soc-cache.c 35.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * soc-cache.c  --  ASoC register cache helpers
 *
 * Copyright 2009 Wolfson Microelectronics PLC.
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 */

14
#include <linux/i2c.h>
15
#include <linux/spi/spi.h>
16
#include <sound/soc.h>
17 18
#include <linux/lzo.h>
#include <linux/bitmap.h>
19
#include <linux/rbtree.h>
20

21 22
#include <trace/events/asoc.h>

M
Mark Brown 已提交
23 24
#ifdef CONFIG_SPI_MASTER
static int do_spi_write(void *control, const char *data, int len)
25
{
M
Mark Brown 已提交
26 27
	struct spi_device *spi = control;
	int ret;
28

M
Mark Brown 已提交
29 30 31
	ret = spi_write(spi, data, len);
	if (ret < 0)
		return ret;
32 33 34 35 36

	return len;
}
#endif

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
static int do_hw_write(struct snd_soc_codec *codec, unsigned int reg,
		       unsigned int value, const void *data, int len)
{
	int ret;

	if (!snd_soc_codec_volatile_register(codec, reg) &&
	    reg < codec->driver->reg_cache_size &&
	    !codec->cache_bypass) {
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}

	if (codec->cache_only) {
		codec->cache_sync = 1;
		return 0;
	}

	ret = codec->hw_write(codec->control_data, data, len);
	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

64
static unsigned int hw_read(struct snd_soc_codec *codec, unsigned int reg)
65
{
66 67
	int ret;
	unsigned int val;
68 69

	if (reg >= codec->driver->reg_cache_size ||
70 71 72 73
	    snd_soc_codec_volatile_register(codec, reg) ||
	    codec->cache_bypass) {
		if (codec->cache_only)
			return -1;
74

75 76
		BUG_ON(!codec->hw_read);
		return codec->hw_read(codec, reg);
77 78
	}

79 80 81 82
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
83 84 85
}

static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
86
			      unsigned int value)
87
{
88
	u16 data;
89

90
	data = cpu_to_be16((reg << 12) | (value & 0xffffff));
91

92
	return do_hw_write(codec, reg, value, &data, 2);
93 94
}

95 96 97
static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
98
	u16 data;
99

100
	data = cpu_to_be16((reg << 9) | (value & 0x1ff));
101

102
	return do_hw_write(codec, reg, value, &data, 2);
103 104
}

105 106 107 108 109
static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];

110 111
	reg &= 0xff;
	data[0] = reg;
112 113
	data[1] = value & 0xff;

114
	return do_hw_write(codec, reg, value, data, 2);
115 116
}

117 118 119 120
static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
			      unsigned int value)
{
	u8 data[3];
121
	u16 val = cpu_to_be16(value);
122 123

	data[0] = reg;
124
	memcpy(&data[1], &val, sizeof(val));
125

126
	return do_hw_write(codec, reg, value, data, 3);
127 128
}

129
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
130 131 132
static unsigned int do_i2c_read(struct snd_soc_codec *codec,
				void *reg, int reglen,
				void *data, int datalen)
133 134 135 136 137 138 139 140
{
	struct i2c_msg xfer[2];
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
141 142
	xfer[0].len = reglen;
	xfer[0].buf = reg;
143 144 145 146

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
147 148
	xfer[1].len = datalen;
	xfer[1].buf = data;
149 150

	ret = i2c_transfer(client->adapter, xfer, 2);
151
	if (ret == 2)
152
		return 0;
153 154 155 156 157 158 159 160 161
	else if (ret < 0)
		return ret;
	else
		return -EIO;
}
#endif

#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
162
					 unsigned int r)
163 164 165 166
{
	u8 reg = r;
	u8 data;
	int ret;
167

168 169 170
	ret = do_i2c_read(codec, &reg, 1, &data, 1);
	if (ret < 0)
		return 0;
171 172 173 174 175 176
	return data;
}
#else
#define snd_soc_8_8_read_i2c NULL
#endif

R
Randy Dunlap 已提交
177
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
178 179 180 181 182 183 184
static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u8 reg = r;
	u16 data;
	int ret;

185 186
	ret = do_i2c_read(codec, &reg, 1, &data, 2);
	if (ret < 0)
187 188 189 190 191 192
		return 0;
	return (data >> 8) | ((data & 0xff) << 8);
}
#else
#define snd_soc_8_16_read_i2c NULL
#endif
193

194 195 196 197 198 199 200 201
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u16 reg = r;
	u8 data;
	int ret;

202 203
	ret = do_i2c_read(codec, &reg, 2, &data, 1);
	if (ret < 0)
204 205 206 207 208 209 210 211
		return 0;
	return data;
}
#else
#define snd_soc_16_8_read_i2c NULL
#endif

static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
212
			      unsigned int value)
213 214
{
	u8 data[3];
215
	u16 rval = cpu_to_be16(reg);
216

