864 865 866
	struct sk_buff *skb;
	struct net_device *dev;
	struct canfd_frame *cf;
	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
	int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
867
	s64 hrtimer_sec = 0;
868 869 870 871 872 873 874
	int off;
	int err;

	if (!so->bound)
		return -EADDRNOTAVAIL;

	/* we do not support multiple buffers - for now */
875 876 877 878 879 880
	if (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE ||
	    wq_has_sleeper(&so->wait)) {
		if (msg->msg_flags & MSG_DONTWAIT) {
			err = -EAGAIN;
			goto err_out;
		}
881 882

		/* wait for complete transmission of current pdu */
883 884
		err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
		if (err)
885
			goto err_out;
886 887
	}

888 889
	if (!size || size > MAX_MSG_LENGTH) {
		err = -EINVAL;
890
		goto err_out_drop;
891
	}
892

893 894 895 896 897 898 899 900 901 902
	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
	off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;

	/* does the given data fit into a single frame for SF_BROADCAST? */
	if ((so->opt.flags & CAN_ISOTP_SF_BROADCAST) &&
	    (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
		err = -EINVAL;
		goto err_out_drop;
	}

903 904
	err = memcpy_from_msg(so->tx.buf, msg, size);
	if (err < 0)
905
		goto err_out_drop;
906 907

	dev = dev_get_by_index(sock_net(sk), so->ifindex);
908 909
	if (!dev) {
		err = -ENXIO;
910
		goto err_out_drop;
911
	}
912 913 914 915 916

	skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
				  msg->msg_flags & MSG_DONTWAIT, &err);
	if (!skb) {
		dev_put(dev);
917
		goto err_out_drop;
918 919 920 921 922 923 924 925 926 927
	}

	can_skb_reserve(skb);
	can_skb_prv(skb)->ifindex = dev->ifindex;
	can_skb_prv(skb)->skbcnt = 0;

	so->tx.len = size;
	so->tx.idx = 0;

	cf = (struct canfd_frame *)skb->data;
928
	skb_put_zero(skb, so->ll.mtu);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965

	/* check for single frame transmission depending on TX_DL */
	if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
		/* The message size generally fits into a SingleFrame - good.
		 *
		 * SF_DL ESC offset optimization:
		 *
		 * When TX_DL is greater 8 but the message would still fit
		 * into a 8 byte CAN frame, we can omit the offset.
		 * This prevents a protocol caused length extension from
		 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
		 */
		if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
			off = 0;

		isotp_fill_dataframe(cf, so, ae, off);

		/* place single frame N_PCI w/o length in appropriate index */
		cf->data[ae] = N_PCI_SF;

		/* place SF_DL size value depending on the SF_DL ESC offset */
		if (off)
			cf->data[SF_PCI_SZ4 + ae] = size;
		else
			cf->data[ae] |= size;

		so->tx.state = ISOTP_IDLE;
		wake_up_interruptible(&so->wait);

		/* don't enable wait queue for a single frame transmission */
		wait_tx_done = 0;
	} else {
		/* send first frame and wait for FC */

		isotp_create_fframe(cf, so, ae);

		/* start timeout for FC */
966 967 968
		hrtimer_sec = 1;
		hrtimer_start(&so->txtimer, ktime_set(hrtimer_sec, 0),
			      HRTIMER_MODE_REL_SOFT);
969 970 971
	}

	/* send the first or only CAN frame */
972
	cf->flags = so->ll.tx_flags;
973 974 975 976 977 978

	skb->dev = dev;
	skb->sk = sk;
	err = can_send(skb, 1);
	dev_put(dev);
	if (err) {
979 980
		pr_notice_once("can-isotp: %s: can_send_ret %d\n",
			       __func__, err);
981 982 983 984 985

		/* no transmission -> no timeout monitoring */
		if (hrtimer_sec)
			hrtimer_cancel(&so->txtimer);

