gma_display.c 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/*
 * Copyright © 2006-2011 Intel Corporation
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Authors:
 *	Eric Anholt <eric@anholt.net>
 *	Patrik Jakobsson <patrik.r.jakobsson@gmail.com>
 */

#include <drm/drmP.h>
#include "gma_display.h"
#include "psb_intel_drv.h"
#include "psb_intel_reg.h"
#include "psb_drv.h"

/**
 * Returns whether any output on the specified pipe is of the specified type
 */
bool gma_pipe_has_type(struct drm_crtc *crtc, int type)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_connector *l_entry;

	list_for_each_entry(l_entry, &mode_config->connector_list, head) {
		if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
			struct psb_intel_encoder *psb_intel_encoder =
					psb_intel_attached_encoder(l_entry);
			if (psb_intel_encoder->type == type)
				return true;
		}
	}

	return false;
}

#define GMA_PLL_INVALID(s) { /* DRM_ERROR(s); */ return false; }

bool gma_pll_is_valid(struct drm_crtc *crtc,
		      const struct gma_limit_t *limit,
		      struct gma_clock_t *clock)
{
	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
		GMA_PLL_INVALID("p1 out of range");
	if (clock->p < limit->p.min || limit->p.max < clock->p)
		GMA_PLL_INVALID("p out of range");
	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
		GMA_PLL_INVALID("m2 out of range");
	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
		GMA_PLL_INVALID("m1 out of range");
	/* On CDV m1 is always 0 */
	if (clock->m1 <= clock->m2 && clock->m1 != 0)
		GMA_PLL_INVALID("m1 <= m2 && m1 != 0");
	if (clock->m < limit->m.min || limit->m.max < clock->m)
		GMA_PLL_INVALID("m out of range");
	if (clock->n < limit->n.min || limit->n.max < clock->n)
		GMA_PLL_INVALID("n out of range");
	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
		GMA_PLL_INVALID("vco out of range");
	/* XXX: We may need to be checking "Dot clock"
	 * depending on the multiplier, connector, etc.,
	 * rather than just a single range.
	 */
	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
		GMA_PLL_INVALID("dot out of range");

	return true;
}

bool gma_find_best_pll(const struct gma_limit_t *limit,
		       struct drm_crtc *crtc, int target, int refclk,
		       struct gma_clock_t *best_clock)
{
	struct drm_device *dev = crtc->dev;
	const struct gma_clock_funcs *clock_funcs =
					to_psb_intel_crtc(crtc)->clock_funcs;
	struct gma_clock_t clock;
	int err = target;

	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
	    (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
		/*
		 * For LVDS, if the panel is on, just rely on its current
		 * settings for dual-channel.  We haven't figured out how to
		 * reliably set up different single/dual channel state, if we
		 * even can.
		 */
		if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
		    LVDS_CLKB_POWER_UP)
			clock.p2 = limit->p2.p2_fast;
		else
			clock.p2 = limit->p2.p2_slow;
	} else {
		if (target < limit->p2.dot_limit)
			clock.p2 = limit->p2.p2_slow;
		else
			clock.p2 = limit->p2.p2_fast;
	}

	memset(best_clock, 0, sizeof(*best_clock));

	/* m1 is always 0 on CDV so the outmost loop will run just once */
	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
		for (clock.m2 = limit->m2.min;
		     (clock.m2 < clock.m1 || clock.m1 == 0) &&
		      clock.m2 <= limit->m2.max; clock.m2++) {
			for (clock.n = limit->n.min;
			     clock.n <= limit->n.max; clock.n++) {
				for (clock.p1 = limit->p1.min;
				     clock.p1 <= limit->p1.max;
				     clock.p1++) {
					int this_err;

					clock_funcs->clock(refclk, &clock);

					if (!clock_funcs->pll_is_valid(crtc,
								limit, &clock))
						continue;

					this_err = abs(clock.dot - target);
					if (this_err < err) {
						*best_clock = clock;
						err = this_err;
					}
				}
			}
		}
	}

	return err != target;
}