217
	memcpy(data, &rval, sizeof(rval));
218
	data[2] = value;
219

220
	return do_hw_write(codec, reg, value, data, 3);
221 222
}

223 224 225 226 227 228 229 230
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
					   unsigned int r)
{
	u16 reg = cpu_to_be16(r);
	u16 data;
	int ret;

231 232
	ret = do_i2c_read(codec, &reg, 2, &data, 2);
	if (ret < 0)
233 234 235 236 237 238 239 240 241 242
		return 0;
	return be16_to_cpu(data);
}
#else
#define snd_soc_16_16_read_i2c NULL
#endif

static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
			       unsigned int value)
{
243
	u16 data[2];
244

245 246
	data[0] = cpu_to_be16(reg);
	data[1] = cpu_to_be16(value);
247

248
	return do_hw_write(codec, reg, value, data, sizeof(data));
249
}
250

251 252 253 254 255
/* Primitive bulk write support for soc-cache.  The data pointed to by
 * `data' needs to already be in the form the hardware expects
 * including any leading register specific data.  Any data written
 * through this function will not go through the cache as it only
 * handles writing to volatile or out of bounds registers.
256 257 258 259 260 261
 */
static int snd_soc_hw_bulk_write_raw(struct snd_soc_codec *codec, unsigned int reg,
				     const void *data, size_t len)
{
	int ret;

262 263 264 265
	/* To ensure that we don't get out of sync with the cache, check
	 * whether the base register is volatile or if we've directly asked
	 * to bypass the cache.  Out of bounds registers are considered
	 * volatile.
266
	 */
267 268
	if (!codec->cache_bypass
	    && !snd_soc_codec_volatile_register(codec, reg)
269 270 271 272
	    && reg < codec->driver->reg_cache_size)
		return -EINVAL;

	switch (codec->control_type) {
273
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
274 275 276
	case SND_SOC_I2C:
		ret = i2c_master_send(codec->control_data, data, len);
		break;
277 278
#endif
#if defined(CONFIG_SPI_MASTER)
279
	case SND_SOC_SPI:
280
		ret = spi_write(codec->control_data, data, len);
281
		break;
282
#endif
283 284 285 286 287 288 289 290 291 292 293 294
	default:
		BUG();
	}

	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

295 296 297
static struct {
	int addr_bits;
	int data_bits;
298
	int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
299
	unsigned int (*read)(struct snd_soc_codec *, unsigned int);
300
	unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
301
} io_types[] = {
302 303
	{
		.addr_bits = 4, .data_bits = 12,
304
		.write = snd_soc_4_12_write,
305
	},
306 307
	{
		.addr_bits = 7, .data_bits = 9,
308
		.write = snd_soc_7_9_write,
309 310 311
	},
	{
		.addr_bits = 8, .data_bits = 8,
312
		.write = snd_soc_8_8_write,
313
		.i2c_read = snd_soc_8_8_read_i2c,
314 315 316
	},
	{
		.addr_bits = 8, .data_bits = 16,
317
		.write = snd_soc_8_16_write,
318 319
		.i2c_read = snd_soc_8_16_read_i2c,
	},
320 321
	{
		.addr_bits = 16, .data_bits = 8,
322
		.write = snd_soc_16_8_write,
323 324
		.i2c_read = snd_soc_16_8_read_i2c,
	},
325 326
	{
		.addr_bits = 16, .data_bits = 16,
327
		.write = snd_soc_16_16_write,
328 329
		.i2c_read = snd_soc_16_16_read_i2c,
	},
330 331 332 333 334 335 336 337
};

/**
 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
 *
 * @codec: CODEC to configure.
 * @addr_bits: Number of bits of register address data.
 * @data_bits: Number of bits of data per register.
338
 * @control: Control bus used.
339 340 341 342 343 344 345 346 347 348 349 350 351
 *
 * Register formats are frequently shared between many I2C and SPI
 * devices.  In order to promote code reuse the ASoC core provides
 * some standard implementations of CODEC read and write operations
 * which can be set up using this function.
 *
 * The caller is responsible for allocating and initialising the
 * actual cache.
 *
 * Note that at present this code cannot be used by CODECs with
 * volatile registers.
 */
int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
352 353
			       int addr_bits, int data_bits,
			       enum snd_soc_control_type control)
354 355 356 357 358 359 360 361 362 363 364 365 366 367
{
	int i;

	for (i = 0; i < ARRAY_SIZE(io_types); i++)
		if (io_types[i].addr_bits == addr_bits &&
		    io_types[i].data_bits == data_bits)
			break;
	if (i == ARRAY_SIZE(io_types)) {
		printk(KERN_ERR
		       "No I/O functions for %d bit address %d bit data\n",
		       addr_bits, data_bits);
		return -EINVAL;
	}

368
	codec->write = io_types[i].write;
369
	codec->read = hw_read;
370
	codec->bulk_write_raw = snd_soc_hw_bulk_write_raw;
371