986
		goto err_out_drop;
987 988 989 990 991
	}

	if (wait_tx_done) {
		/* wait for complete transmission of current pdu */
		wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
992 993 994

		if (sk->sk_err)
			return -sk->sk_err;
995 996 997
	}

	return size;
998

999 1000 1001
err_out_drop:
	/* drop this PDU and unlock a potential wait queue */
	old_state = ISOTP_IDLE;
1002 1003 1004 1005 1006 1007
err_out:
	so->tx.state = old_state;
	if (so->tx.state == ISOTP_IDLE)
		wake_up_interruptible(&so->wait);

	return err;
1008 1009 1010 1011 1012 1013 1014
}

static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
			 int flags)
{
	struct sock *sk = sock->sk;
	struct sk_buff *skb;
1015
	struct isotp_sock *so = isotp_sk(sk);
1016 1017
	int noblock = flags & MSG_DONTWAIT;
	int ret = 0;
1018

1019
	if (flags & ~(MSG_DONTWAIT | MSG_TRUNC | MSG_PEEK))
1020
		return -EINVAL;
1021

1022 1023 1024
	if (!so->bound)
		return -EADDRNOTAVAIL;

1025 1026
	flags &= ~MSG_DONTWAIT;
	skb = skb_recv_datagram(sk, flags, noblock, &ret);
1027
	if (!skb)
1028
		return ret;
1029 1030 1031 1032 1033 1034

	if (size < skb->len)
		msg->msg_flags |= MSG_TRUNC;
	else
		size = skb->len;

1035 1036 1037
	ret = memcpy_to_msg(msg, skb->data, size);
	if (ret < 0)
		goto out_err;
1038 1039 1040 1041

	sock_recv_timestamp(msg, sk, skb);

	if (msg->msg_name) {
1042 1043
		__sockaddr_check_size(ISOTP_MIN_NAMELEN);
		msg->msg_namelen = ISOTP_MIN_NAMELEN;
1044 1045 1046
		memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
	}

1047 1048 1049 1050
	/* set length of return value */
	ret = (flags & MSG_TRUNC) ? skb->len : size;

out_err:
1051 1052
	skb_free_datagram(sk, skb);

1053
	return ret;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
}

static int isotp_release(struct socket *sock)
{
	struct sock *sk = sock->sk;
	struct isotp_sock *so;
	struct net *net;

	if (!sk)
		return 0;

	so = isotp_sk(sk);
	net = sock_net(sk);

	/* wait for complete transmission of current pdu */
	wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);

1071 1072 1073 1074 1075 1076 1077 1078
	spin_lock(&isotp_notifier_lock);
	while (isotp_busy_notifier == so) {
		spin_unlock(&isotp_notifier_lock);
		schedule_timeout_uninterruptible(1);
		spin_lock(&isotp_notifier_lock);
	}
	list_del(&so->notifier);
	spin_unlock(&isotp_notifier_lock);
1079 1080 1081 1082

	lock_sock(sk);

	/* remove current filters & unregister */
1083
	if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST))) {
1084 1085 1086 1087 1088 1089 1090 1091 1092
		if (so->ifindex) {
			struct net_device *dev;

			dev = dev_get_by_index(net, so->ifindex);
			if (dev) {
				can_rx_unregister(net, dev, so->rxid,
						  SINGLE_MASK(so->rxid),
						  isotp_rcv, sk);
				dev_put(dev);
1093
				synchronize_rcu();
1094 1095 1096 1097
			}
		}
	}

1098 1099 1100
	hrtimer_cancel(&so->txtimer);
	hrtimer_cancel(&so->rxtimer);

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	so->ifindex = 0;
	so->bound = 0;

	sock_orphan(sk);
	sock->sk = NULL;

	release_sock(sk);
	sock_put(sk);

	return 0;
}

static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
{
	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
	struct sock *sk = sock->sk;
	struct isotp_sock *so = isotp_sk(sk);
	struct net *net = sock_net(sk);
	int ifindex;
	struct net_device *dev;
1121
	canid_t tx_id, rx_id;
1122 1123
	int err = 0;
	int notify_enetdown = 0;
1124
	int do_rx_reg = 1;
1125

1126
	if (len < ISOTP_MIN_NAMELEN)
1127 1128
		return -EINVAL;