372 373 374 375 376
	switch (control) {
	case SND_SOC_CUSTOM:
		break;

	case SND_SOC_I2C:
R
Randy Dunlap 已提交
377
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
378 379
		codec->hw_write = (hw_write_t)i2c_master_send;
#endif
380 381
		if (io_types[i].i2c_read)
			codec->hw_read = io_types[i].i2c_read;
382 383 384 385

		codec->control_data = container_of(codec->dev,
						   struct i2c_client,
						   dev);
386 387 388
		break;

	case SND_SOC_SPI:
389
#ifdef CONFIG_SPI_MASTER
M
Mark Brown 已提交
390
		codec->hw_write = do_spi_write;
391
#endif
392 393 394 395

		codec->control_data = container_of(codec->dev,
						   struct spi_device,
						   dev);
396 397 398
		break;
	}

399 400 401
	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static bool snd_soc_set_cache_val(void *base, unsigned int idx,
				  unsigned int val, unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		u8 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	case 2: {
		u16 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	default:
		BUG();
	}
	return false;
}

static unsigned int snd_soc_get_cache_val(const void *base, unsigned int idx,
		unsigned int word_size)
{
430 431 432
	if (!base)
		return -1;

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	switch (word_size) {
	case 1: {
		const u8 *cache = base;
		return cache[idx];
	}
	case 2: {
		const u16 *cache = base;
		return cache[idx];
	}
	default:
		BUG();
	}
	/* unreachable */
	return -1;
}

449
struct snd_soc_rbtree_node {
450 451 452 453 454
	struct rb_node node; /* the actual rbtree node holding this block */
	unsigned int base_reg; /* base register handled by this block */
	unsigned int word_size; /* number of bytes needed to represent the register index */
	void *block; /* block of adjacent registers */
	unsigned int blklen; /* number of registers available in the block */
455 456 457 458
} __attribute__ ((packed));

struct snd_soc_rbtree_ctx {
	struct rb_root root;
459
	struct snd_soc_rbtree_node *cached_rbnode;
460 461
};

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
static inline void snd_soc_rbtree_get_base_top_reg(
	struct snd_soc_rbtree_node *rbnode,
	unsigned int *base, unsigned int *top)
{
	*base = rbnode->base_reg;
	*top = rbnode->base_reg + rbnode->blklen - 1;
}

static unsigned int snd_soc_rbtree_get_register(
	struct snd_soc_rbtree_node *rbnode, unsigned int idx)
{
	unsigned int val;

	switch (rbnode->word_size) {
	case 1: {
		u8 *p = rbnode->block;
		val = p[idx];
		return val;
	}
	case 2: {
		u16 *p = rbnode->block;
		val = p[idx];
		return val;
	}
	default:
		BUG();
		break;
	}
	return -1;
}

static void snd_soc_rbtree_set_register(struct snd_soc_rbtree_node *rbnode,
					unsigned int idx, unsigned int val)
{
	switch (rbnode->word_size) {
	case 1: {
		u8 *p = rbnode->block;
		p[idx] = val;
		break;
	}
	case 2: {
		u16 *p = rbnode->block;
		p[idx] = val;
		break;
	}
	default:
		BUG();
		break;
	}
}

513 514 515 516 517
static struct snd_soc_rbtree_node *snd_soc_rbtree_lookup(
	struct rb_root *root, unsigned int reg)
{
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;
518
	unsigned int base_reg, top_reg;
519 520 521 522

	node = root->rb_node;
	while (node) {
		rbnode = container_of(node, struct snd_soc_rbtree_node, node);
523 524
		snd_soc_rbtree_get_base_top_reg(rbnode, &base_reg, &top_reg);
		if (reg >= base_reg && reg <= top_reg)
525
			return rbnode;
526 527 528 529
		else if (reg > top_reg)
			node = node->rb_right;
		else if (reg < base_reg)
			node = node->rb_left;
530 531 532 533 534 535 536 537 538 539
	}

	return NULL;
}

static int snd_soc_rbtree_insert(struct rb_root *root,
				 struct snd_soc_rbtree_node *rbnode)
{
	struct rb_node **new, *parent;
	struct snd_soc_rbtree_node *rbnode_tmp;
540 541
	unsigned int base_reg_tmp, top_reg_tmp;
	unsigned int base_reg;
542 543 544 545 546 547

	parent = NULL;
	new = &root->rb_node;
	while (*new) {
		rbnode_tmp = container_of(*new, struct snd_soc_rbtree_node,
					  node);
548 549 550 551 552
		/* base and top registers of the current rbnode */
		snd_soc_rbtree_get_base_top_reg(rbnode_tmp, &base_reg_tmp,
						&top_reg_tmp);
		/* base register of the rbnode to be added */
		base_reg = rbnode->base_reg;
553
		parent = *new;
554 555 556
		/* if this register has already been inserted, just return */
		if (base_reg >= base_reg_tmp &&
		    base_reg <= top_reg_tmp)
557
			return 0;
558 559 560 561
		else if (base_reg > top_reg_tmp)
			new = &((*new)->rb_right);
		else if (base_reg < base_reg_tmp)
			new = &((*new)->rb_left);
562 563 564 565 566 567 568 569 570 571 572 573 574 575
	}

	/* insert the node into the rbtree */
	rb_link_node(&rbnode->node, parent, new);
	rb_insert_color(&rbnode->node, root);

	return 1;
}

static int snd_soc_rbtree_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;
576
	unsigned int regtmp;
577
	unsigned int val, def;
578
	int ret;
579
	int i;
580 581 582 583

	rbtree_ctx = codec->reg_cache;
	for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
		rbnode = rb_entry(node, struct snd_soc_rbtree_node, node);
584 585 586 587 588
		for (i = 0; i < rbnode->blklen; ++i) {
			regtmp = rbnode->base_reg + i;
			WARN_ON(codec->writable_register &&
				codec->writable_register(codec, regtmp));
			val = snd_soc_rbtree_get_register(rbnode, i);
589 590 591 592 593
			def = snd_soc_get_cache_val(codec->reg_def_copy, i,
						    rbnode->word_size);
			if (val == def)
				continue;

594 595 596 597 598 599 600 601
			codec->cache_bypass = 1;
			ret = snd_soc_write(codec, regtmp, val);
			codec->cache_bypass = 0;
			if (ret)
				return ret;
			dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
				regtmp, val);
		}
602 603 604 605 606
	}

	return 0;
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
static int snd_soc_rbtree_insert_to_block(struct snd_soc_rbtree_node *rbnode,
					  unsigned int pos, unsigned int reg,
					  unsigned int value)
{
	u8 *blk;

	blk = krealloc(rbnode->block,
		       (rbnode->blklen + 1) * rbnode->word_size, GFP_KERNEL);
	if (!blk)
		return -ENOMEM;

	/* insert the register value in the correct place in the rbnode block */
	memmove(blk + (pos + 1) * rbnode->word_size,
		blk + pos * rbnode->word_size,
		(rbnode->blklen - pos) * rbnode->word_size);

	/* update the rbnode block, its size and the base register */
	rbnode->block = blk;
	rbnode->blklen++;
	if (!pos)
		rbnode->base_reg = reg;

	snd_soc_rbtree_set_register(rbnode, pos, value);
	return 0;
}

633 634 635 636
static int snd_soc_rbtree_cache_write(struct snd_soc_codec *codec,
				      unsigned int reg, unsigned int value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
637 638 639 640
	struct snd_soc_rbtree_node *rbnode, *rbnode_tmp;
	struct rb_node *node;
	unsigned int val;
	unsigned int reg_tmp;
641
	unsigned int base_reg, top_reg;
642 643 644
	unsigned int pos;
	int i;
	int ret;
645 646

	rbtree_ctx = codec->reg_cache;
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	/* look up the required register in the cached rbnode */
	rbnode = rbtree_ctx->cached_rbnode;
	if (rbnode) {
		snd_soc_rbtree_get_base_top_reg(rbnode, &base_reg, &top_reg);
		if (reg >= base_reg && reg <= top_reg) {
			reg_tmp = reg - base_reg;
			val = snd_soc_rbtree_get_register(rbnode, reg_tmp);
			if (val == value)
				return 0;
			snd_soc_rbtree_set_register(rbnode, reg_tmp, value);
			return 0;
		}
	}
	/* if we can't locate it in the cached rbnode we'll have
	 * to traverse the rbtree looking for it.
	 */
663 664
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
665 666 667
		reg_tmp = reg - rbnode->base_reg;
		val = snd_soc_rbtree_get_register(rbnode, reg_tmp);
		if (val == value)
668
			return 0;
669
		snd_soc_rbtree_set_register(rbnode, reg_tmp, value);
670
		rbtree_ctx->cached_rbnode = rbnode;
671 672 673 674
	} else {
		/* bail out early, no need to create the rbnode yet */
		if (!value)
			return 0;
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
		/* look for an adjacent register to the one we are about to add */
		for (node = rb_first(&rbtree_ctx->root); node;
		     node = rb_next(node)) {
			rbnode_tmp = rb_entry(node, struct snd_soc_rbtree_node, node);
			for (i = 0; i < rbnode_tmp->blklen; ++i) {
				reg_tmp = rbnode_tmp->base_reg + i;
				if (abs(reg_tmp - reg) != 1)
					continue;
				/* decide where in the block to place our register */
				if (reg_tmp + 1 == reg)
					pos = i + 1;
				else
					pos = i;
				ret = snd_soc_rbtree_insert_to_block(rbnode_tmp, pos,
								     reg, value);
				if (ret)
					return ret;
692
				rbtree_ctx->cached_rbnode = rbnode_tmp;
693 694 695 696 697 698 699
				return 0;
			}
		}
		/* we did not manage to find a place to insert it in an existing
		 * block so create a new rbnode with a single register in its block.
		 * This block will get populated further if any other adjacent
		 * registers get modified in the future.
700 701 702 703
		 */
		rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
		if (!rbnode)
			return -ENOMEM;
704 705 706 707 708 709 710 711 712 713
		rbnode->blklen = 1;
		rbnode->base_reg = reg;
		rbnode->word_size = codec->driver->reg_word_size;
		rbnode->block = kmalloc(rbnode->blklen * rbnode->word_size,
					GFP_KERNEL);
		if (!rbnode->block) {
			kfree(rbnode);
			return -ENOMEM;
		}
		snd_soc_rbtree_set_register(rbnode, 0, value);
714
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbnode);
715
		rbtree_ctx->cached_rbnode = rbnode;
716 717 718 719 720 721 722 723 724 725
	}