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	/* sanitize tx/rx CAN identifiers */
	tx_id = addr->can_addr.tp.tx_id;
	if (tx_id & CAN_EFF_FLAG)
		tx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
	else
		tx_id &= CAN_SFF_MASK;

	rx_id = addr->can_addr.tp.rx_id;
	if (rx_id & CAN_EFF_FLAG)
		rx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
	else
		rx_id &= CAN_SFF_MASK;
1141 1142 1143 1144 1145 1146

	if (!addr->can_ifindex)
		return -ENODEV;

	lock_sock(sk);

1147 1148 1149 1150 1151
	/* do not register frame reception for functional addressing */
	if (so->opt.flags & CAN_ISOTP_SF_BROADCAST)
		do_rx_reg = 0;

	/* do not validate rx address for functional addressing */
1152 1153 1154
	if (do_rx_reg && rx_id == tx_id) {
		err = -EADDRNOTAVAIL;
		goto out;
1155 1156
	}

1157
	if (so->bound && addr->can_ifindex == so->ifindex &&
1158
	    rx_id == so->rxid && tx_id == so->txid)
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		goto out;

	dev = dev_get_by_index(net, addr->can_ifindex);
	if (!dev) {
		err = -ENODEV;
		goto out;
	}
	if (dev->type != ARPHRD_CAN) {
		dev_put(dev);
		err = -ENODEV;
		goto out;
	}
	if (dev->mtu < so->ll.mtu) {
		dev_put(dev);
		err = -EINVAL;
		goto out;
	}
	if (!(dev->flags & IFF_UP))
		notify_enetdown = 1;

	ifindex = dev->ifindex;

1181
	if (do_rx_reg)
1182
		can_rx_register(net, dev, rx_id, SINGLE_MASK(rx_id),
1183
				isotp_rcv, sk, "isotp", sk);
1184 1185 1186

	dev_put(dev);

1187
	if (so->bound && do_rx_reg) {
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		/* unregister old filter */
		if (so->ifindex) {
			dev = dev_get_by_index(net, so->ifindex);
			if (dev) {
				can_rx_unregister(net, dev, so->rxid,
						  SINGLE_MASK(so->rxid),
						  isotp_rcv, sk);
				dev_put(dev);
			}
		}
	}

	/* switch to new settings */
	so->ifindex = ifindex;
1202 1203
	so->rxid = rx_id;
	so->txid = tx_id;
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	so->bound = 1;

out:
	release_sock(sk);

	if (notify_enetdown) {
		sk->sk_err = ENETDOWN;
		if (!sock_flag(sk, SOCK_DEAD))
			sk->sk_error_report(sk);
	}

	return err;
}

static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
{
	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
	struct sock *sk = sock->sk;
	struct isotp_sock *so = isotp_sk(sk);

	if (peer)
		return -EOPNOTSUPP;

1227
	memset(addr, 0, ISOTP_MIN_NAMELEN);
1228 1229 1230 1231 1232
	addr->can_family = AF_CAN;
	addr->can_ifindex = so->ifindex;
	addr->can_addr.tp.rx_id = so->rxid;
	addr->can_addr.tp.tx_id = so->txid;

1233
	return ISOTP_MIN_NAMELEN;
1234 1235
}

1236
static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1237 1238 1239 1240 1241 1242
			    sockptr_t optval, unsigned int optlen)
{
	struct sock *sk = sock->sk;
	struct isotp_sock *so = isotp_sk(sk);
	int ret = 0;

1243 1244 1245
	if (so->bound)
		return -EISCONN;

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	switch (optname) {
	case CAN_ISOTP_OPTS:
		if (optlen != sizeof(struct can_isotp_options))
			return -EINVAL;

		if (copy_from_sockptr(&so->opt, optval, optlen))
			return -EFAULT;

		/* no separate rx_ext_address is given => use ext_address */
		if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
			so->opt.rx_ext_address = so->opt.ext_address;
1257 1258 1259 1260 1261 1262 1263 1264