	return 0;
}

static int snd_soc_rbtree_cache_read(struct snd_soc_codec *codec,
				     unsigned int reg, unsigned int *value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;
726
	unsigned int base_reg, top_reg;
727
	unsigned int reg_tmp;
728 729

	rbtree_ctx = codec->reg_cache;
730 731 732 733 734 735 736 737 738 739 740 741 742
	/* look up the required register in the cached rbnode */
	rbnode = rbtree_ctx->cached_rbnode;
	if (rbnode) {
		snd_soc_rbtree_get_base_top_reg(rbnode, &base_reg, &top_reg);
		if (reg >= base_reg && reg <= top_reg) {
			reg_tmp = reg - base_reg;
			*value = snd_soc_rbtree_get_register(rbnode, reg_tmp);
			return 0;
		}
	}
	/* if we can't locate it in the cached rbnode we'll have
	 * to traverse the rbtree looking for it.
	 */
743 744
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
745 746
		reg_tmp = reg - rbnode->base_reg;
		*value = snd_soc_rbtree_get_register(rbnode, reg_tmp);
747
		rbtree_ctx->cached_rbnode = rbnode;
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	} else {
		/* uninitialized registers default to 0 */
		*value = 0;
	}

	return 0;
}

static int snd_soc_rbtree_cache_exit(struct snd_soc_codec *codec)
{
	struct rb_node *next;
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbtree_node;

	/* if we've already been called then just return */
	rbtree_ctx = codec->reg_cache;
	if (!rbtree_ctx)
		return 0;

	/* free up the rbtree */
	next = rb_first(&rbtree_ctx->root);
	while (next) {
		rbtree_node = rb_entry(next, struct snd_soc_rbtree_node, node);
		next = rb_next(&rbtree_node->node);
		rb_erase(&rbtree_node->node, &rbtree_ctx->root);
773
		kfree(rbtree_node->block);
774 775 776 777 778 779 780 781 782 783 784 785 786
		kfree(rbtree_node);
	}

	/* release the resources */
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;

	return 0;
}

static int snd_soc_rbtree_cache_init(struct snd_soc_codec *codec)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
787
	unsigned int word_size;
788
	unsigned int val;
789 790
	int i;
	int ret;
791 792 793 794 795 796 797

	codec->reg_cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
	if (!codec->reg_cache)
		return -ENOMEM;

	rbtree_ctx = codec->reg_cache;
	rbtree_ctx->root = RB_ROOT;
798
	rbtree_ctx->cached_rbnode = NULL;
799

800
	if (!codec->reg_def_copy)
801 802
		return 0;

803 804
	word_size = codec->driver->reg_word_size;
	for (i = 0; i < codec->driver->reg_cache_size; ++i) {
805 806
		val = snd_soc_get_cache_val(codec->reg_def_copy, i,
					    word_size);
807 808
		if (!val)
			continue;
809 810 811
		ret = snd_soc_rbtree_cache_write(codec, i, val);
		if (ret)
			goto err;
812 813 814
	}

	return 0;
815 816 817 818

err:
	snd_soc_cache_exit(codec);
	return ret;
819 820
}

821
#ifdef CONFIG_SND_SOC_CACHE_LZO
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
struct snd_soc_lzo_ctx {
	void *wmem;
	void *dst;
	const void *src;
	size_t src_len;
	size_t dst_len;
	size_t decompressed_size;
	unsigned long *sync_bmp;
	int sync_bmp_nbits;
};

#define LZO_BLOCK_NUM 8
static int snd_soc_lzo_block_count(void)
{
	return LZO_BLOCK_NUM;
}

static int snd_soc_lzo_prepare(struct snd_soc_lzo_ctx *lzo_ctx)
{
	lzo_ctx->wmem = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
	if (!lzo_ctx->wmem)
		return -ENOMEM;
	return 0;
}

static int snd_soc_lzo_compress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t compress_size;
	int ret;

	ret = lzo1x_1_compress(lzo_ctx->src, lzo_ctx->src_len,
			       lzo_ctx->dst, &compress_size, lzo_ctx->wmem);
	if (ret != LZO_E_OK || compress_size > lzo_ctx->dst_len)
		return -EINVAL;
	lzo_ctx->dst_len = compress_size;
	return 0;
}

static int snd_soc_lzo_decompress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t dst_len;
	int ret;

	dst_len = lzo_ctx->dst_len;
	ret = lzo1x_decompress_safe(lzo_ctx->src, lzo_ctx->src_len,
				    lzo_ctx->dst, &dst_len);
	if (ret != LZO_E_OK || dst_len != lzo_ctx->dst_len)
		return -EINVAL;
	return 0;
}

static int snd_soc_lzo_compress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo1x_worst_compress(PAGE_SIZE);
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_compress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static int snd_soc_lzo_decompress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo_ctx->decompressed_size;
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_decompress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static inline int snd_soc_lzo_get_blkindex(struct snd_soc_codec *codec,
		unsigned int reg)
{
912
	const struct snd_soc_codec_driver *codec_drv;
913 914 915

	codec_drv = codec->driver;
	return (reg * codec_drv->reg_word_size) /
916
	       DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
917 918 919 920 921
}

static inline int snd_soc_lzo_get_blkpos(struct snd_soc_codec *codec,
		unsigned int reg)
{
922
	const struct snd_soc_codec_driver *codec_drv;
923 924

	codec_drv = codec->driver;
925
	return reg % (DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count()) /
926 927 928 929 930
		      codec_drv->reg_word_size);
}

static inline int snd_soc_lzo_get_blksize(struct snd_soc_codec *codec)
{
931
	const struct snd_soc_codec_driver *codec_drv;
932 933

	codec_drv = codec->driver;
934
	return DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
935 936 937 938 939 940 941
}

static int snd_soc_lzo_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	unsigned int val;
	int i;
942
	int ret;
943 944 945

	lzo_blocks = codec->reg_cache;
	for_each_set_bit(i, lzo_blocks[0]->sync_bmp, lzo_blocks[0]->sync_bmp_nbits) {
946 947
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, i));
948 949 950
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
951
		codec->cache_bypass = 1;
952
		ret = snd_soc_write(codec, i, val);
953
		codec->cache_bypass = 0;
954 955
		if (ret)
			return ret;
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}

	return 0;
}

static int snd_soc_lzo_cache_write(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		goto out;
	}

	/* write the new value to the cache */
996 997 998 999
	if (snd_soc_set_cache_val(lzo_block->dst, blkpos, value,
				  codec->driver->reg_word_size)) {
		kfree(lzo_block->dst);
		goto out;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	}

	/* prepare the source to be the decompressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* compress the block */
	ret = snd_soc_lzo_compress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		kfree(lzo_block->src);
		goto out;
	}

	/* set the bit so we know we have to sync this register */
	set_bit(reg, lzo_block->sync_bmp);
	kfree(tmp_dst);
	kfree(lzo_block->src);
	return 0;
out:
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return ret;
}

static int snd_soc_lzo_cache_read(struct snd_soc_codec *codec,
				  unsigned int reg, unsigned int *value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	*value = 0;
	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
1053
	if (ret >= 0)
1054
		/* fetch the value from the cache */
1055 1056
		*value = snd_soc_get_cache_val(lzo_block->dst, blkpos,
					       codec->driver->reg_word_size);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

	kfree(lzo_block->dst);
	/* restore the pointer and length of the compressed block */
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return 0;
}

static int snd_soc_lzo_cache_exit(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	int i, blkcount;

	lzo_blocks = codec->reg_cache;
	if (!lzo_blocks)
		return 0;

	blkcount = snd_soc_lzo_block_count();
	/*
	 * the pointer to the bitmap used for syncing the cache
	 * is shared amongst all lzo_blocks.  Ensure it is freed
	 * only once.
	 */
	if (lzo_blocks[0])
		kfree(lzo_blocks[0]->sync_bmp);
	for (i = 0; i < blkcount; ++i) {
		if (lzo_blocks[i]) {
			kfree(lzo_blocks[i]->wmem);
			kfree(lzo_blocks[i]->dst);
		}
		/* each lzo_block is a pointer returned by kmalloc or NULL */
		kfree(lzo_blocks[i]);
	}
	kfree(lzo_blocks);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_lzo_cache_init(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
1098
	size_t bmp_size;
1099
	const struct snd_soc_codec_driver *codec_drv;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	int ret, tofree, i, blksize, blkcount;
	const char *p, *end;
	unsigned long *sync_bmp;

	ret = 0;
	codec_drv = codec->driver;

	/*
	 * If we have not been given a default register cache
	 * then allocate a dummy zero-ed out region, compress it
	 * and remember to free it afterwards.
	 */
	tofree = 0;
1113
	if (!codec->reg_def_copy)
1114 1115
		tofree = 1;

1116
	if (!codec->reg_def_copy) {
1117
		codec->reg_def_copy = kzalloc(codec->reg_size, GFP_KERNEL);
1118
		if (!codec->reg_def_copy)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
			return -ENOMEM;
	}

	blkcount = snd_soc_lzo_block_count();
	codec->reg_cache = kzalloc(blkcount * sizeof *lzo_blocks,
				   GFP_KERNEL);
	if (!codec->reg_cache) {
		ret = -ENOMEM;
		goto err_tofree;
	}
	lzo_blocks = codec->reg_cache;