		/* check for frame_txtime changes (0 => no changes) */
		if (so->opt.frame_txtime) {
			if (so->opt.frame_txtime == CAN_ISOTP_FRAME_TXTIME_ZERO)
				so->frame_txtime = 0;
			else
				so->frame_txtime = so->opt.frame_txtime;
		}
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		break;

	case CAN_ISOTP_RECV_FC:
		if (optlen != sizeof(struct can_isotp_fc_options))
			return -EINVAL;

		if (copy_from_sockptr(&so->rxfc, optval, optlen))
			return -EFAULT;
		break;

	case CAN_ISOTP_TX_STMIN:
		if (optlen != sizeof(u32))
			return -EINVAL;

		if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
			return -EFAULT;
		break;

	case CAN_ISOTP_RX_STMIN:
		if (optlen != sizeof(u32))
			return -EINVAL;

		if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
			return -EFAULT;
		break;

	case CAN_ISOTP_LL_OPTS:
		if (optlen == sizeof(struct can_isotp_ll_options)) {
			struct can_isotp_ll_options ll;

			if (copy_from_sockptr(&ll, optval, optlen))
				return -EFAULT;

			/* check for correct ISO 11898-1 DLC data length */
			if (ll.tx_dl != padlen(ll.tx_dl))
				return -EINVAL;

			if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
				return -EINVAL;

1305 1306
			if (ll.mtu == CAN_MTU &&
			    (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
				return -EINVAL;

			memcpy(&so->ll, &ll, sizeof(ll));

			/* set ll_dl for tx path to similar place as for rx */
			so->tx.ll_dl = ll.tx_dl;
		} else {
			return -EINVAL;
		}
		break;

	default:
		ret = -ENOPROTOOPT;
	}

	return ret;
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
static int isotp_setsockopt(struct socket *sock, int level, int optname,
			    sockptr_t optval, unsigned int optlen)

{
	struct sock *sk = sock->sk;
	int ret;

	if (level != SOL_CAN_ISOTP)
		return -EINVAL;

	lock_sock(sk);
	ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
	release_sock(sk);
	return ret;
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static int isotp_getsockopt(struct socket *sock, int level, int optname,
			    char __user *optval, int __user *optlen)
{
	struct sock *sk = sock->sk;
	struct isotp_sock *so = isotp_sk(sk);
	int len;
	void *val;

	if (level != SOL_CAN_ISOTP)
		return -EINVAL;
	if (get_user(len, optlen))
		return -EFAULT;
	if (len < 0)
		return -EINVAL;

	switch (optname) {
	case CAN_ISOTP_OPTS:
		len = min_t(int, len, sizeof(struct can_isotp_options));
		val = &so->opt;
		break;

	case CAN_ISOTP_RECV_FC:
		len = min_t(int, len, sizeof(struct can_isotp_fc_options));
		val = &so->rxfc;
		break;

	case CAN_ISOTP_TX_STMIN:
		len = min_t(int, len, sizeof(u32));
		val = &so->force_tx_stmin;
		break;

	case CAN_ISOTP_RX_STMIN:
		len = min_t(int, len, sizeof(u32));
		val = &so->force_rx_stmin;
		break;

	case CAN_ISOTP_LL_OPTS:
		len = min_t(int, len, sizeof(struct can_isotp_ll_options));
		val = &so->ll;
		break;

	default:
		return -ENOPROTOOPT;
	}

	if (put_user(len, optlen))
		return -EFAULT;
	if (copy_to_user(optval, val, len))
		return -EFAULT;
	return 0;
}

1393 1394
static void isotp_notify(struct isotp_sock *so, unsigned long msg,
			 struct net_device *dev)
1395 1396 1397 1398
{
	struct sock *sk = &so->sk;

	if (!net_eq(dev_net(dev), sock_net(sk)))
1399
		return;
1400 1401

	if (so->ifindex != dev->ifindex)
1402
		return;
1403 1404 1405 1406 1407

	switch (msg) {
	case NETDEV_UNREGISTER:
		lock_sock(sk);
		/* remove current filters & unregister */
1408
		if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST)))
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
			can_rx_unregister(dev_net(dev), dev, so->rxid,
					  SINGLE_MASK(so->rxid),
					  isotp_rcv, sk);

		so->ifindex = 0;
		so->bound  = 0;
		release_sock(sk);

		sk->sk_err = ENODEV;
		if (!sock_flag(sk, SOCK_DEAD))
			sk->sk_error_report(sk);
		break;