	/*
	 * allocate a bitmap to be used when syncing the cache with
	 * the hardware.  Each time a register is modified, the corresponding
	 * bit is set in the bitmap, so we know that we have to sync
	 * that register.
	 */
	bmp_size = codec_drv->reg_cache_size;
1138
	sync_bmp = kmalloc(BITS_TO_LONGS(bmp_size) * sizeof(long),
1139 1140 1141 1142 1143
			   GFP_KERNEL);
	if (!sync_bmp) {
		ret = -ENOMEM;
		goto err;
	}
1144
	bitmap_zero(sync_bmp, bmp_size);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

	/* allocate the lzo blocks and initialize them */
	for (i = 0; i < blkcount; ++i) {
		lzo_blocks[i] = kzalloc(sizeof **lzo_blocks,
					GFP_KERNEL);
		if (!lzo_blocks[i]) {
			kfree(sync_bmp);
			ret = -ENOMEM;
			goto err;
		}
		lzo_blocks[i]->sync_bmp = sync_bmp;
1156
		lzo_blocks[i]->sync_bmp_nbits = bmp_size;
1157 1158 1159 1160 1161 1162 1163
		/* alloc the working space for the compressed block */
		ret = snd_soc_lzo_prepare(lzo_blocks[i]);
		if (ret < 0)
			goto err;
	}

	blksize = snd_soc_lzo_get_blksize(codec);
1164
	p = codec->reg_def_copy;
1165
	end = codec->reg_def_copy + codec->reg_size;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	/* compress the register map and fill the lzo blocks */
	for (i = 0; i < blkcount; ++i, p += blksize) {
		lzo_blocks[i]->src = p;
		if (p + blksize > end)
			lzo_blocks[i]->src_len = end - p;
		else
			lzo_blocks[i]->src_len = blksize;
		ret = snd_soc_lzo_compress_cache_block(codec,
						       lzo_blocks[i]);
		if (ret < 0)
			goto err;
		lzo_blocks[i]->decompressed_size =
			lzo_blocks[i]->src_len;
	}

1181 1182 1183 1184
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1185 1186 1187 1188
	return 0;
err:
	snd_soc_cache_exit(codec);
err_tofree:
1189 1190 1191 1192
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1193 1194
	return ret;
}
1195
#endif
1196

1197 1198 1199
static int snd_soc_flat_cache_sync(struct snd_soc_codec *codec)
{
	int i;
1200
	int ret;
1201
	const struct snd_soc_codec_driver *codec_drv;
1202 1203 1204 1205
	unsigned int val;

	codec_drv = codec->driver;
	for (i = 0; i < codec_drv->reg_cache_size; ++i) {
1206 1207
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, i));
1208 1209 1210
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
1211 1212
		if (codec->reg_def_copy)
			if (snd_soc_get_cache_val(codec->reg_def_copy,
1213 1214
						  i, codec_drv->reg_word_size) == val)
				continue;
1215 1216 1217
		ret = snd_soc_write(codec, i, val);
		if (ret)
			return ret;
1218 1219 1220 1221 1222 1223 1224 1225 1226
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}
	return 0;
}

static int snd_soc_flat_cache_write(struct snd_soc_codec *codec,
				    unsigned int reg, unsigned int value)
{
1227 1228
	snd_soc_set_cache_val(codec->reg_cache, reg, value,
			      codec->driver->reg_word_size);
1229 1230 1231 1232 1233 1234
	return 0;
}

static int snd_soc_flat_cache_read(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int *value)
{
1235 1236
	*value = snd_soc_get_cache_val(codec->reg_cache, reg,
				       codec->driver->reg_word_size);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	return 0;
}

static int snd_soc_flat_cache_exit(struct snd_soc_codec *codec)
{
	if (!codec->reg_cache)
		return 0;
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_flat_cache_init(struct snd_soc_codec *codec)
{
1251
	const struct snd_soc_codec_driver *codec_drv;
1252 1253 1254

	codec_drv = codec->driver;

1255 1256
	if (codec->reg_def_copy)
		codec->reg_cache = kmemdup(codec->reg_def_copy,
1257
					   codec->reg_size, GFP_KERNEL);
1258
	else
1259
		codec->reg_cache = kzalloc(codec->reg_size, GFP_KERNEL);
1260 1261 1262 1263 1264 1265 1266 1267
	if (!codec->reg_cache)
		return -ENOMEM;

	return 0;
}

/* an array of all supported compression types */
static const struct snd_soc_cache_ops cache_types[] = {
1268
	/* Flat *must* be the first entry for fallback */
1269
	{
1270
		.id = SND_SOC_FLAT_COMPRESSION,
1271
		.name = "flat",
1272 1273 1274 1275 1276
		.init = snd_soc_flat_cache_init,
		.exit = snd_soc_flat_cache_exit,
		.read = snd_soc_flat_cache_read,
		.write = snd_soc_flat_cache_write,
		.sync = snd_soc_flat_cache_sync
1277
	},
1278
#ifdef CONFIG_SND_SOC_CACHE_LZO
1279 1280
	{
		.id = SND_SOC_LZO_COMPRESSION,
1281
		.name = "LZO",
1282 1283 1284 1285 1286
		.init = snd_soc_lzo_cache_init,
		.exit = snd_soc_lzo_cache_exit,
		.read = snd_soc_lzo_cache_read,
		.write = snd_soc_lzo_cache_write,
		.sync = snd_soc_lzo_cache_sync
1287
	},
1288
#endif
1289 1290
	{
		.id = SND_SOC_RBTREE_COMPRESSION,
1291
		.name = "rbtree",
1292 1293 1294 1295 1296
		.init = snd_soc_rbtree_cache_init,
		.exit = snd_soc_rbtree_cache_exit,
		.read = snd_soc_rbtree_cache_read,
		.write = snd_soc_rbtree_cache_write,
		.sync = snd_soc_rbtree_cache_sync
1297 1298 1299 1300 1301 1302 1303 1304
	}
};

int snd_soc_cache_init(struct snd_soc_codec *codec)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_types); ++i)
1305
		if (cache_types[i].id == codec->compress_type)
1306
			break;
1307 1308

	/* Fall back to flat compression */
1309
	if (i == ARRAY_SIZE(cache_types)) {
1310 1311 1312
		dev_warn(codec->dev, "Could not match compress type: %d\n",
			 codec->compress_type);
		i = 0;
1313 1314 1315 1316 1317
	}

	mutex_init(&codec->cache_rw_mutex);
	codec->cache_ops = &cache_types[i];

1318 1319 1320 1321
	if (codec->cache_ops->init) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Initializing %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1322
		return codec->cache_ops->init(codec);
1323
	}
1324
	return -ENOSYS;
1325 1326 1327 1328 1329 1330 1331 1332
}

/*
 * NOTE: keep in mind that this function might be called
 * multiple times.
 */
int snd_soc_cache_exit(struct snd_soc_codec *codec)
{
1333 1334 1335 1336
	if (codec->cache_ops && codec->cache_ops->exit) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Destroying %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1337
		return codec->cache_ops->exit(codec);
1338
	}
1339
	return -ENOSYS;
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
}

/**
 * snd_soc_cache_read: Fetch the value of a given register from the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The value to be returned.
 */
int snd_soc_cache_read(struct snd_soc_codec *codec,
		       unsigned int reg, unsigned int *value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (value && codec->cache_ops && codec->cache_ops->read) {
		ret = codec->cache_ops->read(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
1363
	return -ENOSYS;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
}
EXPORT_SYMBOL_GPL(snd_soc_cache_read);

/**
 * snd_soc_cache_write: Set the value of a given register in the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The new register value.
 */
int snd_soc_cache_write(struct snd_soc_codec *codec,
			unsigned int reg, unsigned int value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (codec->cache_ops && codec->cache_ops->write) {
		ret = codec->cache_ops->write(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
1388
	return -ENOSYS;
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
}
EXPORT_SYMBOL_GPL(snd_soc_cache_write);

/**
 * snd_soc_cache_sync: Sync the register cache with the hardware.
 *
 * @codec: CODEC to configure.
 *
 * Any registers that should not be synced should be marked as
 * volatile.  In general drivers can choose not to use the provided
 * syncing functionality if they so require.
 */
int snd_soc_cache_sync(struct snd_soc_codec *codec)
{
	int ret;
1404
	const char *name;
1405 1406 1407 1408 1409

	if (!codec->cache_sync) {
		return 0;
	}

1410
	if (!codec->cache_ops || !codec->cache_ops->sync)
1411
		return -ENOSYS;
1412

1413 1414 1415 1416 1417
	if (codec->cache_ops->name)
		name = codec->cache_ops->name;
	else
		name = "unknown";

1418 1419 1420 1421 1422 1423 1424 1425 1426
	if (codec->cache_ops->name)
		dev_dbg(codec->dev, "Syncing %s cache for %s codec\n",
			codec->cache_ops->name, codec->name);
	trace_snd_soc_cache_sync(codec, name, "start");
	ret = codec->cache_ops->sync(codec);
	if (!ret)
		codec->cache_sync = 0;
	trace_snd_soc_cache_sync(codec, name, "end");
	return ret;
1427 1428
}
EXPORT_SYMBOL_GPL(snd_soc_cache_sync);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

static int snd_soc_get_reg_access_index(struct snd_soc_codec *codec,
					unsigned int reg)
{
	const struct snd_soc_codec_driver *codec_drv;
	unsigned int min, max, index;

	codec_drv = codec->driver;
	min = 0;
	max = codec_drv->reg_access_size - 1;
	do {
		index = (min + max) / 2;
		if (codec_drv->reg_access_default[index].reg == reg)
			return index;
		if (codec_drv->reg_access_default[index].reg < reg)
			min = index + 1;
		else
			max = index;
	} while (min <= max);
	return -1;
}

int snd_soc_default_volatile_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].vol;
}
EXPORT_SYMBOL_GPL(snd_soc_default_volatile_register);

int snd_soc_default_readable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].read;
}
EXPORT_SYMBOL_GPL(snd_soc_default_readable_register);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

int snd_soc_default_writable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].write;
}
EXPORT_SYMBOL_GPL(snd_soc_default_writable_register);