	case NETDEV_DOWN:
		sk->sk_err = ENETDOWN;
		if (!sock_flag(sk, SOCK_DEAD))
			sk->sk_error_report(sk);
		break;
	}
1428
}
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
			  void *ptr)
{
	struct net_device *dev = netdev_notifier_info_to_dev(ptr);

	if (dev->type != ARPHRD_CAN)
		return NOTIFY_DONE;
	if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
		return NOTIFY_DONE;
	if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
		return NOTIFY_DONE;

	spin_lock(&isotp_notifier_lock);
	list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
		spin_unlock(&isotp_notifier_lock);
		isotp_notify(isotp_busy_notifier, msg, dev);
		spin_lock(&isotp_notifier_lock);
	}
	isotp_busy_notifier = NULL;
	spin_unlock(&isotp_notifier_lock);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	return NOTIFY_DONE;
}

static int isotp_init(struct sock *sk)
{
	struct isotp_sock *so = isotp_sk(sk);

	so->ifindex = 0;
	so->bound = 0;

	so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
	so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
	so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
	so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
	so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
	so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1466
	so->frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
	so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
	so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
	so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
	so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
	so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;

	/* set ll_dl for tx path to similar place as for rx */
	so->tx.ll_dl = so->ll.tx_dl;

	so->rx.state = ISOTP_IDLE;
	so->tx.state = ISOTP_IDLE;

	hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
	so->rxtimer.function = isotp_rx_timer_handler;
	hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
	so->txtimer.function = isotp_tx_timer_handler;

	init_waitqueue_head(&so->wait);
1486
	spin_lock_init(&so->rx_lock);
1487

1488 1489 1490
	spin_lock(&isotp_notifier_lock);
	list_add_tail(&so->notifier, &isotp_notifier_list);
	spin_unlock(&isotp_notifier_lock);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

	return 0;
}

static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
				  unsigned long arg)
{
	/* no ioctls for socket layer -> hand it down to NIC layer */
	return -ENOIOCTLCMD;
}

static const struct proto_ops isotp_ops = {
	.family = PF_CAN,
	.release = isotp_release,
	.bind = isotp_bind,
	.connect = sock_no_connect,
	.socketpair = sock_no_socketpair,
	.accept = sock_no_accept,
	.getname = isotp_getname,
	.poll = datagram_poll,
	.ioctl = isotp_sock_no_ioctlcmd,
	.gettstamp = sock_gettstamp,
	.listen = sock_no_listen,
	.shutdown = sock_no_shutdown,
	.setsockopt = isotp_setsockopt,
	.getsockopt = isotp_getsockopt,
	.sendmsg = isotp_sendmsg,
	.recvmsg = isotp_recvmsg,
	.mmap = sock_no_mmap,
	.sendpage = sock_no_sendpage,
};

static struct proto isotp_proto __read_mostly = {
	.name = "CAN_ISOTP",
	.owner = THIS_MODULE,
	.obj_size = sizeof(struct isotp_sock),
	.init = isotp_init,
};

static const struct can_proto isotp_can_proto = {
	.type = SOCK_DGRAM,
	.protocol = CAN_ISOTP,
	.ops = &isotp_ops,
	.prot = &isotp_proto,
};

1537 1538 1539 1540
static struct notifier_block canisotp_notifier = {
	.notifier_call = isotp_notifier
};

1541 1542 1543 1544
static __init int isotp_module_init(void)
{
	int err;

1545
	pr_info("can: isotp protocol\n");
1546 1547 1548 1549

	err = can_proto_register(&isotp_can_proto);
	if (err < 0)
		pr_err("can: registration of isotp protocol failed\n");
1550 1551
	else
		register_netdevice_notifier(&canisotp_notifier);
1552 1553 1554 1555 1556 1557 1558

	return err;
}

static __exit void isotp_module_exit(void)
{
	can_proto_unregister(&isotp_can_proto);
1559
	unregister_netdevice_notifier(&canisotp_notifier);
1560 1561 1562 1563
}

module_init(isotp_module_init);
module_exit(isotp_module_exit);